Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы нестационарной теплопроводности

Время нагрева тел в печах вычисляется с помощью номограмм, построенных на основе критериальных уравнений нестационарной теплопроводности тел простейшей формы (пластина, цилиндр, шар). Так, для пластины толщиной 26 критериальное уравнение имеет вид  [c.176]

Уравнение (3-104) является основой численного метода расчета нестационарной теплопроводности. Для расчета температуры t по (3-104) необходимо выбрать определенно значение Fo. При этом важно помнить, что выбор Fo ограничен условием  [c.109]


На основе проведенного анализа была решена задача о распределении температурных полей в цилиндрическом сварном патрубке реактора ВВЭР-440 в режиме эксплуатационного расхолаживания со скоростью 30°С/ч. Изменение температуры теплоносителя во времени показано на рис. 5.1. Коэффициент конвективного теплообмена с корпусом реактора определялся в соответствии с выражением (3.36). Внешняя поверхность реактора теплоизолирована. Начальная температура корпуса принята равной 300°С. Теплофизические свойства материалов на рассматриваемом интервале времени D, 2,5 ч меняются незначительно и составляют для материала корпуса реактора к = 33 ккал/м-ч -°С, р = 7,8 10 кг/м , с = 0,14 ккал/кг °С, для остальной части конструкции (наплавка, сварной шов) f = 15 ккал/м ч °С, р = 7,9 10 кг/м , с = 0,13 ккал/кг °С, коэффициент конвективного теплообмена h = 0,097 кал/см с . Задача нестационарной теплопроводности решалась в линейной постановке с использо-  [c.175]

Для установления безразмерных величин, специфических для краевой задачи того или иного рода, нет необходимости в наличии завершенного аналитического решения достаточно располагать дифференциальными уравнениями процесса и формулировками конкретных условий единственности. Обратимся в связи с этим к основной цели — к построению тех безразмерных величин, которые отвечают случаю нестационарной теплопроводности при наличии внутренних источников тепла. С этой целью, прежде всего, необходимо привести к безразмерному виду дифференциальное уравнение (1-9), закладываемое в основу анализа.  [c.47]

Этот метод положен в основу устройств, служащих для осуществления различного рода граничных условий, а также моделирующей установки нового типа ( jVi -сетки), на которой оказывается возможным решать нелинейные задачи нестационарной теплопроводности в более общей постановке, чем на R -сетке.  [c.136]

В основе другого устройства, не относящегося к классу следящих систем, лежит метод нелинейных сопротивлений, который был с успехом использован для создания устройств, позволяющих решать нелинейные задачи стационарной и нестационарной теплопроводности с переменными во времени граничными условиями III рода.  [c.159]

Устройства, в основе которых лежат метод нелинейных сопротивлений и метод комбинированных схем, могут с успехом применяться и для решения обратных задач нестационарной теплопроводности.  [c.175]

Устройство, в основе которого лежит метод комбинированных схем, которое предназначено для решения нелинейной обратной задачи нестационарной теплопроводности, показано на рис. 75. Это устройство отличается от аналогичного (см. рис. 72) следующим. Во-первых, в цепь обратной связи включен ФП, который дает  [c.175]


Представляет интерес предложенный новый метод расчета нестационарной теплопроводности для неоднородного комплекса тел, находящихся во взаимном тепловом контакте. Для расчета процессов тепло- и массопереноса в случае совместного действия свободной и вынужденной конвекции предложены новые критериальные уравнения, выведенные на основе анализа теоретического вида связей между критериями подобия. Часть докладов посвящена расчету процессов теплообмена в сложных по форме элементах паровых и газовых турбин.  [c.4]

Но собственные функции и собственные значения можно найти приближенно для линейной задачи теплопроводности в теле любой формы и на их основе построить приближенное аналитическое решение. Рассмотрим путь построения такого решения для процесса нестационарной теплопроводности в неоднородном теле объемом V с зависящими от координат точки М V удельной объемной теплоемкостью с (М) и теплопроводностью X М). Пусть распределение температуры описывается уравнением  [c.161]

В настоящей главе рассматриваются задачи теплопроводности, имеющие наибольшее практическое значение. В 3.3. выводятся уравнения, описывающие задачу о нестационарной теплопроводности тонкой пластины, при этом трехмерная задача теплопроводности с помощью аппроксимации температуры по толщине пластины степенным законом сводится к нескольким двумерным задачам. На основе уравнений 3.3 исследуются частные задачи стационарной и нестационарной теплопроводности для дисков, пластин и цилиндров.  [c.54]

В основе динамических методов лежит уравнение нестационарной теплопроводности (1.1) для тел прямоугольной и цилиндрической формы, решаемое для каждого метода при определенных заданных краевых условиях.  [c.130]

В 20-е годы развитие учения о теплообмене в СССР возглавил академик М. В. Кирпичев, школа которого заложила основы теории подобия и ее приложения к вопросам теплопередачи. Советскими учеными были разработаны оригинальные и эффективные способы расчета процесса теплопроводности с помощью теории регулярного режима и метода элементарных балансов были предложены расчет конвективного теплообмена по методу теплового пограничного слоя, расчеты теплопередачи при кипении жидкостей и конденсации паров, расчеты различных случаев теплопередачи и, в частности, теплоотдачи перегретого пара при высоких давлениях, расчеты взаимной облученности тел в задачах радиационного теплообмена. Были разработаны также оригинальные методы экспериментального изучения процессов теплоотдачи и теплопроводности различных жидкостей, газов и водяного пара, определены их коэффициенты теплопроводности при высоких давлениях и температурах, составлены таблицы водяного пара и других рабочих веществ и разработаны нормы теплового расчета паровых котлов. Были разработаны также вопросы нестационарной теплопроводности, исследованы явления теплопередачи в двигателях внутреннего сгорания и теплообмена при изменении агрегатного состояния теплоносителя.  [c.8]

Энтальпия на стенке /ст, как и ранее, определяется методом последовательных приближений. Решая задачу нестационарной теплопроводности с перемещающейся внешней границей при температуре Гст, находим скорость прогрева материала, количество выделяющихся газов /стг и Усть Далее определяем Гст во втором приближении и т. д. Скорость выгорания коксовой основы равна  [c.205]

Во второй части излагаются законы теплопроводности при стационарном и нестационарном режимах, основы теории подобия и конвективный теплообмен, излучение, а также основы расчета теплообменных аппаратов. Здесь же даются сведения о тепло- и массообмене во влажных коллоидных, капиллярно-пористых телах.  [c.4]

Анализ течения жидкого или газообразного теплоносителя на основе уравнений Навье—Стокса проводится при проектировании ядерных реакторов. Кроме того, особо важная роль при проектировании ядерных установок отводится расчету тепловыделяющей системы, математической моделью (ММ) которой является нестационарное уравнение теплопроводности. В этом случае в уравнении (1.6) дополнительно появляется член, описывающий изменение искомого температурного поля во времени. При анализе тепловых процессов в тепловыделяющих элементах (ТВЭЛах), например в высокотемпературных газоохлаждаемых реакторах, уравнение теплопроводности удобнее записывать в сферических координатах в виде  [c.10]


Мы рассмотрели конечно-разностные схемы для решения стационарного уравнения энергии. В случае нестационарной задачи построение соответствующ,их схем производится на основе приведенных аппроксимаций конвективного и кондуктивного потоков точно так же, как это делалось для нестационарного уравнения теплопроводности, т. е. можно использовать явную или неявную схемы. В явной схеме потоки берут с предыдуш,его шага, в неявной — с текущего. Можно ввести и схему с весами. Отмеченные выше отрицательные и положительные свойства аппроксимаций (5.6)—(5.8) проявляются и при решении нестационарных задач. В частности, даже неявная схема с разностью вперед является неустойчивой при любом соотношении шагов по пространственной и временной переменным. С другой стороны, неявная схема с аппроксимацией разностью против потока безусловно устойчива.  [c.162]

Простейшее уравнение теплопроводности с учетом граничного условия на разрушающейся поверхности позволяет получить представление о многих качественных сторонах процесса переноса тела внутри покрытия (например, о квазистационарном режиме прогрева) и даже произвести некоторые количественные оценки. Заметим, однако, что в основе любых оценок нестационарного прогрева заложены те или иные предположения о зависимости теплофизических свойств от температуры.  [c.74]

Данная книга ни в коей мере не заменяет и не дублирует существующий справочник по теплотехнике и теплопередаче, так как, во-первых, методически она построена по иному принципу и, во-вторых, в основном рассматривает взаимосвязанные процессы тепломассопереноса и математическую теорию переноса, которая в одинаковой мере применима к переносу как тепла, так и массы вещества. Вследствие этого вопросы передачи тепла излучением, задачи чистого теплообмена и ряд других разделов теплопередачи в книге не рассматриваются. Большое внимание уделяется аналитической теории переноса тепла и массы, в частности нестационарным задачам теплопроводности (разд. 2), где путем введения обобщенных функций удалось одновременно описать одномерные температурные поля в телах классической формы, по-новому, в более простом виде, описать распространение температурных волн, дать обобщение регулярным режимам теплового нагрева тел и ряд других обобщений. На основе дальнейшего развития аналитической теории теплопроводности приведены последние работы по решениям системы дифференциальных урав-  [c.4]

На основе закономерностей нестационарного температурного поля разработаны скоростные экспериментальные методы определения коэффициентов теплопроводности, температуропроводности и теплоемкости твердых, жидких и газообразных тел одновременно из одного кратковременного опыта [Л. 7—9]. Зти методы почти полностью вытеснили методы определения теплофизических коэффициентов, основанных на закономерностях стационарного температурного поля, и методы прямого калориметрирования.  [c.10]

Исследования нестационарного теплообмена показали, что единственным способом введения произвольно заданного теплового потока через поверхность тела является электронный нагрев. Это послужило основой для разработки универсального электронного калориметра , при помощи которого можно измерять теплоемкость и теплопроводность твердого и жидкого тел, проводника или диэлектрика при неста-ционарнО М теплообмене.  [c.13]

Решение уравнений задачи теории стационарной теплопроводности строится аналогично. Исследование нестационарных процессов осуш ествляется с помош ью интегральных принципов. Термодинамика нестационарного процесса теплопроводности устанавливается на основе представления Фурье [6], путем введения соответствуюш,его этому представлению потенциала рассеивания Ф. Из уравнения баланса энтропии следует  [c.165]

Поэтому данная книга ни в коей мере не заменяет и не дублирует существующий справочник по теплотехнике и теплопередаче, так как, во-первых, методически она построена по иному принципу и, во-вторых, в основном рассматривает взаимосвязанные процессы тепломассопереноса и математическую теорию переноса, которая в одинаковой мере применима к переносу как тепла, так и массы вещества. Вследствие этого вопросы передачи тепла излучением, задачи чистого теплообмена и ряд других разделов теплопередачи в книге не рассматриваются. Большое внимание уделяется аналитической теории переноса тепла и массы, в частности нестационарным задачам теплопроводности (разд. 2), где путем введения обобщенных функций удалось одновременно описать одномерные температурные поля в телах классической формы, по-новому, в более простом виде, описать распространение температурных волн, дать обобщение регулярным режимам теплового нагрева тел и ряд других обобщений. На основе дальнейшего развития аналитической теории теплопроводности приведены последние работы по решениям системы дифференциальных уравнений тепломассопереноса (разд. 6), подробно рассмотрены гиперболические уравнения диффузии тепла и массы с учетом конечной скорости распространения. Установлена связь этого нового направления в описании явлений тепломассопереноса с работами американской школы по диффузии массы в пористых средах.  [c.4]

Сказанное справедливо, если теплоемкость термического слоя равна нулю. Поскольку определение коэффициента температуропроводности реализуется непосредственно в нестационарных тепловых режимах, представляет интерес оценить влияние всего комплекса теплофизических свойств термического сопротивления на точность определения искомого коэффициента. Очевидно, что такие оценки нетрудно провести на основе соответствующих многослойных нестационарных задач теплопроводности. Воспользуемся известным решением [2] для симметричной системы трех неограниченных пластин, находящихся в идеальном тепловом контакте. Теплофизические свойства крайних пластин г, j) тождественны, но отличны от свойств средней пластины (А.1, i). Начальная температура по объему всей системы постоянна и равна Т . Поверхности крайних пластин на всем протяжении теплообмена поддерживаются при постоянной температуре ф Тд.  [c.37]


Для измерений теплопроводности, теплоемкости и температуропроводности диэлектриков разработано шесть вариантов установки. В основу всех вариантов положен один из наиболее перспективных нестационарных режимов — регулярный тепловой режим III рода. На разработанных установках исследован комплекс теплофизических свойств высокотемпературных материалов и горных пород.  [c.159]

Более современный подход к разработке математической модели теплового режима изложен в [4]. Основной акцент сделан на анализ аналитических решений [39] и применение интегральных преобразований для решения уравнений стационарной и нестационарной теплопроводности. Авторами [4] разработаны методы решения одно- и многомерных задач, приведены программы, реализующие основные алгоррггмы, оценивается сходимость численных методов, включая и метод конечных элементов, изложенный в [28]. Анализ работы [49] позволяет сделать вывод, что на основе общего подхода для каждой сложной задачи, какой является задача теплового режима, необходимо, используя особенности объекта исследования, конструировать собственную методику, удовлетворяющую поставленным целям и требованиям разработки.  [c.79]

Определение отношения между временем облучения и обдува. Оптимальный режим сушки. При выборе времени одиночного облучения и обдува учитывались прежде всего технологические свойства сушимых материалов (термическая стойкость стирофлекса и бумаги К-12), а также динамика потоков влаги в период облучения и обдува и параметры обдувающего воздуха. Для ориентировочного определения времени одиночного облучения, пользуясь уравнениями теории нестационарной теплопроводности и учитывая предельную температуру бумаги К-12 (140° С), получили решение, согласно которому продолжительность облучения должна составлять 2,5 сек при температуре излучающей стенки из = 500°С. Окончательно этот вопрос был решен на основе анализа результатов специальной серии опытов.  [c.210]

Теплосодержание на стенке t T, как и ранее, опредв ляется методом последовательных приближений. Рещая задачу нестационарной теплопроводности с перемещающейся внешней границей при температуре Гст, находим скорость прогрева материала, количество выделяющихся газов /ст2 и ст1. Далее определяем Тст ВО втором приближении. Дальнейшая последовательность расчета аналогична предыдущему случаю. Скорость выгорания коксовой основы равна  [c.237]

Общей теоретической основой методов восстановления температурных полей и связанных с ними исследований тепловых процессов являются аналитические или машинные (численные) решения обратных задач нестационарной теплопроводности. В зависимости от конкретной направленности и строгости постановки, определяемых прикладными целями исследований, приемы и алгоритмы решения обратных задач широко варьируются. Методические погрешности восстанавливаемых тел1ператур и базирующихся на их основе других теплообменных и теплофизических характеристик преимущественно оцениваются, исходя из частных особенностей решаемой задачи.  [c.411]

Необратимые состояния. В качестве обобш,ения задачи о состояниях волокнистой среды, построим с помош ью соотношений термодинамики основы моментной теории необратимых процессов применительно к нестационарной теплопроводности. Среда имеет иерархическую структуру, упрочненную на наивыс-  [c.161]

Содержание книги отвечает следующему плану сначала рассматриваются термодинамические основы термоупругости и дается постановка задачи термоупругости для самого общего случая, когда приращение температуры не является малой величиной по сравнению с начальной температурой, а нестационарные процессы деформирования сопровождаются существенными динамическими эффектами и взаимодействием между полями деформации и температуры затем приводятся основные уравнения квазистатической задачи термоупругости и сообщаются основные сведения по теории стационарной и нестационарной теплопроводности, необходимые для исследования температурных полей и соответствующих им тепловых напряжений в квазистатической и динамической постановках далее разбираются основные классы квазистатических задач термоупругости (плоская задача термоупругостн, задача термоупругостн круглых пластин и оболочек вращения, осесимметричная пространственная задача термоупругости) в последних двух главах рассматриваются динамические и связанные задачи термоупругости.  [c.3]

Анализ теплового воздействия локального очага пожара производится на основе решения краевой задачи нестационарной теплопроводности твердых неоднородных капиллярно-пористых тел методом элементарных тепловых балансов, который был успешно использован для расчета огнестойкости строительных конструкций в условиях пожара, развивающегося по стандартной температурновременной кривой, и для условий объемных пожаров, рассмотренных в гл. 5. Для условий локальных пожаров или их начальной стадии использовались законы сложного теплообмена, рассмотренные в настоящей главе.  [c.213]

Тепловые испытания многослойных сосудов показали, что перепад температуры по толщине стенки в многослойных сосудах больше, чем в однослойных, вследствие особенностей контактного теплообмена на поверхностях соприкосновения слоев [20]. В результате экспериментальных исследований была установлена нелинейная зависимость контактных температурных сопротивлений в многослойном пакете от контактного давления [21]. На основе полученных зависимостей разработаны методы расчета теплового поля и температурных напряжений в многослойном цилиндре [22, 23] и в зоне кольцевого шва [24]. Описано качественно новое явление — зависимость поля температур от напряженного состояния многослойной стенки и, в частности, перепада температуры по толщине стенки от внутреннего давления (рис. 3). С учетом контактной теплопроводности решена также задача нахождения нестационарного темнератур-ного поля при внутреннем и наружном обогреве [251. Теоретические расчеты проверялись экспериментами на малых моделях [26], в том числе тепловыми испытаниями в специальном защитном кожухе. В настоящее время институт располагает защитным сосудом объемом 8 м , рассчитанным на пневматическое разрушение в нем экспериментальных сосудов.  [c.264]

Более конструктивным представляется путь отыскания функция влияния для сопряженной задачи на основе сопряжения функций влияния дая несопряжеяных нестационарных задач теплопроводности в стенке и переноса тепла в жидкости. Введем следующие функции влияния для несопряженяых задач - дня стенки при адиабатической изоляции  [c.149]

В настоящей главе предварительно рассмотрен ряд упрощений, применимых ПРИ определении нестационарных температурных полей плоских тел на основе выподненных решений, и изложены методики оценок соответсхвующих погрешностей, а затем проведен анализ исходных допущений, сделанных при постановке и решении линейной краевой задачи теплопроводности.  [c.464]


Содержание книги подчинено следующему плану сначала рассматриваются термодинамические основы термоупругости и дается постановка задачи термоупругости для самого общего случая, когда учитывается связь между полями деформаций и температурными полями, и динамические эффекты при нестационарных процессах деформирования затем излагается постановка квазистатической задачи термоупругости и приводятся основные сведения по теории теплопроводности, необходимые для исследования температурных полей далее разбираются основные классы задач термоупругости в квазистатической постановке (плоская задача термоупру-гости, термоупругость оболочек вращения и осесимметричная задача термоупругости) в последней главе обсуждаются динамические и связанные задачи термоупругости.  [c.3]

Последовательное рассмотрение процессов упругого деформирования и теплопроводности в их взаимосвязи возможно только на основе термодинамических соображений. Томсон (1855) впервые применил основные законы термодинамики для изучения свойств упругого тела. Ряд исследователей [Л. Д. Ландау и Е. М. Лифшиц (1953) и др.] с помощью методов классической термодинамики получили связанные уравнения термоупругости. Однако в рамках классической термодинамики строгий анализ справедлив лишь для изотермического и адиабатического обратимых процессов деформирования. Реальный процесс деформирования, неразрывно связанный с необратимым процессом теплопроводности, является в общем случае также необратимым. Термодинамика необратимых процессов, разработанная в последние годы, позволила более строго поставить задачу о необратимом процессе деформирования и дать единую трактовку механических и тепловых процессов, нашедшую отражение в работах Био (1956), Чедвика (1960), Боли и Уэйнера (1960) и др. В связи с этим более четко определилась теория термоупругости, обобщающая классическую теорию упругости и теорию теплопроводности. Она охватывает следующие явления перенос тепла теплопроводностью в теле при стационарном и нестационарном теплообмене между ним и внешней средой термоупругие напряжения, вызванные градиентами температуры динамические эффекты при резко нестационарных процессах нагрева и, в частности, термоупругие колебания тонкостенных конструкций при тепловом ударе термомеханические эффекты, обусловленные взаимодействием полей де( юрмации и температуры.  [c.6]


Смотреть страницы где упоминается термин Основы нестационарной теплопроводности : [c.214]    [c.72]    [c.168]    [c.203]    [c.363]    [c.545]    [c.174]    [c.64]    [c.399]    [c.535]    [c.265]    [c.300]   
Смотреть главы в:

Техническая и термодинамическая теплопередача  -> Основы нестационарной теплопроводности



ПОИСК



Нестационарная теплопроводность

Нестационарность



© 2025 Mash-xxl.info Реклама на сайте