Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ток, зависимость от поля

Магнитные методы контроля основаны на обнаружении полей магнитного рассеяния, образующихся в местах дефектов при намагничивании контролируемых изделий. Изделие намагничивают, замыкая им сердечник электромагнита или помещая внутрь соленоида. Требуемый магнитный поток можно создать пропусканием тока по виткам (3— витков) сварочного провода, заматываемого на контролируемую деталь. В зависимости от способа обнаружения потоков рассеяния различают следующие методы магнитного контроля метод магнитного порошка, индукционный и магнитографический.  [c.149]


Напомним о том, что относительная магнитная проницаемость х представляет собой отношение магнитного поля, создаваемого током в намагниченной среде, например, в металле, к магнитному полю, создаваемому тем же током в вакууме. В зависимости от значения ц материалы разделяют на ферромагнитные (железо) - ц > 10 диамагнитные (медь, цинк) - р, = 1 - s парамагнитные (алюминий, марганец) - -i = 1+в, где 8 - коэффициент, равный  [c.211]

Далее, на основании установленной выше зависимости силы F от длины отрезка жесткого провода I, силы тока в нем / и угла а между направлениями тока и магнитного поля, мы можем найти силу F, действующую на любой отрезок провода с током  [c.79]

Физическая сущность методов. Величину, характеризующую способность материала намагничиваться, называют относительной магнитной проницаемостью ц (безразмерная величина). Она представляет собой отношение магнитного поля, создаваемого током в намагниченной среде, к магнитному полю, создаваемому тем же током в вакууме. В количественном плане ц показывает, во сколько раз результирующее магнитное поле в материале сильнее поля, создаваемого в вакууме. В зависимости от значения ц материалы подразделяются на три группы ферромагнитные, у которых ц > 10" (железо, кобальт, никель) парамагнитные, у которых ц на несколько тысячных долей больше единицы (марганец, алюминий, платина) диамагнитные, у которых ц на несколько тысячных долей меньше единицы (медь, цинк, серебро). Магнитными методами можно контролировать только ферромагнитные материалы.  [c.190]

Рис. 25.47. Зависимость плотности тока ПЭ от напряженности электрического поля для некоторых металлов (а) и эмиттеров с различной работой выхода (б) [6] Рис. 25.47. <a href="/info/589124">Зависимость плотности тока</a> ПЭ от <a href="/info/12610">напряженности электрического поля</a> для некоторых металлов (а) и эмиттеров с различной работой выхода (б) [6]
Этот результат замечателен тем, что коэффициент Холла оказывается независящим от каких-либо параметров, за исключением концентрации носителей тока. Очевиден способ проверки для этого необходимо провести измерения ЭДС Холла Еу в зависимости от магнитного поля. Проведенные весьма тщательные измерения на особо чистых веществах при низких температурах показали, что найденные из эксперимента величины п для щелочных (одновалентных) металлов близки к 1 (электрон на атом) благородных металлов (также одновалентных) к 1,3 1,5 двухвалентных Be и Mg -0,2- --0,4, трехвалентных А1 и In —0,3.  [c.44]


Так как ток эмиссии пропорционален коэффициенту прохождения барьера, то в соответствии с формулой (29.10) зависимость плотности тока эмиссии от напряженности электрического поля должна иметь вид  [c.182]

Если в процессе прохождения однородного магнитного поля Дд угол между магнитным моментом атомов и направлением магнитного поля изменяется, то траектория атомов в неоднородном поле магнита также изменяется. Следовательно, соответствующие атомы уже не попадут в приемник Я атомов. Таким образом, если снять кривую зависимости тока атомов от частоты вращения дополнительного магнитного поля, то она будет иметь вид, показанный на рис. 77. Кривая имеет резонансный характер и обладает резко выраженным минимумом. Измерив частоту мин вращающегося поля, соответствующего минимуму тока атомов, мы получаем частоту прецессии Wj = (0 атомов в однородном магнитном поле. Затем по формуле (40.2) определяем гиромагнитное отношение yj =  [c.227]

Зависимость тока атомов от частоты вращающегося магнитного поля  [c.227]

И потерь от дипольной поляризации, В зависимости от конкретных условий может преобладать та или иная составляющая. Это положение иллюстрирует график зависимости tg б совола от температуры, представленный на рис. 2-14. При невысоких температурах преобладают дипольные потери потери от токов утечки очень малы. При отрицательных температурах вследствие высокой вязкости совола, малой тепловой подвижности его молекул ориентация их электрическим полем затруднена. Молекулы находятся как бы в заторможенном состоянии. При повышении температуры вязкость падает, подвижность молекул возрастает и облегчается ориентация их электрическим полем, что приводит к увеличению интенсивности дипольной поляризации и к росту tg б. Температурный максимум приходится на некоторые оптимальные условия подвижность молекул  [c.54]

Магнитное взаимодействие заключается во взаимном притяжении и отталкивании ферромагнитного материала и проводника (катушки) с переменным электрическим током. Например, под действием постоянного магнитного ноля изделие намагнитится. Катушка с переменным током будет притягиваться и отталкиваться от него в зависимости от направления образовавшегося в ней магнитного поля. Притяжение и отталкивание катушки будет оказывать обратное механическое действие на изделие, что приведет к возбуждению упругих колебаний на его поверхности. Возникающие при этом силы будут поверхностными, поскольку магнитный полюс образуется на поверхности изделия. Прием упругих колебаний будет происходить в результате того, что поверхность изделия будет приближаться и удаляться от катушки, изменяя в ней магнитное поле, что в свою очередь приведет к возникновению электрического тока в катушке.  [c.69]

Контроль зон вокруг отверстий на деталях производится СПП с помощью гибкого кабеля, пропущенного через отверстия или электромагнитом, устанавливая его вокруг отверстий. Зоны вокруг отверстий деталей сложной формы, а также при ограниченном доступе к контролируемой зоне рационально проверять способом однополюсного контактного намагничивания с помощью электромагнита (рис. 5.7), состоящего из соленоида 2 с вставленным в него сердечником. Сердечник изготавливается сборным и состоит из полого (для уменьшения веса) основания / и сменных наконечников 3, ввинчивающихся в него, геометрия которых выбирается в зависимости от конфигурации деталей и доступности к месту контроля. Намагничивание осуществляется постоянным и переменным током, при этом рабочую поверхность наконечника сердечника приставляют к детали, вводя магнитный поток.  [c.94]

Исследовано влияние статических растягивающих и сжимающих напряжений на ход кривых магнитной индукции и проницаемости в зависимости от величины постоянного магнитного поля (или намагничивающего тока). Намагничивание  [c.125]

Представленные в сборнике результаты расчета влияния излучения посторонних источников при тепловых методах контроля и экспериментальные данные по чувствительности приемников излучения в зависимости от температуры среды и фоновой засветки позволяют учесть влияние излучения посторонних источников при измерении температуры, когда их интенсивность в несколько раз превышает полезный сигнал. Даны результаты исследования по оптимизации магнитных свойств и кристаллической структуры железо-кобальтовых сплавов, используемых в качестве материалов для полюсных наконечников в электромагнитах с высокой однородностью поля. Рассчитана оптимальная конфигурация проводников с током для коррекции поля в электромагнитах радиоспектрометров ядерного магнитного резонанса, показана возможность изготовления системы коррекции в виде плоских проводников с током.  [c.4]


На использовании экранного метода основан предложенный в Японии способ измерения твердости тонкой стальной движущейся ленты, который предусматривает предварительное размагничивание ленты [8]. Сущность способа заключается в том, что с одной стороны стальной ленты устанавливают стержневой электромагнит, питаемый постоянным стабилизированным током, а с другой — против стержневого электромагнита помещают измеритель напряженности магнитного поля, прошедшего через стальную ленту. Составляющая магнитного поля, приложенная перпендикулярно к поверхности стальной ленты, проходит через нее, ослабевая в зависимости от твердости ленты. Измерив степень ослабления поля, вычисляют твердость стальной ленты. Для исключения влияния магнитной предыстории предусматривается предварительное размагничивание ленты.  [c.62]

Подземные магистральные и межцеховые трубопроводы, промышленные газопроводы, эксплуатационные колонны буровых скважин в станциях подземного хранения газа и др. подвержены интенсивной электрохимической коррозии. Усиление коррозионного процесса при наличии электрического поля блуждающих токов может вызвать разрушение подземных металлических коммуникаций в значительно более короткий срок, чем это предусмотрено проектом. В зависимости от влияния блуждающих токов на подземные металлические сооружения различают следующие характерные зоны устойчивая анодная зона, в которой блуждающие токи выходят непрерывно из подземного сооружения, устойчивая катодная зона, в которой блуждающие токи входят непрерывно в сооружение, и знакопеременная зона, в которой возникают неустойчивые анодные и катодные зоны.  [c.65]

В случае необходимости с помощью данного механизма можно осуществить регулирование скорости опускания груза. При пологой характеристике число оборотов двигателя, работающего на спуск груза, близко к числу его оборотов на холостом ходу. Это позволяет производить изменение скорости опускания путем изменения числа оборотов холостого хода переключением числа полюсов трехфазных электродвигателей или изменением магнитного поля двигателей постоянного тока. Весьма точное регулирование скорости спуска можно произвести даже при трехфазном двигателе введением в систему рычагов дополнительной пружины 1, имеющей предварительное натяжение (фиг. 213, а). При наличии такой пружины корпус вспомогательного двигателя при повороте под действием реактивного момента прежде, чем он разомкнет тормоз, должен преодолеть усилие пружины 1. В зависимости от включенной в данный момент ступени сопротивления двигатель работает на одной из искусственных характеристик а—<1 или на своей естественной характеристике е (фиг. 213, б). Возможный диапазон изменения чисел оборотов, а значит, и скорости  [c.326]

В зависимости от характеристики электромагнитного поля и частоты, используемой в приборах, применяются следующие методы измерения толщины покрытий индукционный, индуктивный и вихревых токов.  [c.36]

По величине и форме шероховатости (в зависимости от способов обработки поверхности) могут быть весьма разнообразны. Поэтому при выводе формулы переходного сопротивления приходится делать некоторые допущения. Например, площадки действительного соприкосновения приходится считать круглыми и одинаковыми по величине, а распределение линий тока в теле контакта — радиальным (рис. 2). При этих условиях линии тока распределяются аналогично линиям электростатического поля заряженной круглой пластинки.  [c.271]

Передняя и задняя грани, являющиеся зеркалами, обычно получаются путем скалывания кристалла относительно определенной кристаллографической оси. Боковые грани скошены, чтобы препятствовать возникновению колебаний в перпендикулярном направлении. Электрическое поле прикладывается в направлении, перпендикулярном к р— -переходу, при помощи специальных контактов, соединенных с массивными теплоотводящими пластинами. Пороговая плотность тока лазера в зависимости от технологии и рабочей температуры кристалла колеблется в широких пределах обычно она составляет при 77 К примерно 10-10 А-см , снижаясь до 3-10 А-см" при температуре жидкого гелия 4,2 К-  [c.61]

Таким образом, можно прийти к выводу, что фильтрация газа через слой сыпучего является сложным процессом, в частности, в зависимости от характера поля эквивалентных отверстий в слое могут существовать застойные зоны и даже обратная циркуляция газа. Поэтому уравнение Бернулли, выведенное для трубки тока при установившемся движении несжимаемой жидкости, не приложимо к движению потока газов через слой материалов в шахтных печах, как это ошибочно иногда делается.  [c.324]

Источники тока для питания сварочной дуги должны иметь специальную внешнюю характеристику. Внешней характеристикой источника называется зависимость напряжения на его выходных клеммах от тока в электрической цепи. Внешние характеристики могут быть следуюш,их основных видов падаю1цая /, полого-падаюш,ая 2, жесткая 3 и возрастающая 4 (рис. 5.4, а). Источник тока выбирают в зависимости от вольт-амиериой характеристики дуги, соответствующей принятому способу сварки.  [c.187]

Микроструктура закрученного потока представляет особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения в камере энергорааделения вихревых труб значительно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций закрученного ограниченного потока всегда трехмерное и имеет особенности, отличающие его от турбулентных характеристик незакрученных течений [15, 18, 30, 181, 196]. На рис. 3.11,а показаны интенсивность турбулентности е закрученного потока в системе координат, связанной с криволинейной линией тока, где — продольная, — поперечная и ц — радиальная составляющие турбулентных пульсаций в зависимости от относительного расстояния до стенки камеры энергоразделения y/R.  [c.115]


Сварочные генераторы. Это специальные генераторы постоянного тока, внешняя характеристика которых позволяет получать устойчивое горение дуги, что достигается изменением магнитного потока генератора в зависимости от сварочного тока. Сварочный генератор постоянного тока состоит из статора с магнитными полюсами и якоря с обмоткой и коллекторами. При работе генератора якорь вращается в магнитном поле, создаваемом полюсами статора. Обмотка якоря пересекает магнитные линии полюсов генератора, и поэтому в витках обмотки возникает переменный ток, который с помощью коллектора преобразуется в постоянный. -Вращение якоря сварочного генератора обеспечивается в сварочных преобразователях электродвигателем, а в сварочных агрегатах — двигателем внутреннего сгорания. К коллектору прижаты угольные щетки, через которые постоянный ток подводится к клеммам. К этим клеммам присоединяют сварочные провода, идущие к электрододержа-телю и изделию.  [c.61]

Эндрю [4] впервые исследовал зависимость р от размеров и температуры для тонких проволок из олова и ртути. Он нашел, что величина р не зависит от температуры, но для оловянных проволок в поперечных нолях она монотонно возрастает при изменении диаметра от р = 0,54 для проволоки диаметром 0,105 см до р = 0,67 для проволоки диаметром 0,0027 см. Отсюда видно, что о стремится к 0,5 для очень больших образцов. Для образцов больших размеров влияние тока характеризуется кривыми, подобными показанным на фиг. 16. С возрастанием ноля кривые становятся более вогнутыми при уменьшенип измерительного тока и в пределе для нулевого тока переход в поперечном поле становится идентичным переходу в продольном поле. Для образцов меньших размеров была получена предельная кривая, определяющая влияние тока. При уменьшении тока ниже предельного значения дальнейшего увеличения вогнутости кривод не происходит. Для проволок диаметром 30 мк эта кривая практически линейна и зависимости от тока но наблюдается. Полученные результаты показывают, что в больших образцах при малых измерительных токах слои параллельны оси цилиндра, а при увеличении тока они поворачиваются нормально к его оси. Для образцов малых диаметров спои, по-видимому, всегда перпендикулярны оси, даже и в случае малых токов.  [c.653]

Рис. 30.49. Угловые диаграммы вращеиня и зависимость от iLoH Др/Pj для монокристаллов Со [45] (Т = 4,2 К )ХоЯ=15 Тл RRR = 204 ф — угол вращения магнитного поля в плоскости, перпендикулярной электрическому току через образец) Рис. 30.49. Угловые диаграммы вращеиня и зависимость от iLoH Др/Pj для монокристаллов Со [45] (Т = 4,2 К )ХоЯ=15 Тл RRR = 204 ф — <a href="/info/243096">угол вращения</a> <a href="/info/20176">магнитного поля</a> в плоскости, перпендикулярной электрическому току через образец)
Если в катушке электромагнита тока нет, то подвижный магнит устанавливается в нулевое положение под влиянием противодействующего момента. Этот момент образуется натяжением бронзовых растяжек и постоянным магнитным полем I зазоре между пермаллоевыми наконечниками, направленным вдоль оси подвижного магнита. При протекании переменного тока по катушке электромагнита между его полюсами появляется магнитное поле, перпендикулярное оси подвижного магнита в пулевом положении. Переменное поле вызывает вибрацию подвижного магнита световая линия на шкале, получающаяся при отражении луча от зеркала, связанного с подвижным магнитом, размывается в полосу тон или иной плфины в зависимости от значения измеряемого переменного напряжения.  [c.56]

Эффект Томсона состоит в том, что при пропускании тока через проводник, вдоль которого имеется градиент температуры, в дополнение к теплоте Джсуля в объеме проводника в зависимости от направления тока выделяется или поглощается некоторое количество тепла. Эффект Томсона в полупроводнике объясняется тем, что при наличии в нем градиента температуры возникает термо-э. д. с. Если направление напряженности возникшего электрического поля совпадает с направлением напряженности внешнего поля, то не вся энергия, поддерживающая ток, обеспечивается внешним источником, часть работы совершается за счет тепловой энергии самого полупроводника, в результате чего он охлаждается.  [c.75]

Для устранения температурной погрешности прибора применяют магнитные шунты. Шунт должен быть изготовлен из такого материала, у которого индукция линейно уменьшается в зависимости от температуры. Тогда при понижении температуры, например, на 5° С, ток в обмотке подвижной рамки увеличится примерно на 2%, что может быть скомпенсировано снижением напряженности поля Я в зазоре при наличии магнитного шунта. При понижении температуры индукция шунта увеличивается, следовательно, напряженность поля Н в зазоре должна уменьшаться. Материалы для изготовления таких компенсационных шунтов должны иметь линейную aaBH HMo tb  [c.173]

Крутящий момент <гистерезисного двигателя возникает вследствие гистерезиса материала ротора. При включении двигателя в сеть переменного тока создается вращающееся магнитное поле. Ротор вращается синхронно с магнитным полем с некоторым углом рассогласования. Крутящий момент идеального гистерезисного двигателя не зависит от частоты вращения ротора, а определяется только свойствами материала ротора (его объемом и величиной удельных потерь на гистерезис). Следовательно, необходимо иметь данные о величине удельных потерь на гистерезис в зависимости от индукции или напряженности поля при определенном характере перемагничивания. Поэтому основной характеристикой материала гистерезисных двигателей является PJHm, эта величина должна быть большой. Чем больше прямоугольность петли, тем больше потери на гистерезис. Поэтому другой характеристикой является коэффициент выпуклости кривой  [c.228]

В жидкостях улучшенной очистки, но не доведенных до предельно чистого состояния, проводимость практически не зависит от напряженности электрического поля до значений около 0,1 МВ/м. При больших напряженностях наблюдается более резкий рост тока, чем по закону Ома, — наблюдается увеличение проводимости, по-видимому, за счет увеличения подвижности ионов. В жидких диэлектриках обычной технической чистоты зависимость тока утечки от напряженности имеет довольно неопределенный характер. При достаточно больших значениях напряженности в обычных недегазированных жидкостях наблюдается увеличение тока утечки за счет ударной ионизации газовых объемов, находящихся в жидкости в растворенном состоянии.  [c.48]

Основным условием электропроводности любого вещества является наличие в нем свободных зарядов — носителей тока. Под действием поля заряды будут двигаться в направлении силовых линий и скорость их движения будет находиться в прямой зависимости от напряженности поля. Плотность тока mojkho определить из уравнения  [c.16]

Управление размерами и формой мениска можно осуществить ре- улируя магнитное поле на его поверхности. При четко выраженном поверхностном эффекте результирующее поле вне проводящей среды сравнительно легко определяется экспериментально или расчетом по уравнению Лапласа. Нужную конфигурацию магнитного поля достигают, варьируя форму индуктора и распределение в нем тока иногда используют также магнитолроводы и экраны. Следует также учитывать, что в ряде случаев распределение тока в индуктирующих проводниках зависит от их расположения по отношению к мениску. Это наблюдается, в частности, в индукторах с большой высотой витков и в индукторах с параллельными катушками. В таких индукторах линейная плотность тока выше в зонах, расположенных ближе к расплаву. При наличии разрезного тигля (независимо от типа индуктора) аналогичное перераспределение тока происходит в тигле и расплаве в зависимости от зазоров между ними. Такая особенность естественного саморегулирования распределения тока способствует выравниванию зазора между расплавом и индуктором (или проводящим тиглем) и повышению электрического КПД печи.  [c.25]


Интерес к магнитным пленкам определяется тем, что на их основе могут быть разработаны запоминающие устройства (ЗУ) для ЭВМ, обладающие рядом преимуществ перед ЗУ на ферритовых сердечниках. На рис. 11.24 показана одна из возможных схем элемента памяти на магнитных пленках. Элемент состоит из напыленной на подложку пермаллоевой или ферритовой пленки I и трех напыленных металлических шин разрядной 2, числовой 3 и считывания 4. Элемент конструируется так, чтобы поле числовой шины было параллельно оси легкого намагничивания пленки, а поле разрядной шины — параллельно оси трудного намагничивания. При записи информации импульс тока пропускается через разрядную шину, намагничивая пленку вдоль оси легкого намагничивания. В зависимости от направления этого импульса после прекращения его действия пленка остается намагниченной или до+Вг. что соответствует Ь, или до —В , что соответствует О (рис. 11.23, б). При считывании импульс тока подается в числовую шину. Магнитное поле этого тока  [c.312]

С изменением уровня бензина в баке е перемещение поплавка / при помощи конических зубчатых колес 2 и 3 передается ползунку 4, скользящему по обмотке потенциометра 5. При движении ползунка 4 по обмотке потенциометра 5 напряжение между точками а, d я Ь непрерывно изменяется, и каждому положению поплавка 1 в баке е соответствует определенное соотношение напряжений, подводимых к электромагнитным катушкам 6 и 7, расположенным иод углом 120 друг к другу. Внутри катушек б и 7 движется серповидный железный сердечник 8, с которым жестко связаиа стрелка В зависимости от положения ползунка 4 па потенциометре 5 в катушках 6 и 7 будут протекать токи различной силы, создающие различные магнитные поля, заставляющие сердечник 8 поворачиваться. Стрелка f указывает при этом объем бензина в баке е. Так как бензиновые баки имеют различную форму, то прибор тарируют специально для бака данного тина.  [c.143]

Среди электромагнитных приборов для контроля твердости наиболее широко применяют структуроскоп ВС-ЮП. Он предназначен для контроля прутков, труб, уголков, болтов, шпилек и т. п. из сталей 10, 25, 35, 45 (ГОСТ 1050—74), а также из других сталей, для которых может быть установлена однозначная связь электромагнитных характеристик с твердостью. Частота тока питания проходного преобразователя 175 Гц. Принцип работы прибора основан на возбуждении в испытуемом токопроводящем изделии вихревых токов и анализе изменения вторичного поля вихревых токов в зависимости от измеряемого параметра (твердость). Для анализа применяют амплитудно-фазовый метод обработки информации, которая сравнивается с сигналом от эталонного образца. Прибор мо>кет работать в двух режимах — по первой п по третьей гармонике. Трудность нсполь-зоваипя электромагнитных структу-роскопов для контроля твердости заключаете в необходимости отстройки от многих влияющих на результат измерения неконтролируемых параметров (зазор, диаметр, длина изделия, вариации химического состава, удельная электрическая проводимость и т, д.). В настоящее время такие приборы, кап и магнитные, могут быть рекомендованы в качестве индикационных средств, а уточнять их метрологические характеристики можно только после соответствующих экспериментальных статистических исследований для стали выбранной марки.  [c.274]

Первую промышленную установку для получения азотной кислоты по способу фиксации азота воздуха в электрической дуге построили норвежские ученые — профессор физики X. Биркеланд и инженер С. Эйде. Бир-келанд предложил оригинальное решение, которое дало возможность придать электрической дуге растянутую по окружности форму, что чрезвычайно повысило эффективность окисления азота. Это решение он заимствовал из давно известного свойства вольтовой други отклоняться в магнитном поле от ее начального положения. В процессе работы установки дуга растягивается до тех пор, пока не порвется и не заменится новой. Такое прерывание и возникновение новой дуги в зависимости от условий может происходить с частотой от нескольких сот до 1000 раз в секунду. При соответствующей силе тока дуга, принимая форму сплошного и очень  [c.159]

Одним из новых прогрессивных методов импульсного нагружения является использование электрической энергии, накопленной батареей высоковольтных импульсных конденсаторов и выделяемой в весьма короткий период времени непосредственно на обрабатываемую деталь или через промежуточную среду. В зависимости от способа выделения энергии различают электрогидравлическую штамповку, основанную на использовании импульсного электрического разряда или взрыва инициирующего проводника в жидкости, магнитноимпульсную штамповку, где деформирующее усилие возникает в результате взаимодействия импульсных магнитных полей поля катушки-индуктора и поля, возникшего от наведенных токов в формируемой заготовке. В случае использования этих методов упрощается и удешевляется по сравнению с обычными прессовыми методами листовой штамповки технологическая оснастка и в значительной степени ускоряются сроки освоения нового производства.  [c.259]

Влияние поперечного магнитного поля на теплообмен при ламинарном течении [45] связано, во-первых, с деформацией профиля скорости (эффект Гартмана) и, во-вторых, с возникновением дополнительного (к вязкой диссипации) стока кинетической энергии, связанного с джоулевым нагревом жидкости индуцированными токами. Первый фактор приводит к увеличению суммарной теплоотдачи для всех типов течений (в прямоугольных каналах, трубах, щелях и т. д.), а второй, в зависимости от того, являются стенки каналов проводящими или нет, обусловливает уменьшение или увеличение теплообмена. Расчеты показывают [46], что джоулевой диссипацией можно пренебречь, если безразмерный комплекс На2ЕсРг<0,5 [Ес = = Оо/Ср(Го—Гст) — критерий Эккерта, Vq и Гц —средняя скорость и среднерасходная температура потока].  [c.82]

Для исследования зависимости тока ИК от спектра нейтронов, падающих на защиту, проведены расчеты нейтронных полей в экспериментальном макете (см. рис. I) и полномасштабном макете, в котором стальной экран заменен железоводной защитой (ЖВЗ), соответствующей радиальному сечению защиты реактора ВВЭР-1000 от внешнего края активной зоны до внешней поверхности корпуса реактора. (Источник нейтронов — активная зона реактора ИР-50 на номинальной мощности.) На втором  [c.109]


Смотреть страницы где упоминается термин Ток, зависимость от поля : [c.404]    [c.254]    [c.201]    [c.524]    [c.628]    [c.250]    [c.204]    [c.79]    [c.541]    [c.172]    [c.841]   
Статистическая механика Курс лекций (1975) -- [ c.335 , c.339 ]



ПОИСК



Выбор способа представления поля от объекта в зависимости от геометрических параметров голографической схемы

Генератор Ван-дер-Поля. Зависимость формы автоколебаний от параметров системы

Действие сильного светового поля. Зависимость показателя преломления от интенсивности света

Деформация максимальная — Зависимость от числа полу дик лов 204 — Неоднородность 119 — Приближенное решение

Зависимости для сферического звукового поля

Зависимости между напряжениями и деформациями при пластической деформа Поле напряжений

Зависимость воспроизведенного сигнала от параметров, характеризующих поле дефекта (размера дефекта, глубины его залегания и положения магнитной лепты)

Зависимость геометрических свойств распространения электромагнитных волн в изотропной среде от напряженности поля

Зависимость динамической поляризуемости от характеристик атомной системы и поля излучения

Зависимость магнитной проницаемости и индукции от напряженности магнитного поля

Зависимость напряженности магнитного поля и плотности тока от координаты

Зависимость осцилляций от поля

Зависимость поляризации люминесценции от длины волны возбуждающего света и концентрации яркости поля

Зависимость скорости движения пятна в магнитном поле от плотности газозой среды и явление инверсии движения

Зависимость тока от поля

Зависимость формы интерференционных полос от положения выходных зрачков и поля интерференции

Изменение коэффициента теплопроводности монохалькогенидов свинца и ртути в зависимости от напряженности магнитного поля АХХ0—Х(Н)

Изменение коэффициента теплопроводности пиролитического графита в зависимости от напряженности магнитного поля

Изменение коэффициента теплопроводности селенида ртути в зависимости от напряженности магнитного поля АХХ0—Я(Н)

Исследование заряжения поверхности методом контактной разности потенциалов. Комбинация контактной разности потенциалов с эффектом поля (ПО). 3.8.3. Определение зависимости скорости поверхностной рекомбинации от потенциала поверхности

Критическое поле антиферромагпетиков зависимость от температуры

Общее поле изотерм для твердой среды в предположении о зависимости ее сжимаемости и температурного расширения от давления и температуры

Поле силы тяготения. Вид траектории точки в зависимости от начальных условий движения. Законы Кеплера

Поляризация зависимость от напряженности поля в плотных среда

Поляризация общая зависимость от напряженности поля

Расчет зависимости между поляризацией и напряженностью поля

Результаты измерений скорости движения пятна в зависимости от напряженности магнитного поля и тока

Сина Г., Дымов В. Н., Калужский Н. А., Займус М Зависимость индукции магнитного поля на электролизерах средней мощности от типа анода

Топография магнитного поля в зависимости от формы сварного шва

Уравнение траектории и зависимость расстояния от времени в центральном поле произвольного вида

Явная зависимость тензора еу (а, U) от напряженности слабых внешних полей. Эффект инверсии магнитного поля



© 2025 Mash-xxl.info Реклама на сайте