Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамики основы

Развитая в трудах О. А. Есина и его школы (Свердловск) теория регулярных ионных растворов, учитывающая энергетическое различие ионов (энергия смешения) и образование комплексных анионов SuO/ в результате захвата молекулами ЗЮг ионов 0 ", позволила теоретически определить взаимодействие между ионами и дала метод расчета коэффициентов активностей компонентов исходя из основных положений статистической термодинамики. Основы этой теории изложены в монографии  [c.355]


Одной из важнейших дисциплин, изучаемых в техникумах, является теплотехника. Настоящий учебник Основы теплотехники, тепловые двигатели и паросиловое хозяйство нефтебаз и перекачивающих станций написан в соответствии с учебной программой для средних специальных учебных заведений по специальности Транспорт и хранение нефти и газа . Учебник состоит из шести разделов основы технической термодинамики основы теплопередачи топливо, топки, котельные установки двигатели внутреннего сгорания газовые турбины паросиловое хозяйство 1 3  [c.3]

В 1 учебника говорится о законе эквивалентности в 2 дается приложение уравнения живых сил к обоснованию уравнения первого принципа термодинамики. Основы этого метода были изложены также в учебнике Радцига. В этом параграфе говорится также о внутренней энергии тела, ее основных свойствах и показывается, что йи представляет собой полный дифференциал.  [c.114]

В теплотехнике, как и во всякой дисциплине, важно дать прежде всего теоретические основы знаний. Поэтому больше половины всего объема учебника отведено изложению технической термодинамики, основ тепло- и массообмена и теории горения.  [c.3]

В соответствии с уравнением (5.3) первого закона термодинамики, количество теплоты, отдаваемой потоком газов в теплообменнике, равно разности энтальпий газов до и после теплообменника (изменением скоростного напора можно пренебречь, а техническая работа не совершается). Поэтому основой тепловых расчетов топливоиспользующих устройств является энтальпия продуктов сгорания, которую принято рассчитывать на единицу количества топлива, из которого получились эти продукты , т, е.  [c.128]

Законы и соотношения классической термодинамики сначала будут обсуждены с эмпирической точки зрения. Затем они будут рассмотрены и интерпретированы на основе статистической термодинамики.  [c.29]

Эта величина, вычисленная на основе статистической термодинамики, хорошо согласуется с эмпирическими величинами, вычисленными по экспериментальным данным по давлению пара твердых веществ [191.  [c.267]

В гл. 1 излагалась эволюция понятия о температуре в течение более чем двух тысяч лет от исходных примитивных представлений до обобщенных концепций современной термодинамики и статистической механики. В предлагаемой главе рассказывается, каким образом на основе этих теоретических представлений появились температурные эталоны и температурные шкалы. Прежде всего ознакомимся в общих чертах с событиями, позволившими установить области, в которых были заключены международные соглашения.  [c.37]


Перенос тепла излучением и оптическая термометрия тесно связаны, поскольку в обоих случаях необходимо иметь соотношение между термодинамической температурой и количеством и качеством тепловой энергии, излученной поверхностью. В конце 19 в. на основе только классической термодинамики и электромагнитной теории были получены два важных результата. Первый — закон Стефана (1879 г.), согласно которому плотность энергии внутри полости пропорциональна четвертой степени температуры стенок полости. Второй —закон смещения Вина (1893 г.), который устанавливал, что, когда температура черного тела увеличивается, длина волны максимума излучения Хт уменьшается, так что произведение ХтТ сохраняется постоянным. Доказательство закона Стефана основано на трактовке теплового излучения как рабочей жидкости в тепловой машине, имеющей в качестве поршня подвижное зеркало, и использовании электромагнитной теории Максвелла, чтобы показать, что действующее на поверхность давление изотропного излучения пропорционально плотности энергии. Закон Вина вытекает из рассмотрения эффекта Доплера, возникающего при движении зеркала. В обоих законах появляется постоянный коэффициент пропорциональности, относительно которого классическая термодинамика не могла дать информации.  [c.312]

При работе над книгой автор стремился дать в наиболее простом и доступном изложении основы технической термодинамики и теории тепло- и массообмена, сохраняя при этом необходимую теоретическую и научную форму.  [c.4]

ОСНОВЫ ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ  [c.5]

К р а с и о п е в ц е в Н. И. Основы технической термодинамики. Советская паука , 1953.  [c.550]

П. П. Золотаревым и В. Н. Николаевским [6] рассмотрены уравнения массы, импульса и энергии фаз в водонасыщенном грунте, представляющем смесь жидкости и упругого скелета, с учетом сжимаемости обеих фаз. В этой же работе разбираются основы неравновесной термодинамики таких сред, когда температуры фаз могут не совпадать друг с другом.  [c.27]

Тогда дифференциальное выражение для изменения температуры жидкой частицы на основе первого начала термодинамики  [c.166]

В рамках феноменологического подхода для нахождения закономерностей изменения неизвестных наблюдаемых величин в пространстве и во времени используются общие физические законы (такие, например, как законы сохранения, постулаты термодинамики и др.) в сочетании с соотношениями между наблюдаемыми величинами, вид которых получен в результате обработки экспериментальных данных. Основу феноменологического подхода для описания гидродинамики систем газ—жидкость составляют законы классической гидромеханики, которая строго описывает движение каждой фазы (см. разд. 1.3). Однако применение строгих результатов, полученных из фундаментальных соотношений гидромеханики (таких, как уравнение Навье—Стокса), к расчету газожидкостных течений является практически невыполнимой задачей, за исключением ряда простых примеров, рассмотренных во второй и третьей главах книги.  [c.184]

ТЕРМОДИНАМИЧЕСКИЕ И КИНЕТИЧЕСКИЕ ОСНОВЫ МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ 8.1. Приложение первого начала термодинамики к химическим процессам  [c.250]

Химическая термодинамика — самостоятельная часть общей науки об изменениях и переходах энергии в ее основе лежат  [c.250]

Воронин г. Ф. Основы термодинамики. — М. Изд-во Моск. ун-та,  [c.2]

На этой основе в термодинамике выделяют свойства системы, которые непосредственно связаны с воздействием на нее внешней среды, а поскольку изменения во внешней среде являются причиной изменения состояния равновесия, то эти свойства могут использоваться в качестве независимых переменных, определяющих состояние системы.  [c.21]

Первым и вторым законами термодинамики устанавливается существование двух функций состояния — энергии и энтропии. Оба закона формулируют полностью только для закрытых систем, но понятия энергии и энтропии используются более широко, в любых термодинамических системах. Ни энергию, ни энтропию нельзя измерить непосредственно, это вспомогательные физические величины. Нахождение их не является конечной целью термодинамического анализа, однако они позволяют реализовать в принципе уже сформулированные на основе постулатов термодинамики возможности количественного расчета других интересующих свойств равновесных систем.  [c.41]


Об энергии ранее говорилось неоднократно, но это свойство не определялось в надежде на то, что оно уже привычно читателю, встречавшему его во всех других разделах физики. Но хотя понятие энергии относится к числу самых общих, оно является в то же время одним из наиболее трудных для строгого определения. Наглядное представление об энергии можно получить, рассматривая различные микроструктурные составляющие ее на основе теории строения вещества. Термодинамику интересуют внутренние состояния тел, поэтому кинетическая и потенциальная энергия системы в целом, если она не влияет на термодинамические свойства, во внимание не принимается.  [c.41]

Используя рассмотренные правила преобразования переменных, можно выразить любой из аргументов функции S U, V, п) как функцию остальных величин и S. Каждая из образованных таким образом функций V U, S, v, n), n,(U, S, V, n ) и другие также будет характеристической. Задача заключается, однако, в том, чтобы иметь характеристические функции удобные для применения. Так, функции S(U, V, п) и U S, V, п) не удобны для практического использования из-за того, что их независимые переменные нельзя непосредственно контролировать экспериментально, т. е. нельзя измерить их или поддерживать значения соответствующих величин в интересующем процессе на заданном уровне. Прежде всего это касается, конечно, переменных U н S, но отмеченные трудности возникают и с другими экстенсивными переменными. Поэтому на основе фундаментальных уравнений (7.3), (9.1) в термодинамике получают другие вспомогательные характеристические функции с более удобными наборами аргументов.  [c.80]

Расширенный набор независимых переменных позволяет анализировать перекрестные эффекты, возникающие при сочетании различных по своей природе процессов. В электрических и магнитных полях за счет взаимного влияния механических явлений, с одной стороны, и электрических или магнитных, с другой, возникают такие эффекты, как электрострикция, магнитострикция, пьезоэффект, магнитоупругий эффект и др. Сочетание термических и электрических (магнитных) процессов приводит к термоэлектрическим (термомагнитным) эффектам и соответствующим свойствам. Рассмотрим эти дополнительные возможности термодинамики на примере процессов магнитного охлаждения тел, лежащих в основе современных методов получения сверхнизких температур.  [c.162]

ГЕННАДИИ ФЕДОРОВИЧ ВОРОНИН ОСНОВЫ ТЕРМОДИНАМИКИ  [c.192]

Первые две задачи можно решить на основе второго закона термодинамики. Для решения третьей задачи Г.П. Гладышев [2] принял, что изучаемая открытая система находится в термостате, вместе с которым она образует полную термодинамическую систему. Например, такой полной системой является совокупность окружающей среды (термостата) и собственно самой открытой нестационарной системы в виде локального объема V (рисунок 1.5).  [c.20]

Впервые в наших учебниках по термодинамике основы термохимии были изложены в учебнике Грузинцева, затем в учебниках Плотникова, Мостовича и Брандта. Наиболее обстоятельно, систематично и полно курс термохимии был изложен в учебнике Грузинцева. Отдельные темы (химическое равновесие и теорема Нернста) хорошо изложены также в учебнике Мостовича.  [c.93]

В гл. 12 и 13 с применением общего термодинамического метода исследования очень обстоятельно излагаются основы термохимии. Основные формулы химического равновесия выводятся методом, опирающимся на свойства терхмодинамического потенциала, принимающего при равновесии минимальное значение. Здесь выводятся формула константы химического равновесия Кс, формула максимальной работы 1 = 1 Кс), формула изохоры химической реакции. После чего записано ... уравнение изохоры химической реакции было дано в 1886 г. Вант-Гоффом . Этот раздел в учебнике Грузинцева изложен очень подробно — на 25 страницах (из 187 страниц учебника). Из русских учебников ио термодинамике основы общей теории термохимии впервые были изложены в учебнике проф. Грузинцева.  [c.172]

Первое издание учебника проф. Жуковского было выпупдено в 1934 г., второе и третье его издания были опубликованы в 1940 и 1952 гг. Учебник Жуковского является серьезным и обстоятельным сочинением по технической термодинамике, в котором полно и глубоко трактуются начала термодинамики и общие основы ее теории. Хорошо в нем изложены также общая теория реальных газов, дифференциальные уравнения термодинамики, основы газовой динамики и многие другие разделы. В учебнике уделяется большое внимание освещению физических особенностей исследуе.мых явлений и процессов.  [c.342]

Иноземцеву принадлежат учебники по тепловым двигателям, термодинамике и термохимии. Из них можно назвать следующие Курс тепловых двигателей Авиационные газотурбинные двигатели Основы теории реактивных двигателей Воздушно-реактивные двигатели Курс специальной термодинамики Основы термодинамики и кинетики химических реакций и др.  [c.648]

Необратимые состояния. В качестве обобш,ения задачи о состояниях волокнистой среды, построим с помош ью соотношений термодинамики основы моментной теории необратимых процессов применительно к нестационарной теплопроводности. Среда имеет иерархическую структуру, упрочненную на наивыс-  [c.161]

Теоремы о работе в теории упругости не имеют ничего общего с термодинамикой. Хотя они и относятся к энергии, но никак не затрагивают понятий тепла и температуры. Невозможно доказывать термодинамические теоремы, не вводя сначала термодинамику т. е. необходимо ввести еще какие-то величины и предположения, прежде чем можно будет установить какую-нибудь связь между существованием функции запасенной энергии и вторым законом термодинамики . Основы термодинрмики для некоторых рассмотрений в теории гиперупругости будут даны ниже, в XV. 3.  [c.372]


В зависимости от задач исследования рассматривают техническую или химическую термодинамику, термодинамику биологических систем и т. д. Т е х и и ч е-ская термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и свойства тел, участвующих в этих превращениях. Вместе с теорией теплообмена она является теоретическим фундаментом теплотехники. На ее основе осуш,ествля-ют расчет и проектирование всех тепловых двигателей, а также всевозможного технологического оборудования.  [c.6]

Второй закон термодинамики автор также сформулировал не на термодинамической, а на статистической основе — изолированная система, свободная от одухотворенного выбора, сама произвольно стремится перейти в состояние, которое может осуществиться наибольшим числом способов . Поэтому неудивительно, что прежде чем подойти к описанию содержания второго закона термодинамики и его следствиям, автор сравнительно подробно остановился на статистическом подходе к рассмотрению термодинамических процессов и термодинамических функций, и такие понятия, как энтропия, термодинамические функции и — TS и и — TS + pv, появились в книге раньше, чем было рассмотрено содержание второго закона термодинамики. Излагая содержание последнего, автор высказывает мысли, по существу примыкающие к признанию тепловой смерти мира так, он утверждает, что второй закон термодинамики эквивален-  [c.23]

Вопреки обычному пониманию термина динамика , классическая термодинамика имеет дело только с превращениями энергии и их влиянием на измеряемые макросвойства системы без учета детального механизма, имеющего место при самих превращениях. Интерпретация механизмов таких превращений может быть дана только на основе приемлемой модели или теории природы вещества и энергии. Так как рассмотрение таких механизмов дает более глубокое понимание других эмпирических соотношений, то основные принципы квантовой и статистической механики могут быть использованы для объяснения изменений в макросвойствах системы с помощью величин ее микро- или молекулярных свойств. Использование этих теорий при развитии и объяснении термодинамических соотношений приводит к появлению отдель-ной дисциплины, именуемой статистической термодинамикой , которая особенно необходима для объяснения термодинамических функций внутренней энергии и энтропии и для установления критерия состояния равновесия.  [c.29]

Этим теоретическое развитие стачистической термодинамики завершено. Уравнение (4-28) содержит все основные сведения, которые термодинамика может дать относительно свойств системы и обеспечить логическую основу для всех термодинамических анализов. Сумма состояний Z определяется энергетическими уровнями, абсолютной температурой и общим числом частиц, составляющих систему величина W определяется видом распределения энергии системы среди различных частиц, т. е. числом частиц на каждом дискретном энергетическом уровне.  [c.130]

Эти соотношения позволяют найти величину всех трех термоэлектрических эффектов, если известен хотя бы один и если 5 или р, известны в небольшом интервале температур вблизи Т. Применяемые на практике методы определения 5, р и П изложены в работах Бернара [3] и Блатта [12]. При выводе приведенных выше соотношений Томсон полагал, что такие обратимые процессы, как эффекты Пельтье и Томсона, можно рассматривать вне зависимости от происходящих одновременно необратимых явлений теплопроводности и выделения джоулева тепла. Наличие необратимых процессов делает сомнительным применение второго начала термодинамики в обратимой форме, однако Томсон получил правильный результат. Общая теория, рассматривавшая одновременно обратимые и необратимые процессы, была развита в 1931 г. Онсагером [47, 48]. Ее основы изложены Бернаром [3].  [c.271]

В книге излагаются основы технической термодинамики и теории тепло- и масеообмена.  [c.2]

До 50-х годов XIX столетня наука рассматривала теплоту как особое, невесомое, неуничтожаемое и несоздаваемое вещество — теплород. Одним из первых, кто опроверг эту теорию, был М. В. Ломоносов. В 1744 г. в своей диссертации Размышление о причине теплоты и холода он писал Теплота состоит во внутреннем движении собственной материи... . В другой его работе записано Утверждаю, что огонь и теплота состоят в коловратном движении частиц, а особливо самой материи тела составляющих . Тем самым в своих работах М. В. Ломоносов заложил основы механической теории тепла. Однако Ломоносов не был понят современниками. Еще долгое время физики продолжали толковать о теплороде. Только к середине XIX в. механическая теория теплоты в результате работ целого ряда ученых находит повсеместное признание, становится основой всей термодинамики и энергетики.  [c.9]

В монографии последовательно изложены теоретические основы, необходимые для понимания и расчета движения гетерогенных или многофазных смесей в различных ситуациях. Такие смеси широко представлены в различных природных процессах и областях человеческой деятельности. Подробно изложены вопросы вывода уравнений движения, реологии и термодинамики гетерогенных сред. Для этого рассмотрены как феноменологический метод, так и более глубокий метод осреднения. Получены замкнутые системы уравнений для монодпсперсных смесей с учетом вязкости, сжимаемости фаз, фазовых переходов, относительного движения фаз, радиальных пульсаций пузырей, хаотического движения и столкновений частиц и других эффектов. Рассмотрены уравнения и постановки задач применительно к твердым пористым средам, насыщенным жидкостью. Описаны имеющиеся в совремеввой литературе решения задач о движении и тепло- и массообмене около капель, частиц, пузырьков.  [c.2]

Результаты расчета, проведенного на основе предложенного механизма, показали хорошее согласие с экспериментальными данными [140]. Применение такого подхода особенно эффективно при расчете работы вихревой трубы на режиме ц = 1 (когда горячий конец полностью заглушен). Следует отметить, что источником работы А, затрачиваемой на совершение микрохолодильных циклов, является энергия турбулентности, однако, саму ее структуру в [93, 94, 210] явно не учитывали, а необходимые энергетические соотношения получали на основе первого закона термодинамики. Последнее обстоятельство во многом определяет погрешность модели и в то же время подсказывает путь дальнейшего ее совершенствования, смысл которого состоит в детальном рассмотрении динамики турбулентного моля, времени его жизни I, масштаба и других характеристик как структурного элемента турбулентного потока.  [c.122]

Термодинамика и статистическая физика вслед за механикой давно уже стали основой современного физического мировоззрения, а их на гчная основа исчерпывающим образом сформирована почти 200 лет назад. Во всем мире, однако, продолжают появляться учебники и монографии на эту казалось бы ясную до конца, тему.  [c.7]

Эта книга написана для студентов, аспирантов и специали стов, занимающихся химической термодинамикой и знакомых с предметом в объеме общего курса физической химии. Главное внимание в ней уделено, однако, не химии, а основам термодинамики. Автор попытался концентрированно и последовательно представить содержание современной термодинамики и ее возможности, стремясь при этом не только к расширению общего теоретического кругозора учащихся, но в основном к развитию практических навыков использования уже имеющихся у них знаний.  [c.4]


Последнее особенно характерно для учебной л 1тературы, предназначенной для химиков. Ее авторы стремятся не пользоваться матрицами, определителями, квадратичными формами и многими другими обычными понятиями и методами высшей математики, не доверяя, очевидно, математическому образованию читателей. Такой подход нельзя признать перспективным не только из-за сомнительности тезиса о большей наглядности или убедительности выводов и доказательств, выполненных более простыми средствами, но и ввиду существенной роли математических методов в современной химической термодинамике. Это относится также к численным методам, которые позволяют отказаться от излишней аналитической детализации задачи и получать ее решение непосредственно на основе исходных принципов. С этим -связана происходящая в настоящее время переоценка самих термодинамических методов многие типично термодинамические проблемы переносятся в область прикладной математики и формулируются на языке математического программирования.  [c.5]

Электрические заряды. Не все явления в природе можно понять и объяснить на основе использования понятий и законов механики, молекулярно-кинетической теории строения вещества и термодинамики. Достаточно обратить внимание на тот факт, что ни механика, ни молекулярнокинетическая теория, ни термодинамика ничего не говорят о природе сил, которые связывают отдельные атомы в молекулы, удерживают атомы и молекулы вещества в твердом состоянии на определенных расстояниях друг от друга. Законы взаимодействия атомов и молекул удается понять и объяснить на основе представления о том, что в природе существуют электрические заряды.  [c.128]


Смотреть страницы где упоминается термин Термодинамики основы : [c.495]    [c.97]    [c.8]    [c.19]    [c.3]    [c.189]   
Катодная защита от коррозии (1984) -- [ c.50 ]

Физическая теория газовой динамики (1968) -- [ c.9 , c.17 ]



ПОИСК



В е й н и к, Техническая термодинамика и основы теплопередаКостенко, Техническая термодинамика

Глава пятнадцатая Основы нелинейной неравновесной термодинамики Универсальный критерий эволюции Гленсдорфа—ПригожиПространственные диссипативные структуры. Ячейки Бенара

Движение жидкостей и газов Движение твердых тел в жидкостях и газах ОТДЕЛ И. МОЛЕКУЛЯРНАЯ ФИЗИКА И ОСНОВЫ ТЕРМОДИНАМИКИ Основы молекулярно-кинетической теории

Новые направления в развитии термодинамики Основы термодинамики плазмы и необратимых процессов

О построении термодинамики на основе первого начала

ОСНОВЫ НЕРАВНОВЕСНОЙ ТЕРМОДИНАМИКИ

ОСНОВЫ ТЕПЛОТЕХНИКИ Основные положения технической термодинамики

ОСНОВЫ ТЕПЛОТЕХНИКИ Раздел второй Элементы технической термодинамики

ОСНОВЫ ТЕРМОДИНАМИКИ (М. Г. Маханько)

ОСНОВЫ ТЕРМОДИНАМИКИ И ТЕПЛООБМЕНА Основы термодинамики

ОСНОВЫ ТЕРМОДИНАМИКИ И ТЕПЛОПЕРЕДАЧИ Физическое состояние вещества

ОСНОВЫ ТЕРМОДИНАМИКИ НЕОБРАТИМЫХ ПРОЦЕССОВ Основные понятия термодинамики необратимых процессов

ОСНОВЫ ТЕХНИЧЕСКОЙ ТЕРМОДИНАМИКИ Техническая термодинамика и ее законы

ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ 15-1. Термохимия. Закон Гесса. Уравнение Кирхгофа

Основы классической статистической термодинамики

Основы классической статпстаческой термодинамики

Основы теории Глава первая Основные понятия и исходные положения термодинамики Термодинамические системы, параметры и равновесие

Основы теории Основные понятия и исходные положения термодинамики

Основы термодинамики Первый закон термодинамики

Основы термодинамики газов, жидкостей и твердых тел

Основы термодинамики необратимых процессов

Основы термодинамики процессов коррозии металлов

Основы технической термодинамики

Основы технической термодинамики 2- 1. Состояние рабочего тела

Основы технической термодинамики Сущность тепловой энергии

Основы технической термодинамики Энергетика и се значение в народном хозяйстве СССР

Основы технической термодинамики и теории теплопередачи

Основы физической химии I Глава VI. Элементы химической термодинамики

Основы физической химии i si 4. Первый закон термодинамики

Основы химической термодинамики

Основы химической термодинамики Термохимия

Построение основ термодинамики

Теоретические основы теплотехники Техническая термодинамика Крутов)

Теоретические основы, теплотехники Раздел первый ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА Свойства идеальных газов

Термодинамика

Термодинамические 5.2. Уравнение первого закона термодинамики основы анализа для потока вещества

Техническая термодинамика и основы теплопередачи Раздел первый ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА Основные понятия и определения

Часть s т о р а I ОСНОВЫ ТЕПЛОТЕХНИКИ Р я з л е л II Элементы технической термодинамики



© 2025 Mash-xxl.info Реклама на сайте