Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Применение к динамическим задачам теории упругости

Применение к динамическим задачам теории упругости  [c.286]

Рассмотрению волн в анизотропной упругой среде посвящена монография [100]. Обзор работ по динамике в теории упругих и вязкоупругих композитов имеется в [96]. Метод осреднения к динамической задаче теории вязкоупругости композитов применен в работе [84].  [c.302]

Методом граничных интегральных уравнений решались различные динамические задачи. В частности, двумерные задачи динамической теории упругости рассматривались в работах [5—7, 117, 439, 568], трехмерные — в [373, 374, 439, 463, 464, 477, 546]. Задачи о колебаниях упругих тел и пластин, а также задачи на собственные значения изучались в работах (87, 441, 503, 531, 544 и др.]. Существует несколько под содов к решению нестационарных задач методом граничных -интегральных уравнений. Можно использовать шаговую по времени схему, когда решение ищется последовательно в различные моменты времени. При этом используются фундаментальные решения динамических дифференциальных уравнений, которые называются запаздывающими потенциалами. Такой подход к решению динамических задач теории упругости использован в работах [374, 484, 494—496, 556]. Другой подход заключается в применении преобразования Лапласа по времени. В этом случае интегральные уравнения записываются для функций ч пространстве преобразований Лапласа и они решаются при различных значениях параметра преобразования [373]. Затем выполняется численное обратное преобразование Лапласа [196, 440, 465, 466, 536]. В работах [517, 556] рассматривались оба эти подхода и сравнивалась их эффективность с точки зрения точности и затрат машинного времени. Более эффективным оказался метод, основанный на применении преобразования Лапласа. Этот метод применялся к решению динамических задач в работах [5—7, 117, 140, 373, 463, 464, 472, 518, 568]. Метод решения динамических задач с использованием функций Грина соответствующих статических задач разработан в [448]. Более полный обзор применения метода граничных интегральных уравнений и граничных элементов в динамических задачах сделан в работах [44, 442, 462].  [c.105]


Стационарные динамические смешанные задачи. Представляют интерес работы, посвященные применению методов теории функций комплексного переменного к решению стационарных динамических смешанных задач теории упругости. Впервые такие задачи были поставлены и исследованы в работах Л. А. Галина [1, 4].  [c.605]

Дальнейшее развитие указанного метода в применении к ряду плоских статических и динамических смешанных задач теории упругости содержится в последующих работах В. А. Бабешко.  [c.98]

Если вариационные постановки для основных краевых задач математической физики и теории упругости известны давно, то для задач с односторонними ограничениями сформулированы только в последнее время. Одной из первых на эту тему является работа [379], в которой показано, что контактная задача теории упругости с односторонними ограничениями (задача Синьорини) сводится к вариационному неравенству. В дальнейшем вариационные неравенства и их приложения в механике и физике рассматривались в [26, 71, 85, 115, 167, 216, 283, 376, 381, 486 и др.]. В частности, статические и динамические контактные задачи теории упругости с трением вариационными методами рассматривались в работах [185—189, 326], контактные задачи для тел с трещинами — в [34, 75, 86, 164, 165, 175, 271, 365, 575], линейные и нелинейные контактные задачи теории оболочек — в [229, 310], а граничные вариационные неравенства применительно к решению контактных задач — в [138, 366—368, 432, 510, 534, 540]. Алгоритмы решения вариационных задач с ограничениями в виде неравенств, их теоретическое обоснование и вопросы численной реализации рассмотрены в [72, 111, 338, 420, 475 и др.]. Подробный обзор работ по применению вариационных неравенств в задачах механики твердого деформируемого тела дан в [365].  [c.82]

Применения метода конечных элементов к задачам механики деформируемого твердого тела очень обширны. Сюда относятся задачи теории упругости, задачи теории пластин и оболочек, задачи расчета конструкций, составленных из пластин и оболочек, анализ упругопластического и вязкоупругого поведения материала, динамические задачи, расчет составных конструкций. Данная глава посвящена задачам теории упругости. Другие области механики деформируемого тела рассматриваться не будут. Мы обсудим здесь общие случаи одномерных, двумерных и трехмерных задач теории упругости, а также специальный случай задач с осевой симметрией. Кроме того, будет рассмотрена машинная реализация задачи о плоском напряженном состоянии.  [c.211]


Аппарат теории функций комплексного переменного может быть применен к построению специального класса решений задач динамической теории упругости. Этот класс решений может быть получен с помощью так называемых функционально-инвариантных решений волнового уравнения.  [c.430]

Теория колебаний больцмановского тела, подчиняющегося уравнению (5.38), приводит к чрезвычайно сложной математической задаче, включающей решение интегро-дифференциального уравнения с частными производными. В. Вольтерра [150] в его теории функционалов рассматривал эту задачу, но результаты этой теории нашли пока очень небольшие применения к изучению динамического поведения вязко-упругих материалов.  [c.111]

Метод комплексного переменного ). В этом параграфе будет рассмотрено применение методов комплексного переменного к решению плоской задачи динамической теории упругости. Если переписать уравнение  [c.203]

Вариационным методам и их применению к решению математических и физических задач посвящено много работ. Одним из лучших учебников по вариационному исчислению является [69]. Вариационные принципы статической и динамической теории упругости изложены в [1, 30, 47, 325, 388, 482, 557 и др.].  [c.81]

Д.6. ПРИМЕНЕНИЕ ПРЕОБРАЗОВАНИЯ ЛАПЛАСА К РЕШЕНИЮ ЗАДАЧ ДИНАМИЧЕСКОЙ ТЕОРИИ УПРУГОСТИ  [c.206]

При отсутствии потерь требуемое решение может быть выделено различными способами при помощи условия излучения Зоммерфельда, энергетического принципа излучения Мандельштама, принципов предельного поглощения и предельной амплитуды [16]. Анализ и сравнение этих принципов применительно к задачам динамической теории упругости содержатся в [16]. Мы хотим здесь подчеркнуть априорный и эвристический характер этих принципов, ограниченную область их применимости. Лишь для простейших задач все эти принципы эквивалентны. Особые трудности с их применением возникают в условиях существования присоединенных волн, когда пе существует диагонализирующего преобразования (1,4,1), волн с аномальной дисперсией и т. д.  [c.47]

Уточненными будем называть теории, которые отличаются от обычных классических наличием в дифференциальных уравнениях дополнительных членов, расширяющих в некотором смысле области применения классических теории. Классические теории стержней основаны на гипотезе плоских сечений, пластин — на гипотезах Кирхгофа и оболочек — на гипотезах Кирхгофа—Лява. По существу, в этих теориях применяются простейшие — линейные по поперечной координате аппроксимации и не учитываются упругие поперечные взаимодействия. Классическая теория продольных колебании стержней и теория обобщенного плоского напряженного состояния пластин также являются простейшими аппроксимациями, основанными на предположениях о постоянстве характерных функций по сечению (толщине) и малости поперечных эффектов. Появление уточненных теорий обусловлено тем, что классические теории при решении ряда задач современной техники приводили к заметным погрешностям. Можно сказать, что это является следствием физического и математического несовершенства классических динамических теорий. Эти теории предсказывают, например, бесконечные скорости распространения фронтов возмущений и не улавливают элементарных упругих толщинных эффектов.  [c.5]

Уравнения (3.10), (4.12) не учитывают деформации сдвига и инерции вращения при колебаниях. Поэтому они достаточно хорошо описывают поперечные колебания стержня с большим отношением длины к высоте сечения к > 6) и при малых частотах. Однако, для рамных систем фундаментов тяжелого оборудования и подобных конструкций, когда 1пЪ<6, где п - номер тона колебаний Ъ - характерный размер поперечного сечения - длина полуволны упругой линии стержня, уже необходимо учитывать сдвиг и инерцию вращения [39,43]. Проблема построения более точных решений поперечных колебаний стержня весьма актуальна и в теории устойчивости в связи с применением динамического метода. Дифференциальное уравнение поперечных колебаний прямолинейного стержня с учетом деформаций сдвига и инерции вращения вывел выдающийся русский ученый проф. С.П. Тимошенко [91]. Его модель ныне утвердилась как наиболее точная и широко применяется в различных задачах механики конструкций. Для применения модели С.П. Тимошенко в задачах устойчивости необходимо до-  [c.151]


К решению динамических задач теории упругости метод Винера— Хопфа (см. I гл. I, и. 4) впервые был применен при исследовании стационарной задачи дифракции на полубесконеч-ном разрезе со свободными краями, а также при изучении напряженного состояния, возникающего при мгновенном образовании полубескоиечной трещины. В этих задачах имеют место смешанные граничные условия, заданные на двух полубесконечных интервалах, при одном граничном условии, сквозном по всему бесконечному интервалу. Ниже на примере решения плоской задачи о вдавливании гладкого штампа [59] проиллюстрируем применение этого метода в динамической теории упругости. Для простоты ограничимся случаем полубесконечного штампа.  [c.483]

Атлури С. Применение гибридной модели конечного элемента с заданным распределением напряжений к линейным динамическим задачам теории упругости. — Ракетная техника и космонавтика, 1973, т. 11, № 7, с. 166.  [c.526]

Хуторянский Н. М., Турилов В. В. Применение метода гранич-но-врёменны Х элементов к решению трехмерных нестационарных динамических задач теории упругости. — Прикладные проблемы проч носта и пластичности. Алгоритмизация и автоматизация решения задач упругости и пластичности. Всесоюз. межвуз. сб. / Горьв. ун-т, 1984, с. 30—40.  [c.292]

При анализе колебаний станков используется аппарат случайных функций [60] правда, случайными считаются в основном лишь возмущения, а упругие системы станков опйсываются детерминированными уравнениями, поскольку определение коэффициентов этих уравнений опирается на детерминированные же методы, принятые в расчетах деталей машин. Наибольшее применение аппарат случайных функций получил при расчете виброизоляции машин [68]. В этом случае достаточно просто можно получйть экспериментальные статистические характеристики кинематических возмущений, создаваемых фундаментом, не искажен- ные еще упругой системо,й рассчитываемой машины, в частности системой станКа. Зная характеристики упругой системы станка, его реакцию на случайный сигнал определяют известными способами [63]. Перспективным является применение к динамическому расчету станков теории оптимальных процессов, которая уже используется при решении некоторых задач машиноведения [61 ].  [c.10]

В работах [104, -135] показано, что такЬй алгоритм может быть применен к решению односторонних контактных задач динамической теории упругости и теории пластин с трещинами. Алгоритм, использованный в работах [185, 187] для решения динамических контактных задач теории упругости, отличается от приведенного нами.  [c.133]

В теории устойчивости тоже тесно переплетаются разработка общих математических методов и исследование более конкретных механических проблем. Задачи, выдвигаемые различными областями техники, заставили заняться, помимо статической, и динамической устойчивостью не только в рамках аналитической механики неизменяемых систем, но и в теории упругости, в механике жидкостей и газов. Потребовалось применение более строгих математических методов, поэтому были широко использованы замечательные результаты Ляпунова и началось дальнейшее развитие его методов. Оказалось целесообразным применение в различных вопросах разных характе-]шстик устойчивости. Формируется новая научная школа, разрабатывающая этот обширный цикл вопросов. В нее входят и специалисты по небесной механике, для которых устойчивость по Ляпунову, т. е. по отношению к возмущениям начальных данных, имеет особо важное значение (Московская школа — Н. Д. Моисеев, Г. Н. Дубо-шин, Н. Ф. Рейн и др.), и ученые, занимавшиеся общими методами аналитической механики и теории дифференциальных уравнений (Казанская школа — Н. Г. Четаев, Г. В. Каменков, И. Г. Малкин, К. П. Персидский и др.).  [c.290]

В принципе эти методы могут быть применены к любой задаче, для которой дифференциальное уравнение или линейно, или линейно относительно приращений [44—49]. В задачах, сводящихся к эллиптическим дифференциальным уравнениям, решения получаются сразу, в то время как для параболических и гиперболических систем уравнений должны быть введены процессы продвижения во времени. Таким образом, охватывается очень широкий класс физических задач при помощи прямых или непрямых формулировок МГЭ могут быть решены, например, задачи об установившемся и неустановившемся потенциальных течениях, задачи статической и динамической теории упругости, упругопластичности, акустики и т. д. [8—49]. МГЭ может также быть использован в сочетании с другими численными методами [44], такими, как методы конечных элементов или конечных разностей, т. е. в смешанных формулировках. Соответствующие комбинированные решения почти неограниченно расширяют область применения методов, ибо МГЭ обладает четко выраженными преимуществами для областей больших размеров, в то время как методы конечных элементов являются удобным средством включения в такие системы объектов конечного размера или уточнения поведения решения в зонах быстрого изменения свойств. Более подробное сравнение особенностей этих методов будет дано в следующем параграфе.  [c.16]

Одной из основных целей при исследовании задач дифракции упругих волн на неоднородностях является получение не только формального математического рещения, а такого, с помощью которого можно было бы эффективно определить дифракционные поля деформаций и напряжений вблизи неоднородностей. В указанных трех традиционных направлениях отмеченная цель ие была достигнута. В последние годы в связи с созданием н применением ЭВМ наметились два направления, по которым проводятся исследования задач дифракции упругих волн на неоднородностях с целью определения динамической напряженности вблизи неоднородностей. Первое направление связано с развитием численных методов при соответствующей дискретизации задач и с применением ЭВМ на всех этапах рещения задач. Развитие этого направления в силу универсальности его алгоритмов, по-видимому, в будущем обеспечит возможность исследования весьма щироких классов задач. Все же основные результаты, полученные за последние годы в СССР и США, относятся ко второму направлению, которое связано на первом этапе рещения задач с применением аналитических методов (метода разделения переменных и его обобщений, методов теории возмущений, метода сведения к интегральным уравнениям после неполного разделения переменных и т. д.) и на заключительных этапах рещения — с применением ЭВМ. В этом направлении в настоящее время уже исследованы достаточно щирокие классы задач и опубликованы две обобщающие монографии по отдельным аспектам рассматриваемой проблемы [44] —по дифракции упругих волн в многосвязных телах (на нескольких полостях) н [125] — по дифракции упругих волн в односвязных телах (на одной полости). Создание же обобщающей монографии, относящейся ко всем основным аспектам рассматриваемой проблемы (в рамках второго направления), представляется в настоящее время целесообразным, так как уже исследованы достаточно щирокие классы задач. Предлагаемая вниманию читателей монография является попыткой реализации такого замысла, хотя при ее написании в значительной мере были использованы результаты авторов и их коллег, полученные в Институте механики АН УССР за последние 10—15 лет.  [c.6]


Задачи устойчивости типичны для тонких и тонкостенных тел. Решения этих задач для стержней, пластин и оболочек строятся обычно на основе приближенных уравнений, в которых используются некоторые кинематические и динамические гипотезы. Имеется несколько путей для получения этих уравнений. Первый, наиболее ранний способ состоит в непосредственном рассмотрении форм движения (равновесия), смежных с невозмущенным. При этом ищется некоторая приведенная нагрузка, которая вводится в уравнение невозмущенного движения. Все рассуждения носят наглядный характер однако в достаточно сложных задачах эта наглядность оказывается обманчивой. Другой путь состоит в использовании нелинейных уравнений соответствующих прикладных теорий. Линеаризуя последние в окрестности невозмущенного движения, получим искомые уравнения. В теории оболочек этот путь использовался X. М. Муштари (1939), Н. А. Алумяэ (1949), X. М. Муштари и К. 3. Галимовым (1957), Н. А. Кильчевским (1963), В. М. Даревским (1963) и другими авторами. Однако в нелинейной теории имеется еще меньше единства взглядов на то, как должны записываться основные уравнения. Следо вательно, идя по этому пути, мы лишь смещаем все трудности в другую, еще менее согласованную область. Третий путь состоит в использовании общих уравнений теории упругой устойчивости (В. В. Новожилов, 1940, 1948). Метод, основанный на соответствующем вариационном принципе, был применен  [c.332]

Первые инвариантные интегралы применительно к упругим телам появляются в [423], а как инструмент исследования задач механики разрушения — в работе [396], причем в работах [400, 403, 452, 454] дана общая формулировка инвариантных интегралов, учитывающая нелинейные и динамические эффекты, а также наличие физических полей различной природы (температурных, электромагнитных и др.). Впоследствии не зависящйе от пути интегрирования интегралы используются в работах многих авторов при решении различных задач механики разрушения [321, 435—437, 502,, 530, 545, 554 и др.]. В работах [62, 294, 296, 399—402, 444, 453] изложены вопросы теории и применение инвариантных интегралов в различных разделах механики разрушения.  [c.16]


Смотреть страницы где упоминается термин Применение к динамическим задачам теории упругости : [c.8]    [c.104]    [c.6]    [c.15]    [c.258]    [c.55]    [c.7]    [c.220]    [c.288]    [c.212]   
Смотреть главы в:

Методы граничных элементов в прикладных науках  -> Применение к динамическим задачам теории упругости



ПОИСК



Динамические задачи теории упругости

Задача упругости

Задачи динамические

Задачи теории упругости

Применение к задачам теории упругости

Применение преобразования Лапласа к решению задач динамической теории упругости

Теории Применение

Теория динамическая

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте