Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фундаментальные решения. Функция Грина

Фундаментальные решения. Функция Грина  [c.86]

Сингулярные интегральные уравнения основных задач об изгибе бесконечной пластины с криволинейными разрезами можно построить аналогично соответствующим плоским задачам. Нил<е предложен иной, более общий прием, в котором используется фундаментальное решение (функция Грина) бигармонического уравнения. Такой подход в дальнейшем будет применен при решении задач об-упругом равновесии пологих оболочек с трещинами.  [c.249]


Настоящая книга представляет собой попытку восстановить равновесие. Ее название Методы граничных элементов в прикладных науках призвано подчеркнуть, что основным процессом является тот или иной способ разбиения границ на надлежащим образом выбранные элементы (граничные элементы). Все понятия первоначально поясняются на уровне физических и интуитивных соображений, и лишь затем приводятся более строгие формулировки это позволяет надеяться, что их принципиальная простота произведет должное впечатление на читателя. Те же, кто знаком с понятием линий влияния, или с матричными методами строительной механики, или с методами суперпозиции фундаментальных решений (функция Грина и пр.), убедятся, что идеи, лежащие в основе МГЭ, им уже хорошо известны.  [c.10]

Для решения задачи о построении функции Грина, в данном случае совпадающей с фундаментальным решением, применим прием, позволяющий свести задачу к построению фундаментальных решений для оператора Лапласа и, следовательно, использовать выражения (2.248).  [c.94]

До последнего времени для решения уравнений теплопроводности и диффузии обычно использовались метод разделения переменных, метод мгновенных источников, методы, основанные на применении функций Грина, Дирака и др. Эти классические методы предполагают отыскание в первую очередь общего решения и его последующее приспособление к частным условиям конкретной задачи. Детальное освещение классических методов решения уравнений переноса можно найти в фундаментальной работе А. Н. Тихонова и А. А. Самарского (Л. 7]. Получаемые классическими методами решения, однако, не всегда оказываются удобными для практического использования. Так, иногда требуется получить приближенные соотношения, в которых режимные параметры процесса должны быть отделены от физических характеристик тела или системы тел, взаимодействующих с окружающей средой. Эти важные для практики соотношения бывает затруднительно получить из классических решений. Еще большие осложнения возникают при решении систем дифференциальных уравнений тепло- и массопереноса классическими методами. Под влиянием запросов техники за последние десятилетия инженерами и физиками стали широко применяться операционные методы решения. Основные правила и теоремы операционного исчисления получены киевским профессором М. Ващенко-Захарченко [Л. 8]. Наибольшее распространение они нашли в электротехнике благодаря работам Хевисайда. Этот метод оказался настолько эффективным, ЧТО позволил решить многие проблемы, считавшиеся до его появления почти неразрешимыми, и получить решения некоторых уже рассмотренных задач в форме, значительно более приспособленной для численных расчетов.  [c.79]


Здесь фундаментальное решение превратилось в функцию Грина.  [c.188]

Будем искать периодическое по окружной координате фундаментальное решение уравнения (6.10), которое можно назвать разрешающей функцией Грина для бесконечно-длинной цилиндрической оболочки.  [c.263]

Отправной точкой любого варианта МГЭ является осознание того, что фактически для всех классических уравнений механики сплошных сред в нашем распоряжении имеются решения, отвечающие единичным возмущениям, приложенным во внутренних точках однородной неограниченной области. Это так называемые единичные (фундаментальные) сингулярные решения, или функции Грина для неограниченных областей, или пространственные функции Грина и т. д. МГЭ позволяет объединить такие решения посредством использования принципа суперпозиции в высокоэффективную вычислительную схему большой гибкости.  [c.27]

Требующееся нам фундаментальное решение описывает реакцию в точке лг в момент времени t на действие единичного сосредоточенного источника, помещенного в точку неограниченной области в момент времени т. Мгновенный единичный точечный источник снова описывается при помощи импульсной функции Дирака, записываемой теперь полностью в виде Ь х, t I, т) такое обозначение, кажущееся на первый взгляд громоздким, сохраняется далее для того, чтобы проследить роль каждого из аргументов в проводимых ниже преобразованиях. Если снова ввести функцию Грина G(x, t , т) для неограниченного пространства, то в соответствии с (9.2) она должна быть решением уравнения  [c.247]

Необходимо заметить, что теорема взаимности Бетти по своей сути связывает решение двух различных краевых задач для одной и той же области. Она является следствием линейности уравнений равновесия и закона Гука- Само фундаментальное решение, которое базируется на рассмотрении задачи о сосредоточенной силе в бесконечной упругой среде, может быть интерпретировано как функция Грина для бесконечно упругой среды или функции влияния.  [c.52]

Метод граничных элементов (МГЭ) — это метод решения краевых задач для дифференциальных уравнений в частных производных, появившийся в результате сочетания идей теории потенциала с методами современной теории аппроксимации. МГЭ, с точки зрения теории аппроксимации, имеет много общих черт с широко известным методом конечных элементов, но отличается от него существенным преимуществом дискретизация осуществляется, как правило, не внутри области, в которой ищется решение, а на ее границе. Такое упрощение достигается путем точного удовлетворения исходным дифференциальным уравнениям с помощью представлений решения в виде, характерном для теории потенциала. Указанные представления могут быть использованы в рамках МГЭ лишь в случае, когда известны в явном виде (точно или приближенно) фундаментальные решения (или функции Грина) для рассматриваемых дифференциальных уравнений 1 исследованы граничные свойства соответствующих потенциалов. Путем предельного перехода на границу в формулах представления решения получаются граничные интегральные уравнения (ГИУ), которые являются основным объектом аппроксимации Б МГЭ. Этим объясняется еще одно (более раннее) название МГЭ — метод граничных интегральных уравнений. Заметим, что возникающие в теории упругости и в других разделах механики деформируемого твердого тела ГИУ часто являются сингулярными интегральными уравнениями [114, 107, 84], методы аппроксимации которых далеко не тривиальны.  [c.3]

Чтобы распространить теперь изложенные представления на задачи, отличные от задач для уравнения Лапласа, заметим, что в предыдущем изложении мы опирались на (а) линейность и эллиптичность уравнения Лапласа (б) существование фундаментального решения 1/г, подстановка которого совместно с функцией ф во вторую формулу Грина (в) приводила к основному тождеству (3). Таким образом, естественно рассматривать задачи, которые описываются линейной эллиптической системой дифференциальных уравнений  [c.15]


При больших значениях независимых переменных неизвестное поле можно представить в форме уходящей волны и получить решение в виде разности между полным полем волны и этим полем на бесконечности, амплитуда которого определяется в процессе решения. Для таких задач зависимая переменная и ее производные достаточно быстро убывают на бесконечности, в силу чего могут использоваться обычные фундаментальные решения уравнения Лапласа, т. е. In г в двумерном и i/r в трехмерном случаях. При другом подходе можно было бы использовать другие функции Грина, которые сами достаточно быстро убывают на бесконечности, что позволило бы положить равным нулю интеграл по замкнутой поверхности (см. [2], разд. 6.9). В качестве примера последнего подхода рассмотрим распространение двумерных периодических волн малой амплитуды в бесконечно глубоком океане. В этой линейной задаче выберем  [c.26]

Получение фундаментальных решений некоторых задач термоупругости и различных представлений решений задач с помощью функций Грина различные случаи представления общих решений с помощью функций напряжений.  [c.237]

Функции называются фундаментальными решениями уравнений эластостатики или функциями перемещений Грина. Покажем, что эти функции образуют симметричный тензор.  [c.143]

Методом граничных интегральных уравнений решались различные динамические задачи. В частности, двумерные задачи динамической теории упругости рассматривались в работах [5—7, 117, 439, 568], трехмерные — в [373, 374, 439, 463, 464, 477, 546]. Задачи о колебаниях упругих тел и пластин, а также задачи на собственные значения изучались в работах (87, 441, 503, 531, 544 и др.]. Существует несколько под содов к решению нестационарных задач методом граничных -интегральных уравнений. Можно использовать шаговую по времени схему, когда решение ищется последовательно в различные моменты времени. При этом используются фундаментальные решения динамических дифференциальных уравнений, которые называются запаздывающими потенциалами. Такой подход к решению динамических задач теории упругости использован в работах [374, 484, 494—496, 556]. Другой подход заключается в применении преобразования Лапласа по времени. В этом случае интегральные уравнения записываются для функций ч пространстве преобразований Лапласа и они решаются при различных значениях параметра преобразования [373]. Затем выполняется численное обратное преобразование Лапласа [196, 440, 465, 466, 536]. В работах [517, 556] рассматривались оба эти подхода и сравнивалась их эффективность с точки зрения точности и затрат машинного времени. Более эффективным оказался метод, основанный на применении преобразования Лапласа. Этот метод применялся к решению динамических задач в работах [5—7, 117, 140, 373, 463, 464, 472, 518, 568]. Метод решения динамических задач с использованием функций Грина соответствующих статических задач разработан в [448]. Более полный обзор применения метода граничных интегральных уравнений и граничных элементов в динамических задачах сделан в работах [44, 442, 462].  [c.105]

Рассмотренная в общем случае для обобщенных волновых уравнений фундаментальная задача Коши (3.78)-(3.79) с точки зрения физики представляет собой задачу об определении двухточечной функции Грина (пропагатора) для волнового поля, в случае распространения в пространстве плоских волн, созданного мгновенным источником, равномерно распределенным по плоскости д = О. Отсутствие явной зависимости от двух из трех пространственных координат формально сводит эту задачу к пространственно одномерной. В этом смысле мы будем называть эту задачу одномерной, а соответствующее ей решение - одномерной функцией Грина (пропагатором) для соответствующего обобщенного волнового уравнения. Имея в виду в дальнейшем рассмотрение аналогичных задач для цилиндрически- и сферически- симметричных случаев, введем для обозначения этих функций обозначения N = 1,2,3 - математическая размерность задачи, а (.) - определяет положения точки в пространстве соответствующей размерности в подходящей системе координат (для плоской волны - это декартова координата л ). В этих обозначениях, с учетом (3.87), (3.88), функции Грина для всех рассматриваемых вариантов обобщенных волновых уравнений в случае рассмотрения плоских волн  [c.162]

Функция Грина (3.120) не только обладает свойством гладкого убывания до нуля при приближении к своему фронту, но, с учетом (3.113), дает возможность для достаточно удобного теоретического и численного исследования решений уравнения (3.33) или (3.38) при постановке различных начальных и граничных задач. Интегральное представление (3.120) совместно с (3.113) является математически точным представлением рещения фундаментальной задачи Коши (3.78)-(3.79) для этих уравнений, поэтому вопрос о математической точности этих выражений не стоит, а точность и скорость численных вычислений по этим формулам определяется только точностью и скоростью примененного метода численного интегрирования. Вопрос о границах применимости самого уравнения (3.33) для описания физических процессов, определяется наличием у физических систем фрактальных стохастических самоподобных свойств, границы диапазона масштабов самоподобия которых достаточно широко охватывают, например, полосу длин волн в спектре переходных волн, распространение которых мы описываем с помощью этого уравнения. В случае если спектр переходных волн приближается (или переходит) к нижней или верхней границам диапазона масштабов самоподобия фрактальной структуры, определяющей закон дисперсии волн данного типа в рассматриваемой системе, следует перейти к использованию других моделей описания этого процесса, в частности, можно воспользоваться другими уравнениями, из предложенных в Главе 1 данной части книги.  [c.173]


Это эквивалентно тому, что функцию Грина (3.89) можно рассматривать не только как решение фундаментальной задачи Коши, то есть поле созданное мгновенным точечным источником в первоначально невозмущенной среде, но и как решение граничной задачи для одного из введенных нами обобщенных волновых уравнений, удовлетворяющее в точке г = х = О граничному условию (3.132), и на бесконечном удалении от неё убывающее до нуля  [c.176]

Рассмотрена прямая формулировка метода граничных интегральных уравнений динамических задач теории упругости для тел с трещинами в пространстве преобразований Лапласа. Исследованы граничные свойства этих потенциалов на границе тела и на трещине. Приведены выражения для фундаментальных решений (функций Грина) уравнений динамической теории упругости в пространстве преобразований Лапласа для трех- и двумерного случаев. Изучен характер особенностей ядер этих потенциалов. Рассмотрены методы регуляризации потенциалов, ядра которых имеют сильную особенность,, основанные на сведении к псевдодифференциальным уравнениям и уравнениям, в которых интегралы рассматриваются в смысле конечной части по Адамару. Разработан алгоритм решения односторонних контактных задач динамики тел с трещинами, основанный на отыскании седловой точки субдифференцируемого граничного функционала. Показано, что при определенном выборе параметров, входящих в алгоритм, его можно рассматривать как сжимающий оператор, действующий в соответствующем функциональном пространстве, что является обоснованием сходимости этого алгоритма.  [c.102]

Анализ корректной разрешимости контактных задач при использовании различных теорий оболочек проведен в [13, 84, 214]. Применительно к осесимметричной контактной задаче для круговых цилиндрических оболочек математические аспекты использования моделей Кирхгофа — Лява, Тимошенко и учета трансверсального обжатия, выяснение условий кор->ектности задач, способы-их регуляризации рассмотрены в 130]. Для строгого изучения этих вопросов применены теория обобш,енных функций и методы решения некорректных задач. Приведены сведения из теории краевых задач для обыкновенных дифференциальных уравнений с постоянными коэ1 )фици-ентами и основные понятия теории обобш,енных функций. С помош,ью фундаментальной системы решений дифференциального оператора построены функции Грина и функции влияния для оболочек Кирхгофа — Лява и Тимошенко. Даны постановки задач о контакте оболочек между собой и с осесимметричными жесткими штампами. Методом сопряжения построены обобщенные решения, поскольку классическое существует только для моделей, учитывающих трансверсальное обжатие. Найдены обобщенные решения интегральных уравнений Фредгольма первого рода, рассмотрены методы их аппроксимации классическими (методы регуляризации).  [c.11]

Отметим еще раз, что соотношение ПМГЭ для теории упругости оказывается следствием специального выбора состояния со звездочкой, т. е. функции Грина (фундаментального решения) для безграничной среды [гл. 4, уравнения (4.35) и (4.37)].  [c.475]

Таким образом, можно записать ГИУ и в том случае, когда область ограничена несколькими поверхностями 5о, Si,. ... .., Sk или тело кусочно однородно (см., например, [1—3]). Если известна функция Грина краевой задачи типа Дирихле или Неймана для области, внешней по отношению к поверхности 5j (пусть 5] — внутренняя граница), и в исходной краевой задаче на Si заданы нулевые условия, то, используя при выводе ГИУ не фундаментальное решение дифференциальных уравнений (как обычно делается), а функцию Грина, можно получить ГИУ, в котором интегралы по Si отсутствуют. Именно так в [4] преобразовано ГИУ двумерной задачи теории упругости для тела с трещиной.  [c.183]

Изучение приливов при такой постановке задачи широко представлено как в отечественной, так и зарубежной литературе. П. Я. Полуба-риновой-Кочиной (1938) принадлежит решение об определении собственных колебаний жидкости в плоских бассейнах при наиболее общих предположениях о виде границы бассейна. Ею показано, что решение может быть осуществлено путем нахождения фундаментальных чисел и функций интегрального уравнения, ядро которого представляется через функцию Грина для соответствующей задачи Дирихле. Исследование интегральных уравнений выполнено Полубариновой-Кочиной с использованием разложений в ряды по степеням малого параметра, пропорционального угловой скорости вращения бассейна. Для конкретного случая прямоугольного бассейна ею проведен подробный аналитический анализ решения и вычислены первые члены рядов (1937). В. А. Яблоков (1944) построил котидальные карты и изучил особенности собственных колебаний в зависимости от соотношения между длинами сторон прямоугольного бассейна.  [c.81]

При исследовании задач фильтрации в средах со случайными неоднородностями, как и в соответствующих задачах в детермини стической постановке, фундаментальную роль играет решение специальной задачи об источнике в неограниченной среде. Естественно, что это решение, или иначе функция Грина, является случайной функцией координат или координат и времени (в нестационарных задачах). Представляет интерес найти среднюю функцию Грина и другие ее моменты. Как и обычно, с помощью функции Грина можно конструировать решения прямых и обратных задач для сред со случайными неоднородностями, но, что особенно важно для задач фильтрации, функция является хорошей моделью течения в окрестности скважин малого радиуса. Особый интерес представляет функция Грина для стратифицированного пространства. В этом случае, достаточно типичным для задач электрического каротажа скважин, знание средней функции  [c.58]


Смотреть страницы где упоминается термин Фундаментальные решения. Функция Грина : [c.7]    [c.6]    [c.44]    [c.252]    [c.251]    [c.15]    [c.19]    [c.205]   
Смотреть главы в:

Прикладная механика деформируемого твердого тела  -> Фундаментальные решения. Функция Грина



ПОИСК



Грина

Грина функция

Решение фундаментальное

Функция фундаментальная



© 2025 Mash-xxl.info Реклама на сайте