Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Решение уравнения Лапласа, фундаментально

Наиболее простым и вместе с тем фундаментальным решением уравнения Лапласа является функция  [c.186]

Изучим некоторые основные решения уравнения Лапласа. Ранее (см. 3 гл. II) было рассмотрено фундаментальное решение уравнения Лапласа  [c.157]

В силу (2.19)2 функция U (x,y) отличается лишь коэффициентом от фундаментального решения уравнения Лапласа, которое хорошо известно. Следовательно,  [c.184]

При больших значениях независимых переменных неизвестное поле можно представить в форме уходящей волны и получить решение в виде разности между полным полем волны и этим полем на бесконечности, амплитуда которого определяется в процессе решения. Для таких задач зависимая переменная и ее производные достаточно быстро убывают на бесконечности, в силу чего могут использоваться обычные фундаментальные решения уравнения Лапласа, т. е. In г в двумерном и i/r в трехмерном случаях. При другом подходе можно было бы использовать другие функции Грина, которые сами достаточно быстро убывают на бесконечности, что позволило бы положить равным нулю интеграл по замкнутой поверхности (см. [2], разд. 6.9). В качестве примера последнего подхода рассмотрим распространение двумерных периодических волн малой амплитуды в бесконечно глубоком океане. В этой линейной задаче выберем  [c.26]


Здесь притяжение определяется законом Ньютона или Кулона в п-мерном пространстве сила пропорциональна (как предписывает фундаментальное решение уравнения Лапласа).  [c.442]

В частности, б-функция на плоскости не принадлежит и соответственно фундаментальное решение уравнения Лапласа u = ogr не принадлежит  [c.92]

Выражение (2.3) в курсах математической физики при С1 = - 1 и Сг = О называется фундаментальным решением уравнения Лапласа в плоскости.  [c.503]

Таким образом, фундаментальное решение уравнения Лапласа (с точностью до постоянной) представляет собой значение потенциала в произвольной точке х, который обусловлен действием в некоторой точке источника (стока) интенсивностью  [c.503]

Процедура построения решения пространственной задачи аналогична процедуре построения решения плоской задачи. Вначале определяется фундаментальное решение уравнения Лапласа  [c.530]

Полагая = -1, С2 =0, получим фундаментальное решение уравнения Лапласа в пространстве  [c.530]

Из уравнения (23.5) следует, что температура в любом узле плоской стенки есть среднее арифметическое температур в соседних четырех узлах сетки. Это одно из фундаментальных свойств уравнения Лапласа, следствием которого и является (23.5). Условие (23.5) положено в основу одного из методов численного решения задач теплопроводности, который называют релаксационным.  [c.235]

В качестве примера получим фундаментальное решение уравнения осесимметричного изгиба круглой пластины под действием кольцевой нагрузки. Вводя промежуточные операторы Н и F, эквивалентные оператору Лапласа в полярной системе координат  [c.179]

Представляя вектор объемных сил в виде суммы потенциального и соленоидального векторов, приводим задачу нахождения изображения по Лапласу фундаментального решения к двум уравнениям Гельмгольца (скалярному и векторному), в результате чего получаем для матрицы фундаментальных решений следую-ш,ую формулу, аналогичную выражению (3.3.22) для упругой изотропной среды  [c.163]

Чтобы распространить теперь изложенные представления на задачи, отличные от задач для уравнения Лапласа, заметим, что в предыдущем изложении мы опирались на (а) линейность и эллиптичность уравнения Лапласа (б) существование фундаментального решения 1/г, подстановка которого совместно с функцией ф во вторую формулу Грина (в) приводила к основному тождеству (3). Таким образом, естественно рассматривать задачи, которые описываются линейной эллиптической системой дифференциальных уравнений  [c.15]


Здесь Lij — общий эллиптический оператор порядка ш с аналитическими коэффициентами, действующий на многомерный вектор Uj. Далее, можно показать [2], что существует множество фундаментальных решений соответствующих 1/г в случае уравнения Лапласа, таких, что при подстановке совместно с j в обобщенную формулу Грина возникает тождество  [c.15]

Решение для круга, в соответствии с фундаментальным решением 1п г двумерного уравнения Лапласа (Г — + 2 2) имеет вид  [c.124]

Далее, точные решения уравнения (8.7.3) могут быть вычислены методом преобразования Лапласа, и можно найти фундаментальную систему таких решений с асимптотическим поведением как у функций (8.7.4). Предположим, что точные решения Р (г) ведут себя асимптотически как Р (г) в секторах  [c.166]

Фундаментальным решением для оператора Лапласа Д называется решение v = v x, у) уравнения (2.244) с правой частью в виде дельта-функции, т. е.  [c.86]

Принципиально иной подход осуществлен в работе [27]. Здесь выполняется преобразование Лапласа по времени и все построения осуществляются с трансформантами смещений. Получаемое для них дифференциальное уравнение можно трактовать как уравнение для амплитуд (см. 4 гл. II) с комплексной частотой. Поэтому построение решения для трансформанты оказывается возможным осуществлять посредством потенциалов, опирающихся на фундаментальное решение (1.33).  [c.556]

Методом граничных интегральных уравнений решались различные динамические задачи. В частности, двумерные задачи динамической теории упругости рассматривались в работах [5—7, 117, 439, 568], трехмерные — в [373, 374, 439, 463, 464, 477, 546]. Задачи о колебаниях упругих тел и пластин, а также задачи на собственные значения изучались в работах (87, 441, 503, 531, 544 и др.]. Существует несколько под содов к решению нестационарных задач методом граничных -интегральных уравнений. Можно использовать шаговую по времени схему, когда решение ищется последовательно в различные моменты времени. При этом используются фундаментальные решения динамических дифференциальных уравнений, которые называются запаздывающими потенциалами. Такой подход к решению динамических задач теории упругости использован в работах [374, 484, 494—496, 556]. Другой подход заключается в применении преобразования Лапласа по времени. В этом случае интегральные уравнения записываются для функций ч пространстве преобразований Лапласа и они решаются при различных значениях параметра преобразования [373]. Затем выполняется численное обратное преобразование Лапласа [196, 440, 465, 466, 536]. В работах [517, 556] рассматривались оба эти подхода и сравнивалась их эффективность с точки зрения точности и затрат машинного времени. Более эффективным оказался метод, основанный на применении преобразования Лапласа. Этот метод применялся к решению динамических задач в работах [5—7, 117, 140, 373, 463, 464, 472, 518, 568]. Метод решения динамических задач с использованием функций Грина соответствующих статических задач разработан в [448]. Более полный обзор применения метода граничных интегральных уравнений и граничных элементов в динамических задачах сделан в работах [44, 442, 462].  [c.105]

Основу метода Факсена [15] составляет представление фундаментального решения уравнения Лапласа  [c.370]

Большое значение для изучения плоских течений несжимаемой жидкости с помощью теории функций комплексного переменного сыграли монографии В, В. Голубева Теория крыла аэроплана в плоскопараллельном потоке (1927) и Л. И. Седова Теория плоских течений идеальной жидкости (1939), Л. И. Седов в этой монографии ввел в теорию обтекания тонкого профиля метод выделения особенностей на кромках профиля, позволивший ему найти в замкнутом виде решение задачи об отыскании интегральных характеристик тонкого профиля, подъемной силы, момента сил. Решение задачи обтекания профиля может быть получено также в виде рядов, составленных из фундаментальных функций, удовлетворяющих уравнению Лапласа. Такое решение для симметричного профиля было получено Я. М. Серебрийским (1945), причем решение уравнения Лапласа находилось в Эллиптической системе координат в виде ряда для потенциала скорости.  [c.86]


Из уравнения (6.5) следует, что температура в любом узле плоской сетки есть среднее арифметическое температур в соседних четырех узлах сетки. Это одно из фундаментальных свойств уравнения Лапласа, следствием которого и является (6.5). Условие (6.5) положено в основу одного из методов численного решения задач теплопроводности, который называют релаксационным. Этот нметод состоит в следующем. В узлах сетки записываются ожидаемые, но произвольно выбранные температуры. В общем случае они не будут удовлетворять условию (6.5). Если окажется больше среднего арифметического температур Т , Т , Т , Г , то это значит, что в точке О находится источник теплоты, если меньше, то сток теплоты. В этих случаях разностная схема примет вид  [c.86]

Для уравнения (32) задача Дирихле и задача N однозначно разрешимы [92]. Для уравнения (33) разрешимость задачи Дирихле, как было установлено М. В. Келдышем [44, 92] определяется величинами т и 6(0). Если задача Дирихле не имеет решения, то оказывается однозначно разрешимой задача, в которой условие на отрезке звуковой линии заменено требованием ограниченности решения. Эта фундаментальная теорема может быть проиллюстрирована примером из теории уравнения Лапласа [20]. Трехмерное уравнение Лапласа при наличии симметрии относительно оси у = О  [c.50]

Значительное место в его творчестве занимают вопросы теории ньютоновского потенциала, разработанные им в строго классическом направлении. Отправляясь от фундаментальных работ А. М. Ляпунова, относящихся к проблеме фигур равновесия, Леонид Николаевич живо и оригинально строит решение граничных задач Дирихле и Неймана для уравнения Лапласа. В .предположении постоянной плотности он доказывает известную теорему П. С. Новикова по обратной задаче ньютоновского потенциала, а также исследует вопрос об аналитическом продолжении функций, представимых потенциалами. Эти результаты нашли освещение в опубликованной в 1946 г. монографии Теория ньютоновского потенциала , к которой примыкают две другие работы Об одной обратной задаче теории потенциала (1938 г.) и О единственности определения формы притягивающего тела по значениям его внешнего потенциала (1954 г.). Интерес Леонида Николаевича к этим вопросам не ослабевал до последнего времени ( К теории сфероида Лапласа , 1968 г.).  [c.10]

Рассмотрена прямая формулировка метода граничных интегральных уравнений динамических задач теории упругости для тел с трещинами в пространстве преобразований Лапласа. Исследованы граничные свойства этих потенциалов на границе тела и на трещине. Приведены выражения для фундаментальных решений (функций Грина) уравнений динамической теории упругости в пространстве преобразований Лапласа для трех- и двумерного случаев. Изучен характер особенностей ядер этих потенциалов. Рассмотрены методы регуляризации потенциалов, ядра которых имеют сильную особенность,, основанные на сведении к псевдодифференциальным уравнениям и уравнениям, в которых интегралы рассматриваются в смысле конечной части по Адамару. Разработан алгоритм решения односторонних контактных задач динамики тел с трещинами, основанный на отыскании седловой точки субдифференцируемого граничного функционала. Показано, что при определенном выборе параметров, входящих в алгоритм, его можно рассматривать как сжимающий оператор, действующий в соответствующем функциональном пространстве, что является обоснованием сходимости этого алгоритма.  [c.102]

Эти формулы являются исходными при составлении граничных интегральных уравнений для различных начально краевых задач динамической теории упругости и, в частности, для тел, содержащих трещины и разрезы. Для вывода граничных интегральных уравнений изучаемых задач необходимо знат1, граничные свойства потенциалов динамической теории упругости в пространстве преобразований Лапласа (5.4) на границе тела и на трещине. Прежде чем перейти к их изучению найдем формулы для фундаментальных решений динамической теории упругости в пространстве преобразований Лапласа.  [c.108]


Смотреть страницы где упоминается термин Решение уравнения Лапласа, фундаментально : [c.295]    [c.12]    [c.510]    [c.7]    [c.108]   
Механика сплошной среды. Т.2 (1970) -- [ c.157 ]



ПОИСК



Лаплас

Решение уравнения Лапласа

Решение фундаментальное

Уравнение Лапласа

Уравнение фундаментальное



© 2025 Mash-xxl.info Реклама на сайте