ПОИСК Статьи Чертежи Таблицы При больших значениях независимых переменных неизвестное поле можно представить в форме уходящей волны и получить решение в виде разности между полным полем волны и этим полем на бесконечности, амплитуда которого определяется в процессе решения. Для таких задач зависимая переменная и ее производные достаточно быстро убывают на бесконечности, в силу чего могут использоваться обычные фундаментальные решения уравнения Лапласа, т. е. In г в двумерном и i/r в трехмерном случаях. При другом подходе можно было бы использовать другие функции Грина, которые сами достаточно быстро убывают на бесконечности, что позволило бы положить равным нулю интеграл по замкнутой поверхности (см. [2], разд. 6.9). В качестве примера последнего подхода рассмотрим распространение двумерных периодических волн малой амплитуды в бесконечно глубоком океане. В этой линейной задаче выберем [Выходные данные]