Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прямая задача динамики точки

Прямая задача динамики точки  [c.74]

Следующий параграф посвящен решению прямых задач динамики материальной точки.  [c.13]

Таким образом, прямая задача динамики материальной точки легко решается посредством дифференцирования заданных уравнений движения точки.  [c.13]

Прямые задачи динамики несвободной материальной точки, в которых требуется определить задаваемую силу или силу реакции, приложенную к точке, рекомендуется рещать в следующем порядке  [c.14]


Если при рещении прямой задачи динамики материальной точки требуется определить равнодействующую сил, приложенных к этой точке, то рещение задачи сводится к дифференцированию заданных уравнений движения точки с последующим использованием формул (1 ), (2 ) или для плоского движения формул (3 ).  [c.14]

Методом кинетостатики можно пользоваться при решении прямых задач динамики несвободной системы материальных точек, т. е. при решении задач, в которых по заданному движению определяются неизвестные силы. Однако все эти задачи несколько менее громоздко могут быть решены обычным путем — посредством применения основного урав-материальных точек системы, т. е.  [c.350]

Из уравнений движения мы выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (58) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки л-, у и z как  [c.262]

Решение. Задача относится к прямым задачам динамики по данному движению точки надо определить действующую силу. Для ее решения продифференцируем дважды кинематические уравнения движения точки и, умножив на т найденные X и у, получим X к Y.  [c.266]

Из уравнений движения выведем все теоремы динамики. Они дают возможность решить и обе основные задачи динамики точки. В прямой задаче, когда кинематические уравнения движения (5) даны, решение сводится к дифференцированию этих уравнений умножив на массу вторую производную от координаты по времени, получим проекцию силы. В обратной задаче, когда заданы проекции силы X, У и Z, а нужно определить координаты точки х, у, и z как функции времени, решение сводится к интегрированию трех совместных дифференциальных уравнений, где независимым переменным является время.  [c.116]

Решение. Условие задачи дано в физической системе единиц (СИ). По изменению скорости точки надо определить силу, производящую данное движение точки. Таким образом, задача является прямой задачей динамики. Решать ее будем, применив теорему об изменении количества движения. Примем горизонтальную прямую, по которой движется точка, за ось Ох, считая направление вправо положительным. Тогда  [c.138]


Решение. Задача относится к прямым задачам динамики по данному движению точки надо определить действующую силу. Для ее решения продифференцируем дважды кинематические уравнения движения точки и, умножив на m найденные х а у, получим X и Y. Кинематические уравнения движения известны. Дифференцируя дважды, находим  [c.191]

Задача относится к прямым задачам динамики. Чтобы по данному движению латунного шарика, принимаемого за материальную точку, определить действующую силу, напишем второе из естественных уравнений движения материальной точки (142). В наинизшем положении на шарик действует сила натяжения проволоки, проекцию которой Т будем считать положительной, так как она направлена внутрь траектории, и сила тяжести 0 = 200-981 дин, проекцию которой будем считать отрицательной  [c.195]

Первая основная задача динамики точки состоит в определении равнодействующей сил, вызывающих заданное движение материальной точки с известной массой. В зависимости от того, в какой форме задай закон движения точки, для определения равнодействующей сил можно применять уравнения движения в векторной, координатной или естественной форме. Во всех этих случаях задача сводится к определению ускорения из известных кинематических уравнений движения. Определение ускорения при этих условиях не связано, конечно, с какими-либо принципиальными трудностями, поэтому первую основную задачу динамики точки (прямую задачу) можно считать достаточно элементарной, хотя, решая именно эту задачу, И. Ньютон установил закон всемирного тяготения.  [c.321]

Первая задача динамики заключается в том, чтобы по заданному движению материальной точки определить силы, действующие на нее. Это так называемая прямая задача динамики. Для ее решения прежде всего необходимо определить ускорение точки из условий кинематики. Определив ускорение точки, нужно затем воспользоваться основным законом динамики и найти действующую силу. Если на точку действует несколько сил и неизвестны лишь некоторые из них, то для их определения приходится использовать аксиому независимости действия сил.  [c.150]

Как формулируются прямая и обратная задачи динамики точки Какую при этом роль выполняет второй закон Ньютона Почему его называют основным уравнением динамики Что представляет собой уравнение движения Что такое закон движения  [c.104]

Из наблюдений за сгорающими в атмосфере метеорами ( падающие звезды ) известно, что их траектории мало отличаются от прямых линий и, следовательно, влияние силы тяжести на закон движения метеора пренебрежимо мало по сравнению с силой аэродинамического сопротивления. При такой схематизации мы приходим к простой задаче динамики точки. Если принять экспоненциальный закон изменения плотности атмосферы и постоянство аэродинамического коэффициента сопротивления, то мы получаем простую, решаемую Б квадратурах задачу, исследование которой позволяет разъяснять любознательным студентам многие вопросы входа объектов в  [c.29]

Из наблюдений за сгорающими в атмосфере метеорами ( падающие звезды ) известно, что их траектории мало отличаются от прямых линий и, следовательно, влияние силы тяжести на закон движения метеора пренебрежимо мало по сравнению с силой аэродинамического сопротивления. Мы приходим при такой схематизации к простой задаче динамики точки. Если допустить экспоненциальный закон изменения плотности атмосферы и постоянство аэродинамического коэффициента сопротивления, то мы получаем простую, решаемую е квадратурах задачу, исследование которой позволяет разъяснить любознательным студентам многие вопросы входа объектов в атмосферу Земли (в частности, рассчитать максимальную перегрузку и определить законы изменения высоты и скорости объекта).  [c.11]

Решение. Здесь задано движение материальной точки, требуется определить силу (первая, прямая задача динамики). Нз материальную точку действуют три силы 1) сила тяжести G, 2) реакция гладкой горизонтальной плоскости N и 3) движущая сила Р.  [c.323]


Прямая задача динамики для системы материальных точек сводится к решению системы ЗN дифференциальных уравнений, так как уравнение движения вида (11.1) для каждой из N точек системы дает в проекции на координатные оси три дифференциальных уравнения для координат точки хД/),>>Д ), ,(/). Строгое аналитическое решение удается найти лишь в исключительных случаях, поэтому обычно используют приближенные методы. Однако существует несколько строгих общих законов, которые хотя сами по себе и не позволяют в общем случае найти траектории отдельных точек системы, вместе с тем дают важную информацию о движении системы в целом. Это закон (или теорема) о движении центра масс и три закона изменения и сохранения импульса, момента импульса и механической энергии системы материальных точек. Их выводу и обсуждению посвящена настоящая глава.  [c.38]

С помощью дифференциальных уравнений движения материальной точки можно решать две основные задачи динамики прямую и обратную.  [c.13]

Решая задачу первым способом, мы учитывали только фактически действующие на тело активные и реактивные силы и составили шесть всеобщих уравнений двин<ения (169) и (192), связывающих проекции этих сил с массами и с проекциями ускорений частиц тела. Силы инерции не входят во всеобщие уравнения движения, так как они не действуют на массы, для описания движения которых написаны эти уравнения, т. е. в данном случае они не действуют на точки тела, вращение которого рассматривается в задаче. Решив уравнения движения, мы определили реакции в опорах, а следовательно, и давления на опоры. Таким образом, мы решили задачу как прямую основную задачу динамики по данному движению системы мы определили силы, действующие на точки системы.  [c.415]

Возникает вопрос о непосредственном применении вариационных принципов механики для определения закона движения системы материальных точек без интегрирования соответствующей системы дифференциальных уравнений движения. Ответ на этот вопрос можно найти в прямых методах вариационного исчисления. Не рассматривая этот вопрос подробно, так как такое рассмотрение выходит за пределы содержания этой книги, остановимся на некоторых частных случаях непосредственного применения принципа Гамильтона — Остроградского к решению задач динамики.  [c.210]

Это зфавнение в задачах на вращательное движение тел играет точно такую же роль, как диф, уравнение движения материальной точки (вида m X = 5 Х ) по прямой. С его помощью решаются и первая, и вторая задача динамики.  [c.124]

В то же время при решении прямой задачи для области А В АВ (рис. 2.4) на поверхности АВ, расположенной в сверхзвуковой области, не требуется постановки каких-либо граничных условий. Единственность решения краевой задачи в области А В АВ для нелинейных уравнений газовой динамики до настоящего времени в общем случае не доказана, хотя и получен ряд численных решений.  [c.53]

С помощью теоремы об изменении кинетической энергии решается как прямая, так и обратная задачи динамики. В дифференциальной форме теорема применяется для. того, чтобы найти по заданным силам ускорения точек системы (или наоборот), т. е. чтобы составить дифференциальные уравнения движения системы и интегрированием этих ураннений найти законы изменения скоростей и перемещений точек системы. Интегральная форма теоремы используется в тех случаях, когда при конечном перемещении системы заданы три из следующих четырех величин скорости, перемещения, силы, массы, а четвертая подлежит определению. Теорема чаще всего применяется для исследования движения механических систем с одной степенью свободы, т. е. систем, положение которых определяется одной координатой (линейной или угловой). Поэтому в данной главе мы будем рассматривать только такие системы.  [c.226]

Определение формы упругой линии имеет, пожалуй, наибольшее значение при решении задач динамики. С помощью форм упругой линии балки при свободных колебаниях может быть выявлено ее поведение при воздействии ударных нагрузок. Динамика движения летательных аппаратов в некоторых случаях также требует определения формы упругой линии несущих плоскостей. Такого рода задачи по определению формы упругой линии решаются, понятно, только численными методами. Но все это относится к задачам динамики. Что же касается условий статического нагружения, то найти примеры необходимого для практических целей определения формы упругой линии балки, скажу прямо, очень трудно. И сейчас мы перейдем к новому вопросу, связанному с упругой линией балки.  [c.62]

МИКИ, и ее решение в общем случае значительно труднее, чем решение прямой задачи. Здесь также приходится использовать основной закон динамики. Из этого закона определяется ускорение через действующую силу и заданную массу точки.  [c.151]

Здесь X, Y — проекции на оси координат равнодействующей силы, приложенной к точке. Из кинематики известно, что движение точки может быть задано уравнениями (5.3) х = х (t), у = у (О- Масса точки подразумевается известной. Прямой, или первой, задачей динамики является задача определения силы, если известно движение, вызываемое этой силой.  [c.95]

Тесная связь между динамикой и геометрией сохраняется и при более общих предположениях. Риманова геометрия— не единственно возможная форма метрической геометрии. Для римановой геометрии характерным свойством является выпрямление пространства в окрестности произвольной точки, так что обычная евклидова геометрия остается справедливой по крайней мере в бесконечно малых областях. Но для построения геометрии, использующей прямые линии и углы, такого ограничения, вообще говоря, не требуется. В применении к общим задачам динамики заслуживает внимания более общая форма геометрии, линейный элемент которой ds определяется более общим способом по сравнению с римановым линейным элементом.  [c.320]


Внешние силы приводятся здесь к силам, прямо приложенным (или активным), и к реакциям, возникающим в точках закрепления оси перед нами типичная задача динамики, и мы будем предполагать, что при заданных прямо приложенных силах нам ничего заранее неизвестно о возможных реакциях и требуется определить движение тела. Так как система имеет только одну степень свободы, то достаточно получить одно уравнение, не зависящее от неизвестных реакций.  [c.12]

А теперь посмотрим, к каким уравнениям приводят задачи динамики механизмов с упругими связями, работающих в условиях вибрации стойки или пульсации внешней силы. Пусть точка подвеса математического маятника не остается неподвижной, а колеблется по закону л = x(t) вдоль некоторой прямой х — х, составляющей угол р с вертикальной осью (рис. 1.3). Эта точка подвеса может  [c.23]

В 1940 г. А. Ю. Ишлинский обратился к вдследованию влияния качки и маневрирования корабля на поведение гировертикали с шаровым ротором в газодинамическом подвесе. Задача здесь осложнена тем, что на ротор действуют аэродинамические и электродинамические силы, распределение которых в то время еще было изучено слабо. Использованный в работе метод позволил обойти это затруднение. Составив в рамках прецессионной теории уравнения движения гироскопа относительно географического трехгранника в предположении действия произвольных сил и использовав результаты испытания прибора на неподвижном относительно Земли основании, автор сначала решает обратную задачу динамики и отыскивает по известному движению ротора моменты сил, действию которых он подвержен в реальном приборе. Поскольку заведомо известно, что эти моменты зависят при медленных движениях опорной чаши и статора двигателя лишь от положения относительно их ротора, удается перейти к решению прямой задачи динамики и предсказать поведение прибора на качке и при маневрировании корабля. Это исследование позволило правильно подойти к выбору параметров гирогоризонта и высказать предложения, улучшающие его. Продемонстрированный в ней метод сочетания эксперимента с теоретическим рассмотрением механики прибора положил начало углубленному изучению действующих в шаровом гироскопе сил и возможностей его совершенствования.  [c.162]

Изучение движения зенитных управляемых ракет, наводимых на цель тем или иным методом наведения, приводит к весьма интересным задачам динамики точки переменной массы при дополнительных условиях, налагаемых на величину и направление скорости центра масс ракеты. Как правило, эти дополнительные условия включают производные по времени от параметров (координат), характеризующих движение, и являются неинтегрируемыми. Таким образом, из ракетодинамики в классическую механику пришли новые, весьма актуальные задачи динамики с неголономньши связями. Из методов наведения можно указать хорошо известный всем преподавателям механики метод погони (метод собачьей кривой), когда прямая, по которой направлен вектор скорости центра масс ракеты, должна в любой момент времени пересекать точечную цель. Эта задача легко решается, если цель движется прямолинейно и равномерно, а скорость ракеты постоянна по величине но для случая движения с переменной массой и переменной по величине скоростью ракеты с учетом возможного маневрирования цели решения получаются лишь численным интегрированием .  [c.28]

Решение. Задано движение матершлмой точки, требуется определить движущую силу (прямая задача динамики). На материальную точку действуют три силы сила  [c.82]

Уравнения, даваемые вторым законом Ньютона, позволяют решить целый ряд задач. Важнейшей является основная, или прямая задача динамики материальной точки, состоящая в том, чтобы в каждом конкретном случае уметь находить ее кинематический закон движения (1.2). Для решения этой задачи помимо массы т точки должны быть известны формулы для всех действующих на нее сил (о силах, изучаемых в механике, и закономерностях, которым они подчиняются, см. 10). Однако и при наличии такой информации уравнения (7.2), записанные как алгебраические соотношения между силой и ускорением, дают возможность решить прямую задачу динамики по существу лишь для равнопеременного (а = onst) движения, которое происходит под действием постоянной силы (f = onst). В этом случае кинематический закон движения дается известными из школьного курса физики формулами x i) = x +v t+a r/l (и аналогичными для y t) и г(/)), в которых проекции ускорения определяются из уравнений (7.2), а начальные координаты Х , = х(0), = > (0), =2(0) и проекции скорости = v (0), Vj,, = v (0), v,D = v,(0) точки предполагаются заданными.  [c.29]

К сожалению найти точное решение уравнений движения удается лшль в редких случаях, когда формула для силы имеет достаточно простой вид. Поэтому прямая задача динамики обычно решается приближенными методами. Опишем простейшую процедуру приближенного расчета траектории материальной точки, предложенную самим Ньютоном. Движение разбивается по времени на этапы (шаги) малой длительности Д/ каждый, и траектория восстанавливается поэтапно. Пусть в начальный момент времени / = О радиус-вектор точки и ее скорость равны, соответственно г(0) Гд и (0) — Уд. Малое перемеш екие Дк точки на первом этапе согласно (2.2 ) приближенно равно Дг = Лi, так гго в конце первого этапа ее радиус-вектор i = И- Д (см. рис. 11). Скорость точки на первом этапе получит приращение, которое согласно (3.2) приближенно равно Ду = Д/, и станет равной в конце первого этапа V, = -Ь А1 Ускорение Дд на первом этапе можно считать постоянным и определить его из второго закона Ньютона , исполь-зуя значение силы в начале этапа (в улучшенных методах ускорение на этапе вычисляется при помощи более утонченной процедуры). Таким образом удается определить значения радиуса-вектора Г] я скорости V, в конце первого, т.е. в начале второго, этапа и процедура может быть продолжена. Подчеркнем, что ускорение на каждом / -м этапе определяется значением силы на этом этапе Д — )1т, поэтому для решения задачи результирующая сила должна быть известна как функция координат и скорости точки во всей области пространства, где ищется траектория.  [c.30]

Кинематика оформилась как самостоятельная наука сравнительно недавно. Уже Даламбер указал на важность изучения законов движения как такового. Но первый, кто показал необходимость предпослать динамике теорию геометрических свойств движения тел, был Ампер. Эти свойства были представлены в 1838 г. Факультету наук в Париже Понселе. В этом представлении содержались, в частности, и теоремы о непрерывном перемещении твердого тела в пространстве, за исключением понятия мгновенной винтовой оси, которое было введено Шалем. Формулы, дающие вариации координат точек движущегося в пространстве тела, принадлежат Эйлеру (Берлинская Академия, 1750). Кинематика допускает многочисленные геометрические приложения. К ним относится, например, метод Роберваля построения касательных, теория мгновенных центров вращения, введенная Шалем, частный случай которой был дан уже Декартом в связи с задачей о касательной к циклоиде. К ним же относятся установленные Шалем свойства систем прямых, плоскостей и точек, связанные с движением твердого тела и приводящие наиболее простым образом к понятию комплекса прямых первого порядка. В 1862 г. Резаль выпустил курс Чистой кинематики . С появлением этого курса кинематика окончательно утвердилась в качестве самостоятельной науки.  [c.56]


На первом этапе используются методы случайного или детерминированного поиска. Они состоят в том, что в пространстве допустимых параметров берутся точек и для каждой из них вычисляется значение функции качества. Выбираются, таким образом, JV конкретных вариантов исследуемой конструкции и прямым перебором этих вариантов находится наилучший при этом считается, что он находится поблизости от искомого оптимального варианта (вблизи глобального экстремума). В методах случайного поиска, называемых также методами Монте-Карло, N пробных точек в пространстве параметров выбираются случайным образом [77, 267]. В методах детерминированного поиска точек заполняют исследуемое пространство параметров в определенном смысле равномерно [285]. Опыт показывает, что при небольшом числе испытаний N более эффективны методы детермиийровапиого поиска. Один из таких методов, так называемый метод ЛП-иоиска, оказался эффективным при решении многих задач динамики машин [22, 146].  [c.270]


Смотреть страницы где упоминается термин Прямая задача динамики точки : [c.13]    [c.187]    [c.33]    [c.138]    [c.261]    [c.324]    [c.201]   
Смотреть главы в:

Сборник задач по теоретической механике  -> Прямая задача динамики точки



ПОИСК



ДИНАМИКА Динамика точки

Динамика ее задачи

Динамика точки

Задача прямая

Задачи динамики

Определение сил по заданному движению (прямая задача динамики материальной точки)

Точка и прямая



© 2025 Mash-xxl.info Реклама на сайте