Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача Лагранжа эллиптическая

Оказывается, что интеграл типа Лагранжа существует для почти всех задач динамики твердого тела, представляющих теоретический интерес, а его наличие приводит к интегрируемым случаям, как правило, имеющим важное прикладное значение. Например, аналог случая Лагранжа для уравнений Кирхгофа был указан самим Кирхгофом, который также проинтегрировал его и указал наиболее простые движения. Для уравнений Пуанкаре-Жуковского (на во(4)) аналог случая Лагранжа указал Пуанкаре для обоснования своих теоретических выводов относительно прецессии оси вращения Земли. В двух указанных случаях, как и в классической задаче Лагранжа, можно получить явную (эллиптическую) квадратуру для угла нутации в, определяемую гироскопической функцией, а также использовать все результаты качественного анализа движения, приведенные нами в 3 гл. 2.  [c.232]


Движение точки, притягиваемой двумя неподвижными центрами в отношении, обратно пропорциональном квадрату расстояния. Эта знаменитая задача рассматривалась впервые Эйлером, который показал, что в случае плоского движения она приводится к квадратурам. Рассмотренная снова Лагранжем, она была затем решена Якоби в эллиптических координатах при помощи метода разделения переменных способом, который мы кратко здесь изложим.  [c.385]

В обычно применяемых методах определение движения свободной точки в пространстве под влиянием ускоряющих сил состоит в интегрировании трех обыкновенных дифференциальных уравнений второго порядка, а определение движения системы свободных точек, взаимно притягивающихся или отталкивающихся, — в интегрировании системы подобных уравнений, число которых втрое больше числа притягивающихся или отталкивающихся точек, если только мы предварительно не уменьшим это последнее число на единицу, рассматривая только относительные движения. Таким образом, в солнечной системе, если мы рассматриваем только взаимные притяжения Солнца и десяти известных планет [ ], определение движений последних относительно первого при помощи обычных методов сводится к интегрированию системы тридцати обыкновенных дифференциальных уравнений второго порядка, связывающих координаты и время, или же, при помощи преобразования Лагранжа, — к интегрированию системы шестидесяти обыкновенных дифференциальных уравнений первого порядка, связывающих время и эллиптические элементы. При помощи этих интегрирований тридцать переменных координат или шестьдесят переменных элементов могут быть найдены, как функции времени. В методе, предложенном в данной работе, задача сводится к отысканию и дифференцированию единственной функции, которая удовлетворяет двум уравнениям в частных производных первого порядка и второй степени подобным же образом всякая другая динамическая задача, относящаяся к движениям (как бы многочисленны они не были) любой системы притягивающихся или отталкивающихся точек (даже если мы предполагаем, что эти точки ограничены какими-либо условиями связи, совместными с законом живой силы), сводится к изучению одной центральной функции, форма которой определяет и характеризует свойства движущейся системы и определяется двумя дифференциальными уравнениями в частных производных первого порядка в сочетании с некоторыми простыми соображениями. Таким образом, по крайней мере интегрирование многих уравнений одного класса заменяется интегрированием двух уравнений другого класса, и даже если считать, что этим не достигается никакого практического облегчения, тем не менее можно получить некое интеллектуальное наслаждение от сведения, пожалуй, самого сложного из всех исследований.  [c.176]


С мемуаром Лагранжа О притяжении эллиптических сфероидов (1773) и Приложением к этому мемуару мы уже целиком в эпохе торжества аналитических методов механики. Лагранж начинает с записи составляющих силы притяжения материальной точки к любому телу в виде тройных интегралов (в декартовых координатах) и затем дает правила замены переменных в тройных интегралах,— вопрос, которым Лагранж занялся именно в связи с задачей о притяжении эллипсоидов. Вся трудность задачи — в выполнении 152 необходимого интегрирования. Лагранж получает аналитически основные результаты (Ньютона, Маклорена, некоторые обобщения Даламбера) для задачи о притяжении эллипсоидом внутренней точки. Так же, как его предшественники, для внешней точки Лагранж ограничивается случаем, когда точка находится на продолжении одной из осей эллипсоида (вообще говоря, трехосного).  [c.152]

Выражения составляемые из левых частей интегралов уравнений, были впервые введены Пуассоном в небесной механике при развитии метода Лагранжа вариации элементов эллиптических орбит с приложением этого метода к задаче о вращении Земли. Эти же выражения, как мы видели, ввел Гамильтон при разработке общей теории возмущений. В настоящее время выражения is носят название скобок Пуассона. Большое значение скобок Пуассона для аналитической механики и для теории уравнений в частных производных было особенно отмечено Якоби в его Лекциях по дина- 21 мике .  [c.21]

Дозвуковой случай. В дозвуковом случае, М < 1, по крайней мере для достаточно малого числа Маха недавно было показано ), что краевая задача, определяемая уравнениями (11), (9) и (7 ) из 5, является корректно поставленной. Поскольку эта задача эллиптического типа, ее математическое решение С/(х) должно быть аналитическим. Отсюда мы заключаем, что уравнения Эйлера — Лагранжа дают ложную теорию для стационарного дозвукового потока.  [c.26]

Лагранж в Аналитической механике также дал свое решение задачи Эйлера в это решение я внес всю ясность, и если можно так выразиться, все изящество, которое можно придать этому решению . При этом уже Лагранж считал этот случай слишком простым ... поэтому я льщу себя надеждой, что меня не упрекнут за повторное рассмотрение настоящей проблемы . В его решении замечательным является то, что здесь впервые было явно показано существование трех главных осей инерции у произвольного твердого тела (приводимость симметричной матрицы к диагональному виду) — хотя последнее и не имеет никакого отношения к самому случаю Эйлера. В решении Лагранжа также имеются эллиптические интегралы, но еще не возникает идея их обращения — которая появляется уже у Якоби и достигает своего совершенства и определенной законченности у Вейерштрасса, Эрмита и Альфана.  [c.101]

Это частное решение соответствует периодическому движению Лагранжа (точке либрации) задачи трех тел. Для решения (2.1), в случае эллиптической задачи, три тела во все время движения образуют в абсолютном пространстве равносторонний треугольник, длины сторон которого периодически изменяются. В случае круговой задачи длины сторон треугольника постоянны. Решение  [c.123]

Аналогичным образом интегрирование в двух из интегрируемых случаев задачи о движении твердого тела с неподвижной точкой (случай Эйлера инерционного движения и случай осевой симметрии) может быть непосредственно выполнено с помош ью введения сферических координат (Эйлер, Лагранж). Возможность интегрирования в третьем случае (Софьи Ковалевской) обусловлена тем, что функция Лагранжа приобретает вид (li) — (I2), если ввести эллиптические координаты qi, qz (Колосов).  [c.179]

Лагранж впервые исследовал движение тяжелого тела с одной неподвижной точкой при любом распределении плотности и показал, что если эллипсоид инерции есть эллипсоид вращения, то решение задачи сводится к вычислению эллиптических квадратур (к спрямлению конических сечений по словам самого Лагранжа) ). Поэтому случай, который мы будем рассматривать, называется случаем Лагранжа или Лагранжа — Пуассона ).  [c.405]


Решение задачи в случае Лагранжа находится в эллиптических функциях, и поэтому характер движения тела представить себе довольно трудно. Поскольку в силу уравнений движения мы получили дифференциальное уравнение первого порядка (6.115), то к исследованию движения тела в случае Лагранжа сможем применить метод качественного исследования (см. гл. П, 3).  [c.407]

В работе [242] указаны явные аналитические выражения для асимптотических решений к неподвижной точке в случае Клебша. Оказывается, что в общем случае (-М, 7) = с 7 О в этой задаче существует три типа неподвижных точек эллиптические, типа седло-центр и седлового типа. В последнем случае характеристические показатели при определенных с имеют вид (а + г/3), а, /3 К, а/З = О и ситуация аналогична задаче Лагранжа. Указанные двоякоасимптотические решения были использованы для изучения возмущений случая Клебша в работе [114]. Отметим, что как замечено Деванеем [203] при с = О, сепаратрисы к гиперболической точке трансверсально пересекаются, что, тем не менее, не противоречит интегрируемости системы Неймана, а условие /3 = 0, возникающее в этом случае, создает дополнительные сложности при исследовании возмущенной ситуации.  [c.324]

Совсем иной подход к решению задачи предложила С. В. Ковалевская. Она впервые в истории механики рассматривала время t как комплексную независимую переменную. Анализируя задачи, рассмотренные Эйлером и Лагранжей, можно заметить, что закон движения твердого тела в этих случаях определяется посредством эллиптических функций времени. Следовательно, на плоскости комплексной переменной t закон движения в двух классических случаях определяется мероморф-ными однозначными функциями. Поэтому, обобшая этот факт, С. В. Ковалевская поставила такую обшую проблему  [c.449]

В 1766 году Лагранж переехал в Париж, где был радостно встречен Даламбером, Клеро, Кондорсе и другими. В это время стало известно, что Эйлер оставил пост президента физико-математического класса Берлинской академии и переехал в С.-Петербург. Даламбер предложил кандидатуру Ла-1фанжа, Эйлер горячо ее поддержал, и 6-го ноября 1766года Лагранж переехал в Берлин, где и пробыл до 1787 г. Сборники Берлинской академии в этот период обогатились целым рядом блестящих работ Лагранжа как по математике, так и по общей и небесной механике. Именно к этому времени относятся его знаменитое решение задачи Кеплера (ряд Лагранжа), исследования по вопросу о вращении твердого тела вокруг неподвижного центра, решение задачи о притяжении эллиптического сфероида, создание основ теории возмущений и многие другие.  [c.584]

Как известно, еще в 1758 г. Л. Эйлер рассмотрел случай движения твердого тела вокруг неподвижно точки (полюса), когда центр тяжести совпадает с полюсом, а вое силы сводятся к равнодействующей, проходящей через эту неподвижную точку. В 1834 г. Л. Пуансо дал геометрическую интерпретацию этого случая. В 1788 г. Лагранж (и независимо от него в 1815 г. С. Пуассон) рассмотрел случай, когда тело имеет ось сиАГметрии, проходящую через неподвижную точку, и движется под действием только силы тяжести, точка приложения которой лежит на оси симметрии и не совпадает с полюсом (симметрический тяжелый гироскоп — волчок). Обе задачи сводятся в общем случае к квадратурам, и их решения выражаются через эллиптические функции.  [c.246]

Ю. А. Гартунг разработал теорию движений тела с обобщенными прецессиями угловой скорости а) с точечным относительны М годографом угловой скорости (случай Лагранжа — Эйлера) б) с орямоли нейным годографом угловой скорости в подвижной плоскости, иосителе вектора угловой скорости (случай Гриоли) в) с круговым годографом г) с эллиптическим годографом. Применялись уравнения Ценова для систем с неголономными связями второго порядка, причем в одних случаях находились управляющие моменты в виде реакций связей, а в других эти дополнительные управляющие воздействия отсутствовали, т. е. находились новые частные случаи, вернее, может быть подслучаи в классической задаче о движении твердого тела вокруг неподвижной точки.  [c.14]

Как и в случае конечномерных динамических систем, в области задач об оптимальном управлении системами с распределенными параметрами сохраняют полную работоспособность усовершенствованные методы классического вариационного исчисления. При этом и здесь основное внимание было уделено составлению необходимых условий минимума для экстремальных задач со связями, трактуемыми как проблема Майера — Больца. Главным образом это было сделано для задач, связанных с уравнениями эллиптического типа. Было показано, что в таких типичных задачах, возникающих из проблем оптимального управления, необходимые условия стационарности (уравнение Эйлера и естественные граничные условия, а также условия Вейерштрасса Эрдманна) составляются при помощи обычных приемов. Критерии опираются снова на множители Лагранжа которые здесь зависят уже обычно от пространственных координат, а соответствующие дифференциальные уравнения снова конструируются исходя из подходящих форм функции Гамильтона. Условия стационарности дополняются необходимым условием Вейерштрасса сильного относительного минимума. Разумеется, это условие, которое записывается через условие экстремальности функции Гамильтона на оптимальных решениях, имеет смысл, аналогичный соответствующему условию принципа максимума. Важно, однако, заметить, что при работе с модификациями классических методов вариационного исчисления в случае уравнений с частными производными проявляются некоторые новые черты. В результате получаются условия оптимальности, более сильные, нежели известные в настоящее время обобщения принципа максимума на системы, описываемые уравнениями в частных производных. Упомянутые черты проявляются, в частности, в связи с тем обстоятельством, что приращение минимизируемого функционала при изменении объемного управления (за счет варьирования от оптимального управления) в пределах области достаточно малой меры зависит не только от вариации управления и меры области, но также существенно определяется и предельной формой области варьирования. Таким образом, получается, что при изменении формы области, определяющей вариацию, могут, получаться более или менее широкие необходимые условия экстремальности. Как отмечено выше, эффект анизотропии варьирования пока был получен только классическими методами. Причины этого, по-видимому, различны некоторые работы, посвященные принципу максимума, относятся к таким задачам, где этот эффект вообще не проявляется, в других случаях эффект анизотропии исключался вследствие ограничения при исследованиях лишь вариациями специального вида. Полезно также заметить, что описываемый эффект анизотропии расширяет возможность управления и оптимизации в обширном классе случаев независимо от типа исходных уравнений. Эффективность классических методов вариационного исчисления была проверена на конкретных типах задач. В частности, таким путем была исследована задача об оптимальном распределении проводимости электропроводной жидкости (газа) в канале магнитодинамического генератора электрической энергии. Эта задача как раз доставляет пример вариационной проблемы, где эффект анизотропии варьирования играет существенную роль. Развитию классических методов исследования посвящены работы К. А. Лурье.  [c.239]


Первая попытка дать теоретическое представление о структурном механизме волнового движения и его математический анализ была предпринята Ньютоном (1687 г.). Согласно сделанным им предположениям при распространении волн частицы жидкости совершают, как в сообщающихся сосудах, лишь вертикальные колебания с периодом, длина которого равна половине длины волны. Ошибочность такой упрощенной трактовки особого вида движения была ясна уже в то время. Однака прошло почти 100 лет, прежде чем Лаплас (1776 г.) пришел к выводу, что при волновом движении частицы жидкости перемещаются по эллиптическим орбитам, радиусы которых убывают по глубине, так что у дна траектории частиц становятся горизонтальными. Несколько позже (1781 г.) Лагранж впервые решил задачу о прогрессивной волне, создав представление о горизонтальном переносе масс воды при действительном поступательном перемещении только волновой формы.  [c.514]

Примечание 2. Метод Лагранжа, принципиальная сторона которого изложена в этом параграфе, рассматривает истинное или возмущенное движение как непрерывно изменяющееся невозмущенное кеплеровское движение. Но мы знаем, что невозмущенное кеплеровское движение может быть эллиптическим или гиперболическим (а в вырожденных случаях — круговым, параболическим и прямолинейным), в зависимости от величины начальной скорости. Поэтому оскулирующая орбита в каждый данный момент времени может быть и эллипсом и гиперболой, в зависимости от величины скорости, которую имеет в данный момент движущаяся точка. Непрерывно изменяясь с течением времени, оскулирующая орбита может некоторое время оставаться эллипсом, а потом превратиться в гиперболу и оставаться некоторое время гиперболой и т. д. Может случиться также (как это обычно бывает в классических астрономических задачах), что движение всегда остается эллиптическим. Тип оскулн-рующей орбиты в каждый момент времени немедленно распо знается по величине оскулирующего эксцентриситета орбиты, в соответствии с чем и применяются формулы эллиптического или гиперболического движения для нахождения координат и составляющих скорости.  [c.578]

Следовательно, но теореме существования 14 корням Аз = г, Ае = —i соответствует однонараметрическое семейство периодических решений уравнений (27), лежащих вблизи равновесного решения и имеющих период, приблизительно равный 2тг. Но эти решения уже известны они бьши найдены как обобщенные решения Лагранжа в конце 12, когда искались частные решения с эллиптической орбитой, близкие к круговым решениям Лагранжа. Используя известные формулы для решения задачи двух тел, легко установить, что при фиксированном значении постоянной интеграла площадей г>4 существует еще одно семейство эллиптических решений, параметром которых можно выбрать период т. Если положить с = os t — И4), 3 = 81п(4 — М4), то из уравнений (12 3), (12 4), (9) и (24) получается  [c.162]

Что касается самой Ковалевской [9], то она, исходя из факта, что все до нее вполне изученные гироскопические случаи (т. е. движение Пуансо и гироскоп Лагранжа) решаются в т. н. мероморф-ных (т. е. представляющих непосредственное обобщение рациональных дробей) однозначных функциях времени и в виду совершенства, достигнутого теорией таких функций, к которым причисляются все более сложные тригонометрические вроде тангенса, эллиптические функции и т. п., поставила себе целью найти все типы тяжелых гироскопов, для которых общее, т. е. при всяких системах начальных условий, решение задачи об их движении возможно в подобных (хотя бы и не периодических, как до сих пор) функциях. Для этой цели исследовательница применила собственно метод неопределенных коэффициентов, но к разложениям около так называемых особых точек, т. е. здесь таких значений I, где обычные разложения в ряды Тэйлора неприменимы (в случае мероморфности непременно так называемых полюсов). Она справедливо полагала, что разыскания в области особых точек (хотя для задачи динамики обычно и обладающих комплексными аффиксами, ибо для действительных I решения тут вообще однозначны и непрерывны) при всей их, так сказать, отвлеченности могут дать для характеристики предполагаемого решения гораздо больше, чем рассмотрение тэйлоровских разложений около обыкновенных точек с их сильно нивелирующими 4  [c.64]

При некоторых специальных начальных условиях можно получить очень простое решение задачи трех тел (случай Лагранжа), представляющее большой интерес для астрономии. Частным случаем задачи трех тел является так называемая ограниченная задача трех тел, в которой два тела конечной массы движутся вокруг центра инерции по эллиптическим орбитам, а третье тело имеет бесконечно малую массу. Для ограниченной задачи удалось построить разнообразные классы периодических движений (периодические орбиты Пуанкаре, Шварцшильда и др.). Для общего случая задачи трех тел подробно изучены предельные свойства движения при -> -ь оо и  [c.6]

Лагранжа (J.L.Lagrange), естественные, эллиптические, изостатические, краевая задача  [c.548]


Смотреть страницы где упоминается термин Задача Лагранжа эллиптическая : [c.2]    [c.24]    [c.595]    [c.305]    [c.143]   
Справочное руководство по небесной механике и астродинамике Изд.2 (1976) -- [ c.549 ]



ПОИСК



485 эллиптические

Задача Лагранжа

Эллиптическая задача



© 2025 Mash-xxl.info Реклама на сайте