Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ц икл двигателя внутреннего схема работы двигател

Вместе с развитием тепловых двигателей совершенствовалась и теория теплоты. В 1824 г. французский инженер С. Карно опубликовал научный трактат, в котором сформулировал важнейший закон теплотехники, определяющий условия превращения теплоты в механическую работу, предложил формулу для определения КПД идеального теплового двигателя и разработал схему работы двигателя внутреннего сгорания.  [c.3]


КЛАССИФИКАЦИЯ И СХЕМЫ РАБОТЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ  [c.6]

Поршневые и газотурбинные двигатели существенно отличаются кинематическими схемами. В поршневых двигателях внутреннего сгорания к необходимым элементам относятся шатунно-кривошипный механизм, маховик возвратно-поступательное движение поршня создает неравномерность работы. Перечисленные особенности конструкций поршневых двигателей внутреннего сгорания являются вместе с тем и недостатками этих двигателей. К недостаткам поршневых ДВС следует также отнести ограничения по единичной мощности двигателя. В газотурбинных установках нет возвратно-поступательно движущихся частей установки, что в сочетании с ротационным принципом движения обеспечивает возможность концентрации большой мощности в одной установке.  [c.133]

РИС. 79. Принципиальная схема работы и установки индикатора на двигателе внутреннего сгорания  [c.178]

Громоздкой получается и схема химического аккумулирования энергии ветра. По этой схеме предполагается направлять электрическую энергию, вырабатываемую ветроэлектростанцией, в специальные устройства для разложения воды на кислород и водород. Кислород поступает в народное хозяйство страны для использования, а водород хранится в газгольдерах ветростанции. На водороде в качестве горючего работает включаемый в период безветрия специальный двигатель внутреннего сгорания,  [c.212]

Рис. 11.74. Схема движения самопередвигающейся виброплиты. На стальной плите смонтирован вибратор. Над плитой на упругой подвеске - рама с двигателем внутреннего сгорания, приводящим вибратор через ременную передачу (на схеме не показано). Самопередвижение плиты влево достигается наклоном дебалансов 1 по схеме а, работа на месте — по схеме б, движение вправо — по схеме в. Рис. 11.74. <a href="/info/432231">Схема движения</a> самопередвигающейся виброплиты. На стальной плите смонтирован вибратор. Над плитой на упругой подвеске - рама с <a href="/info/738">двигателем внутреннего сгорания</a>, приводящим вибратор через <a href="/info/4987">ременную передачу</a> (на схеме не показано). Самопередвижение плиты влево достигается наклоном дебалансов 1 по схеме а, работа на месте — по схеме б, движение вправо — по схеме в.
Другой тип усталостного изнашивания наблюдается у подшипников скольжения двигателей внутреннего сгорания он проявляется в виде растрескивания и выкрашивания участков антифрикционного слоя (обычно нанесенного на стальной вкладыш). Для изучения этого типа изнашивания создано большое количество лабораторных испытательных машин и установок, действующих по разным схемам, обзор которых приведен в книге [11]. В настоящее время преимущество отдается таким схемам испытания, которые воспроизводят служебные условия работы подшипникового материала на двига-  [c.250]


Общая схема электрооборудования двигателя внутреннего сгорания (фиг. 1) включает а себя генератор Г с регулятором напряжения PH (изображён условно) аккумуляторную батарею Б стартер СТ, представляющий собой сериесный электромотор постоянного тока, и потребителей — аппарат батарейного зажигания БЗ, измерительные приборы с электрической передачей показаний манометр М, термометр Т и их датчики ДМ и Л 7V лампы, /7 и др. Стартер включается только при запуске двигателя на несколько секунд и питается от батареи, которая до запуска двигателя является единственным источником электрической энергии остальные потребители работают длительно (всё время работы двигателя) и на принципиальной схеме, служащей для расчёта  [c.288]

В форсунках с внутренним взаимодействием потоков из-за наличия противодавлений увеличение давления и расхода одного из потоков (топлива или воздуха) приводит к уменьшению расхода второго компонента. В таких форсунках при подаче распыливающего агента с постоянным давлением по мере увеличения давления и расхода топлива происходит автоматическое уменьшение расхода распыливающего агента до полного прекращения его подачи. При этом противодавление топлива превысит величину напора распыливающего агента. В воздушной или паровой системе таких форсунок для исключения возможности попадания в них топлива необходимо-устанавливать обратный клапан. По такой схеме работает двухкамерная форсунка (см. рис. 44 и 45) локомотивного газотурбинного двигателя на режимах запуска и малых нагрузок.  [c.161]

В данном учебном пособии большое внимание уделено свойствам двигателя как регулируемого объекта конструктивным особенностям органов управления топливоподающей аппаратуры двигателей характеристикам двигателей, их топливных насосов и потребителей. Рассмотрены условия работы двигателей и требования, предъявляемые потребителями к двигателям в различных случаях. Проанализированы условия, вызывающие необходимость установки регуляторов скорости. Разобраны схемы и конструкции основных типов автоматических регуляторов двигателей внутреннего сгорания, а также приведены основные приемы их статического расчета.  [c.4]

Схемы и работа различных видов гидравлических сервомоторов с поступательно движущимся поршнем рассмотрены в 18. Поворотные сервомоторы в регуляторах двигателей внутреннего сгорания используются значительно реже и поэтому здесь не рассматриваются.  [c.405]

Поршневые двигатели внутреннего сгорания являются самыми распространенными тепловыми двигателями. Наибольшее применение получил четырехтактный двигатель, конструктивная схема которого представлена на рис. 9.1, в. Принцип его работы целесообразно рассмотреть с одновременным построением диаграммы в координатах давления р и объема W.  [c.109]

Из представленной схемы видно для того, чтобы гидравлические инерционные трансформаторы и гидравлические диссипативные сопротивления работали по направлению основных реакций на внешнюю силу и момент в четырехцилиндровых рядных двигателей внутреннего сгорания, гидроопоры следует устанавливать вертикально.  [c.51]

Схема машины показана на рис. 59. Работает машина от двигателя внутреннего сгорания 8, смонтированного на раме 7, которая снабжена двумя парами ходовых колес. Стойками впереди и задней рамой 21, несущая рама 7 соединена с битумным баком 1. На битумном баке установлено два шестеренчатых насоса 17, 18. Назначение правого насоса 18 закачивать мастику из сопровождающего машину автогудронатора (битумовоза) в бак. Левый насос 17 подает мастику из бака в горловину обечайки 4, назначение которой состоит в равномерном распределении мастики по диаметру трубы. На задней раме 21 имеется вращающийся цевочный обод со шпульками 3 для обертывания изолированного трубопровода крафт-бумагой, гидроизолом, бризолом.  [c.126]

По-видимому, сегодня наиболее целесообразно использовать комбинированную схему сочетать двигатель внутреннего сгорания малой мощности, который будет заряжать аккумуляторную батарею, с тягловым электродвигателем. В этом случае двигатель внутреннего сгорания, снабженный нейтрализатором, будет работать практически на одном режиме, и его можно отрегулировать так, чтобы токсичность выхлопа была сведена к нулю.  [c.235]


Гидрообъемные и электрические трансмиссии имеют одинаковые схемы. В первом случае насос 12 (рис. 82, г), приводимый в работу от двигателя внутреннего сгорания, соединен трубопроводами с гидромоторами 13, установленными у ведущих колес автомобиля. Гидростатический напор жидкости, создаваемый насосом, реализуется в виде крутящего момента на валах гидромоторов. В электрических трансмиссиях двигателем внутреннего сгорания приводится в работу генератор 12 (рис. 82, г), ток от которого поступает к электродвигателям 13 (рис. 82, г). Ведущие колеса с гидромоторами или электродвигателями, устанавливаемыми в них, называют гидромотор-колесами или электромотор-колесами. При применении быстроходных гидромоторов и электродвигателей в ведущих колесах используют зубчатые понижающие передачи — колесные редукторы.  [c.133]

Двигатель внутреннего сгорания преобразует работу расширения газообразных продуктов сгорания топлива в механическую энергию. Полученная механическая энергия может непосредственно передаваться рабочим органам крана трансмиссией привода, которая в этом случае представляет собой единую механическую силовую передачу, состоящую из отдельных механических передач, коробок, редукторов и механизмов, а также соединительных муфт, обеспечивающих постоянное соединение узлов и деталей силовой передачи между собой. Приводы с описанной схемой преобразования и передачи энергии называются механическими.  [c.21]

В электродвигателях, применяемых в схемах электрооборудования автомобилей, находит применение возбуждение индуктора как с последовательным, так и параллельным включением обмоток индуктора с цепью якоря. Это зависит от требований, предъявляемых режимом работы электродвигателя. Например, для электродвигателей, предназначенных для пуска двигателя внутреннего сгорания, так называемых электрических стартеров, применяют последовательную обмотку возбуждения (рис. 34). Объясняется  [c.49]

Кривошипно-шатунный механизм применяется и для преобразования возвратно-поступательного движения во вращательное, например, в паровых машинах и двигателях внутреннего сгорания, где ведущим звеном является поршень, заставляющий посредством шатуна вращать коленчатый вал двигателя. При такой схеме работы механизма проявляется еще одна свойственная ему особенность. Пусть ползун 4 движется слева направо, соответственно чему кривошип будет вращаться по направлению часовой стрелки. Когда ползун придет в крайнее правое положение, кривошип займет положение АВ , после чего ползун начнет двигаться в обратном направлении. Это положение кривошипа так же, как положение Во называется мертвым (предельным). 268  [c.268]

На рис. а дан чертеж поршня двигателя внутреннего сгорания и показана действующая на поршень нагрузка. Соединение поршня 1 с шатуном 2 осуществляется поршневым пальцем 3, который работает на изгиб. На рис. б, в и г показаны некоторые расчетные схемы поршневого пальца.  [c.147]

Динамические расчеты регуляторов двигателей внутреннего сгорания основываются на линейной теории непрерывного регулирования. Эта теория была создана И. А. Вышнеградским [25] и применена им к анализу динамики регулятора прямого действия с вязким трением. А. Стодола [91] и его последователи [118, 127, 116] разработали далее эту теорию применительно к регуляторам непрямого действия. Применению линейной теории к различным схемам регулирования посвящен ряд новых работ отечественных исследователей [48, 19, 57, 36]. Тем не менее, особенности динамики ряда схем, применяемых в современных регуляторах двигателей внутреннего сгорания, остались неосвещенными и четких рекомендаций по выбору основных параметров проектируемых регуляторов в литературе не имеется.  [c.6]

Газовые турбины, имеющие рабочие органы в виде лопаток специального профиля, расположенных на диске и образующих вместе с последним вращающееся рабочее колесо, могут работать с высокой частотой вращения. Применение в турбине нескольких последовательно расположенных рядов лопаток (многоступенчатые турбины) позволяет более полно использовать энергию горячих газов. Однако газовые турбины пока уступают по экономичности поршневым двигателям внутреннего сгорания, особенно при работе с неполной нагрузкой, и, кроме того, отличаются большой теплонапряженностью лопаток рабочего колеса, обусловленной их непрерывной работой в среде газов с высокой температурой. При снижении температуры газов, поступающих в турбину, для повышения надежности лопаток уменьшается мощность и ухудшается экономичность турбины. Газовые турбины широко используются в качестве вспомогательных агрегатов в поршневых и реактивных двигателях, а также как самостоятельные силовые установки. Применение жаростойких материалов и охлаждения лопаток, усовершенствование термодинамических схем газовых турбин позволяют улучшить их показатели и расширить область Использования.  [c.9]

На рис. 5 показана схема работы двухтактного двигателя с внутренним смесеобразованием и прямоточной клапанно-щелевой схемой газообмена. Основными особенностями устройства двигателя этого типа являются  [c.24]

В эксплуатационных условиях двигатели внутреннего сгорания в зависимости от условий работы потребителя энергии должны работать при различных частотах вращения и крутящих моментах, т. е. на различных режимах по той или иной характеристике. Например, в случае установки двигателя на автомобиль частота вращения коленчатого вала, связанного через сцепление и трансмиссию с колесами, примерно пропорциональна для существующих схем трансмиссий скорости движения автомобиля. При движении автомобиля с постоянной скоростью сопротивление движению может меняться в зависимости от состояния пути, его уклона, силы и направления ветра и т. п., вследствие чего изменяется и потребляемая автомобилем мощность.  [c.40]


Схема устройства и работа двигателей внутреннего сгорания  [c.134]

СХЕМА УСТРОЙСТВА И РАБОТЫ ДВИГАТЕЛЯ ВНУТРЕННЕГО  [c.170]

СХЕМА УСТРОЙСТВА И РАБОТЫ ДВИГАТЕЛЕИ ВНУТРЕННЕГО СГОРАНИЯ 171  [c.171]

СХЕМА УСТРОЙСТВА И РАБОТЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ 173  [c.173]

На рис. 1 приведена электрическая схема крана КС-4561, которая обеспечивает работу и управление механизмами подъема груза, поворота крана, подъема и опускания стрелы, передвижения крана. Двигатели внутреннего сгорания работают на постоянном токе 24 В от аккумуляторной батареи автошасси.  [c.4]

Станции, отпускающие только электроэнергию, т. е. станции, оборудованные конденсационными паровыми двигателями (или паровыми двигателями, работающими на выхлоп) или же двигателями внутреннего сгорания, работают по заданным электрическим графикам нагрузки. Изменяя количество поступающего в двигатели пара (для двигателей внутренного сгорания— топлива), можно изменять их мощность соответственно графику электрической нагрузки в пределах номинальной мощности двигателей, не будучи связанными какими-либо дополнительными ограничениями. Регулирование количества подаваемого пара или топлива в таких условиях осуществляется при изолированной работе двигателя автоматически, скоростным регулятором, поддерживающим нормальное число оборотов (схема фиг. 6-46,а). При параллельной работе двигателей изменение их мощности производится воздействием от руки или дистанционно на паровпускной орган.  [c.412]

Система топливоподачи в газовом двигателе должна обеспечивать подачу необходимого количества газа, воздуха и их оптимальное соотношение на всех режимах работы двигателя, образование однородной смеси газа и воздуха, равномерное распределение газовоздушной смеси или отдельных компонентов по цилиндрам, надежный пуск двигателя и его взрывобезопас-ность. Как уже отмечалось, системы бывают с внешним и внутренним смесеобразованием. Схема топливоподачи газового двигателя с внешним смесеобразованием приведена на рис. 55. Газ из магистрали поступает в редуктор 1, который в зависимости от начальной регулировки или регулировки по обратной связи поддерживает требуемое давление. Из редуктора газ поступает в ресивер 2, предназначенный для сглаживания пульсаций. В, некоторых схемах ресивер устанавливают после смесителя и тогда сглаживаются пульсации газовоздушной смеси. Роль таких ресиверов могут играть газовые коллекторы, а также воздушные ресиверы двигателей. Из ресивера газ через запорный орган 3 поступает в смеситель 4 и далее смесь подается в цилиндры двигателя. Запорный орган может быть установлен до редуктора (схема подачи сжиженного газа на автомобилях), непосредственно между ступенями редуктора (схема подачи сжатого газа на автомобилях), иногда их может быть несколько. Запорные органы могут быть электроприводные, пневмоуправ-ляемые или с ручным управлением. Как показывает отечественный и зарубежный опыт создания газовых двигателей, в основном по такой схеме работают двигатели автомобильного типа не очень большой цилиндровой мощности и с незначительным давлением наддува. Аналогичной системой подачи газовой смеси, разработанной ВНИИгазом и Всесоюзным заочным политехническим институтом (ВЗПИ), оборудован газовый двигатель 6ГЧ15/18 мощностью 100 кВт (рис. 56)  [c.138]

Приведенный пример показывает, что работа машины связана с движением, поэтому в любой машине имеются механизмы, т. е. системы тел, предназначенных для преобразования движения одного или нескольких тел в требуемые движения других тел. Так, в двигателе внутреннего сгорания применен кривошнпно-ползунный механизм, схема которого дана на рис. 3.2. Ведущим элементом (звеном) служит ползун (поршень двигателя) /, который соединен шатуном 2 с кривошипом (коленчатым валом) 3, таким образом, возвратно-поступательное движение поршня преобразуется во вра-ш,ательное движение коленчатого вала. Тот же механизм используют в поршневых насосах, но тогда ведущим звеном является кривошип, а ведомым — ползун (поршень).  [c.322]

Разработка новых схем и тршов двигателей (двигателей внутреннего сгорания, газотурбинных, воздушно-реактивных и ракетных двигателей), совершенствование их работы, разработка новых взрывчатых веществ, новых высококалорийных топлив, анализ безопасности ряда производств приводят к необходимости углубленного исследования гетерогенного горения взвесей распыленного жидкого или твердого горючего, исследования детонации, взрыва и других газодинамических явлений в газовзвесях. Результаты таких исследований особенно важны для анализа пожаро- и взрывобезопасности технических устройств, в которых могут образоваться способные к детонации и горению взвесене-сущие или газопылевые среды. Именно в газовзвесях можно по-1  [c.3]

Рассмотренная схема ВХМ не единственная, полученные значения технико-экономических показателей являются ориентировочными. По энерге-тическпм показателям более экономичной является ВХМ с дополнительной камерой его-рания топлива и впрыском воды в проточную часть компрессора (рис. 6-26,6). Впрыск воды приближает процесс сжатия к изотермическому и уменьшает работу сжатия, а подача топлива в камеру сгорания позволяет осуществлять прямое преобразование тепловой энергии в механическую, что повышает коэффициент полезного действия установки и исключает необходимость в электроприводе, мультипликаторе и газо-газовом теплообменнике. Вместо камеры сгорания может быть использован двигатель внутреннего сгорания или иной источник теплоты. Это делает возможной утилизацию теплоты выхлопных газов и соответственно повышает эффективность холодильной установки. Кроме того, для горения можно использовать выходящий из контактного аппарата влажный воздух, тогда исключается увлажнение и загрязнение воздуха продуктами сгорания топлива перед контактным аппаратом.  [c.169]

Во всех рассмотренных схемах комбинированных установок использовано оборудование, освоенное современной техникой. По существу, речь до сих пор щла лищь о том или ином сочетании звеньев уже имеющихся паросиловых установок, ГТУ, двигателей внутреннего сгорания и тепловых насосов. Правда, отдельные стороны работы этих установок еще недостаточно изучены. Это относится, в частности, к поведению солей, вносимых испаряемой водой в проточную часть турбины газопаровых установок контактного типа, к регулируемости отдельных схем и т. д. Отсутствует и опыт построения мощных парогенераторов. Но в большинстве случаев дальнейшие исследования и опыт эксплуатации смогут лишь уточнить показатели, которые сейчас уже более или менее точно вырисовываются для каждого из описанных типов комбинированных установок.  [c.27]

В начале данной главы было указано, что паросиловая установка отличается от двигателя внутреннего сгорания тем, что она представляет собой циклически действующую систему. Тем не менее с внешней стороны обе силовые установки вполне подобны. Так, например, схема рис. 16-2, изображающая силовую установку, непрерывно снабжаемую возду- топливо Робота хом и топливом, непрерывно производя- щую работу и удаляющую продукты его- х Проаунтв рания и тепло в окружающую среду, /у горения может относиться к обоим типам тепло- возоих  [c.145]


Электростанции с двигателями внутреннего сгорания по количеству оборудования и схеме значительно проще, чем паротурбинные )лектростанции. Весь процесс работы станции осредоточен в самом двигателе и непосредственно связанном с ним вспомогательном оборудовани1и, как-то топливном насосе, компрессоре и т. д.  [c.183]

Как правило, тепловые (машины (двигатели внутреннего сгорания, газовые турбины и паросиловые установки) работают по схеме, рассмотренной во втором случае, т. е. в них поток рабочего тела при расширении достигает давления среды ро раньше, чем температуры io В двигателях внутреннего сгорания, работающих открытым циклом (с выхлопом гззов нзружу), при этом неизбежна существенная потеря, связанная с тем, что температура отходящих газов значительно выше температуры окружающей среды. Эта потеря на рис. 4-4 может быть измерена отрезком М1В.  [c.68]

Временная реализация. Когда в кoлeбaтeльнo 4 процессе, сопровождающей работу агрегатов, например двигателя внутреннего сгорания, необходимо сохранить фазовые соотношения, несущие основную информацию о параметрах технического состояния, достаточно проанализировать временную реализацию процесса. На рис. 5 дана схема располол<ения виброиыпульсов, формируемых механизмами четырехцилиндрового двигателя, по тактам цикла. Выделение импульсов, формируемых узлом, осуществляется временной селекцией (см. раздел 6). В данном случае диагностическими признаками могут служить смещение соответствующего импульса по фазе, а также его амплитуда.  [c.401]

Последовательность и особенности расчета на ЭВМ. На рис. 3.9 в качестве примера приведена структурная схема программы для численного расчета дисков на растяжение с учетом истории нагружения. Как уже указывалось при описании алгоритма расчета, счет ведется этапами. Цикл работы двигателя разбивается на ряд этапов по времени. В конце каждого расчетного этапа фиксируются частота вращения, температуры диска на ободе и в центре. Задается температурное поле (обычно в табличной форме) в коние каждого и-го расчетного этапа, а также растягивающие силы на внутреннем и наружном контурах. Ниже перечислен остальной исходный числовой материал, не меняющийся обычно в процессе расчета.  [c.101]

Отметим егце одну работу по теории идеальной жидкости С.А. Чаплыгина и В.В. Голубева О продувке цилиндров двигателей внутреннего сгорания (Труды ЦАГИ. 1932). В этой работе рассматривается ряд схем протекания потока несжимаемой жидкости через цилиндр при различном расположении клапанов. Нри этом задача упрогцается заменою круглого цилиндра плоскопараллельным течением. Эта работа представляет своеобразный интерес с точки зрения метода исследования. Прямоугольник, нредставляюгций сечение цилиндра, естественно, приводит к применению эллиптических функций, в которых и регаается вся задача. Здесь эллиптические функции входят как двоякопериодические функции с некоторым прямоугольником периодов, между тем как в других задачах механики эллиптические функции входят обычно только при посредстве интегралов, и их свойства периодичности в исследовании механических условий не играют никакой роли. Аналогичное замечание, впрочем, относится и к применению эллиптических функций для исследования бипланов.  [c.177]

Двигателем называют машину, которая дает возможность получить механическую работу за счет энергии, заключаюпдейся в каком-либо топливе и обычно данной в виде тепла. Таким топливом для двигателя внутреннего сгорания может служить нефть или продукты ее перегонки керосин, бензин, а также и другие виды жидкого и газообразного топлива. Для авиационных двигателей в настоящее время употребляется как топливо главным образом бензин, керосин, спирт и бензол. Можно указать много схем, которые дали бы возможность получить механическую работу за счет тепла, но разбирать их не входит в задачи нашего курса, и мы остановимся лишь на одной из них.  [c.157]

Для тепловых двигателей пользуются схемой, по которой какое-нибудь тело, например газ, от действия сообш,енного ему тепла изменяет свое состояние, т.е. давление, температуру и т.п., производя при этом нужную нам механическую работу. В двигателях внутреннего сгорания таким рабочим телом является воздух (точнее, смесь воздуха, паров горючего и продуктов сгорания). Процесс изменения рабочего тела, или, как говорят, цикл, описываемый рабочим телом, должен быть периодичен, т. е. рабочее тело после ряда изменений должно прийти в первоначальное состояние, ибо только тогда мы можем получать работу в течение неопределенно долгого времени, повторяя цикл произвольное число раз. Из термодинамики известно, что в случае периодического (замкнутого) цикла рабочего тела мы можем получить работу только в том случае, когда тело подвергается по крайней мере одному нагреванию и одному охлаждению. Таким образом получается теоретическая схема работы теплового двигателя, в которой рабочее тело — воздух, претерпевая периодическое изменение состояния, совершает механическую работу, нагреваясь и охлаждаясь минимум по одному разу в течение периода.  [c.157]

Рис. 5. Схема работы даухтактного двигателя с внутренним смесеобразованием и прямоточной клапанно-щелевой схемой газообмена и индикаторные диаграммы а — первый такт (сгорание, расширение, ыпуск, продувка и наполнение) б — аторой такт (выпуск, продувка и наполнение, сжатие) 1 — впускной патрубок 2 — продувочный насос 3 — поршень Рис. 5. Схема работы даухтактного двигателя с <a href="/info/30729">внутренним смесеобразованием</a> и прямоточной клапанно-щелевой схемой газообмена и <a href="/info/760">индикаторные диаграммы</a> а — первый такт (сгорание, расширение, ыпуск, продувка и наполнение) б — аторой такт (выпуск, продувка и наполнение, сжатие) 1 — впускной патрубок 2 — <a href="/info/235401">продувочный насос</a> 3 — поршень

Смотреть страницы где упоминается термин Ц икл двигателя внутреннего схема работы двигател : [c.237]    [c.145]    [c.181]    [c.161]    [c.171]   
Курс термодинамики Издание 2 (1967) -- [ c.77 ]



ПОИСК



12, 13 — Схема работы

Двигатели Схемы

Работа внутренних сил

Работа двигателя

Схема и принцип работы двигателя внутреннего сгорания

Схема устройства и работа двигателей внутреннего сгорания

Теоретические основы и расчет тепловозных дизелей Классификация двигателей внутреннего сгорания и рабочие цикКлассификация и схемы работы двигателей внутреннего сгорания

Ц икл двигателя внутреннего

Ц икл схема работы двигателя



© 2025 Mash-xxl.info Реклама на сайте