Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Регулятор скоростной

Скоростные регуляторы, в которых центры тяжести инертных масс перемещаются в плоскости, проходящей через ось вала регулятора, называются коническими. В том случае, когда центры тяжести инертных масс движутся в плоскостях, перпендикулярных к оси вала регулятора, скоростные регуляторы называются плоскими.  [c.881]

Как показано в 82, 2°, при периодических колебаниях скоростей начального звена машины (звена приведения механизма) во время установившегося и неустановившегося движений необходимо соединить начальное звено регулируемого объекта с особым механизмом, носящим название скоростного регулятора. Задача регулятора состоит в установлении устойчивого (стационарного) изменения скорости, режима движения начального звена регулируемого объекта, что может быть достигнуто выравниванием разницы между движущими силами и силами сопротивления. Если по каким-либо причинам уменьшается полезное сопротивление и регулируемый объект начинает ускорять свое движение, то регулятор автоматически уменьшает приток движущих сил. Наоборот, если силы сопротивления увеличиваются и регулируемый объект начинает замедлять свое движение, то регулятор увеличивает движущие силы. Таким образом, как только нарушается равновесие между движущими силами и силами сопротивления, регулятор должен вновь их сбалансировать и заставить регулируемый объект работать с прежними или близкими к прежним скоростями.  [c.397]


Автоматические регуляторы прямого действия устанавливаются, как правило, на автотракторных дизелях. Например, дизели типа 64 15/18 оборудуются все-режимным механическим регулятором с переменной предварительной деформацией пружин (рис. 5.21). Поддерживающая сила, развиваемая вращающимися грузами 5, через муфту 6 и рычаг 7 передается пружинам 10, работающим на растяжение. Другим концом пружины связаны с рычагом 1 управления, поворотом которого можно изменять предварительную деформацию пружин 10 и, следовательно, задаваемый скоростной режим работы двигателя.  [c.251]

ТО регулятор становится однорежимным. Для создания регулятора двухрежимного, работающего только на минимальном и номинальном скоростных режимах, в регуляторе устанавливаются две последовательно включающиеся пружины, каждая из которых имеет свою, соответствующую названным режимам, предварительную деформацию.  [c.252]

Для создания импульсов, влияющих на изменение хода турбины, применяют скоростные центробежные регуляторы различных типов.  [c.357]

В связи с тем, что усилия, создаваемые самим скоростным регулятором, недостаточны для приведения в действие парораспределительных устройств турбины, приходится прибегать к регуляторам с усилителями (сервомоторами).  [c.357]

Наряду с описанной механической системой соплового парораспределения применяют более гибкие гидравлические системы, в которых каждый из клапанов приводится в действие особым сервомотором при помощи масла, находящегося под давлением, регулируемым скоростным регулятором. Последовательность открывания клапанов определяется натяжением пружин, прижимающих их к седлам.  [c.360]

В настоящее время на всех турбинах большой мощности применяют более совершенную гидродинамическую систему регулирования. В СССР такая система регулирования разработана Всесоюзным теплотехническим институтом (ВТИ) и ЛМЗ. В этой системе скоростной центробежный регулятор заменен масляным центробежным насосом, связанным с валом турбины, что позволяет отказаться от применения для системы регулирования червячной пары. В системе регулирования использовано для получения импульса то обстоятельство, что напор, создаваемый центробежным насосом, пропорционален квадрату числа оборотов. На рис. 31-18 представлена принципиальная схема гидродинамического ре-  [c.360]

Скоростные тормоза, применяющиеся в различных видах машин, могут быть подразделены на две группы. К первой группе относятся скоростные или центробежные тормоза (механические регуляторы скорости), имеющие своим назначением не допускать увеличения скорости механизма сверх заданного предела. Произвести остановку механизма эти тормоза не могут. Поэтому в механизмах подъема грузоподъемных машин, где тормоза этой группы регулируют скорость опускания груза, для остановки механизма и груза необходим еще и стопорный тормоз. Ко второй группе скоростных тормозов относятся такие, которые позволяют производить опускание груза со скоростью, значительно превосходящей скорость подъема, а в конце процесса опускания они производят остановку механизма и груза.  [c.307]


Диапазон стационарно недостижимых скоростных режимов наглядно устанавливается в результате совместного рассмотрения частичных силовых характеристик двигателя L(Q) и общей характеристики Мс (Q) сопротивлений вращению. На рис. 54 иллюстрируется ситуация, при которой не могут быть стационарно реализованы скоростные режимы, принадлежащие отрезку [Q,, Qjl. Если осуществляется стабилизация стационарного скоростного режима Qo при помощи регулятора с тахометрической обратной связью, то в частотном уравнении (9.44) функция ЫО.) представляет собой усредненную регулировочную характеристику двигателя Л/ро( 2). Характеристика Л/ро( 2) определяется по статической характеристике регулятора и имеет вид  [c.156]

Масла, используемые в гидросистемах станков, обладают хорошей смазывающей способностью и малой сжимаемостью, что обеспечивает высокие долговечность элементов и жесткость скоростных характеристик. Регулирование проходного сечения в регуляторах скорости увеличивает диапазон плавного изменения скорости выходного вала гидромотора. Гидроприводы обеспечивают наименьшие устойчивые подачи, причем могут работать на них неограниченное время.  [c.120]

Подбирая подходящие настройки регулятора, можно достичь требуемой точности нагружения для данного образца и испытательной системы. При этом практически почти всегда желательны максимальные значения суммарного (механического, ЭГР и регулятора) коэффициента усиления системы. Однако наряду с участками скоростного нагружения встречаются и участки поддержания постоянного значения параметра, где потребный расход гидравлической жидкости снижается до нуля, и если коэффициент усиления будет слишком большим, система может оказаться неустойчивой. Поэтому применяют нелинейное изменение коэффициента усиления в области малых ошибок (рис. Б8).  [c.67]

Погрешность регулирования системы определялась при приложении возмущающего воздействия As. Для условий чистового точения можно представить в виде суммы статической и скоростной А ошибок причем для разработанной линейной астатической системы погрешность практически определяется погрешностью регулятора 2—  [c.359]

Регуляторы безопасности скоростные 13— 181  [c.188]

Аппарат типа ТС предназначается для автоматической скоростной сварки под слоем флюса, а также для сварочных работ на повышенных токах порядка 1000 а (фиг. 31). Состоит из понижающего однофазного трансформатора и реактора типа РСТЭ-53. Реактор-регулятор  [c.287]

Фиг. 30. Схема скоростной характеристики двигателя с регулятором. Фиг. 30. Схема <a href="/info/433828">скоростной характеристики двигателя</a> с регулятором.
Скоростной регулятор безопасности.  [c.181]

Фиг. 74. Предельный скоростной регулятор. Фиг. 74. Предельный скоростной регулятор.
Практически плавное регулирование сопротивления при пуске и торможении осуществляется посредством коллекторного контроллера или контроллера с пальцевыми контактами [10]. Применяются тормозные реостаты с плавным регулированием посредством роликов, обегающих элементы сопротивления спиральной формы. Подобный принцип применён также для плавного регулирования вторичного напряжения силового трансформатора на скоростной мотор-вагонной секции швейцарских железных дорог [16]. На магистральных электровозах однофазного тока применяется система плавного пуска с коллекторным регулятором (см. стр. 479),  [c.477]

Для обеспечения устойчивой работы при всех скоростных и нагрузочных режимах двигатель должен быть снабжён всережимным регулятором и регулятором предельного числа  [c.500]

Регулятор должен реагировать на отклонения скоростного режима двигателя, соответственно изменяя подачу топлива. Эту задачу выполняют центробежные регуляторы, состоящие из двух основных частей чувствительного механизма, реагирующего на изменение угловой скорости, и исполнительного механизма, воздействующего на рейку топливного насоса.  [c.516]


Более совершенными регуляторами являются такие, у которых скоростной режим поддерживается абсолютно точно. Для этого необходимо сохранить полезное воздействие обратной связи во время процесса регулирования и устранить её вредное влияния по окончании его.  [c.520]

Мощность газотурбовоза регулируется изменением возбуждения генератора. Насос 9 подаёт масло под давлением в общую напорную линию ко всем регулирующим устройствам, из этой же линии при пуске через дросселирующее отверстие 31 подаётся масло к подшипникам. Во время нормальной работы смазка подшипников обеспечивается насосом Н. Главный маховичок управления 14, приводимый в движение машинистом, регулирует одновременно по линиям 18 и 19 количество топлива, подаваемого насосом 7 к форсунке 12 камеры сгорания 2, посредством сервомотора 20, а также положение муфты скоростного регулятора 21 посредством кулачкового  [c.628]

Фиг. 12. Осциллограммы, снятые при следующих условиях регулятор скоростн на выходе, цилиндр 0 65 X 1000 мм Р1 = 35 кГ/см , переливной клапан фирмы Виккерс, масса С + М + О. Фиг. 12. Осциллограммы, снятые при следующих условиях регулятор скоростн на выходе, цилиндр 0 65 X 1000 мм Р1 = 35 кГ/см , <a href="/info/29371">переливной клапан</a> фирмы Виккерс, масса С + М + О.
Цементация и закалка или т )ль- Конечные делительные ко закалка червяков. Боковы по- пары станков средней точ-верхности витков червяка о( 1за- ности, скоростные пере-тельно шлифуются и полирук гея. дачи регуляторов двига-Червячные колеса нарезаются i 1ли- телей фованными червячными фрез ми.  [c.5]

К главному валу 2 через коническую зубчатую или червячную передачу 22 присоединен скоростной регулятор. На валу 21 регулятора насажен масляный нйсос 28, из которого масло под давлением 0,4—0,6 Мн1м по трубе 23 направляется в среднюю часть золотника 24. В случае изменения. нагрузки, например при увеличении ее, число оборотов снижается и муфта 20 регулятора с грузами 17 и пружиной 18 будет опускаться. Рычаг 19 при этом будет вращаться относительно точки Е и опустит поршни 27, соединяющее среднюю часть золотника маслопроводом 14 с левой частью поворотного сервомотора. Под действием давления масла радиальный поршень 11 начнет вращаться по часовой стрелке и вращать ось 7 с кулачками 5А, 58, 5С. При этом клапаны 4В и 4С начнут подниматься (на рис. 31-16 клапан 4А открыт полностью). На оси 7 насажен кулачок 12 обратной связи, благодаря которому при вращении  [c.359]

Безопасные рукоятки второго типа соединены с тормозами так, что размыкание нормально замкнутого тормоза производится нажатием на рукоятку, после чего обслуживаемый им механизм получает возможность движения под действием веса груза. Вращения такой рукоятки при спуске груза не требуется. Регулирование скорости спуска производится соответствующим изменением усилия на рукоятку. Скорость и равномерность движения опускающегося груза зависят только от внимания и навыка обслуживающего персонала. Излишне большое усилие нажатия на рукоятку может повлечь за собой настолько быстрый спуск груза, что остановка его станет затруднительной или даже невозможной. Для предупреждения указанной опасности рукоятки этого типа обычно снабжают скоростными регуляторами. Если вес ненагру-женного грузового крюка подъемного механизма окажется недостаточным для преодоления сопротивлений в механизме, то спуск его нельзя осуществить такой рукояткой, и приходится утяжелять крюк подвеской к нему груза. Поэтому рукоятки второго типа находят применение только в механизмах с зубчатыми передачами привода, в которых потери на трение невелики.  [c.341]

Стабилизация скорости вращения ДВС на заданном скоростном режиме осуществляется замкнуто системо автоматического регулирования с отрицательной обратной связью но угловой скорости коленчатого вала (рис. 17, а). Управляющее устройство — автоматический регулятор — включает центробежный измеритель скорости с задающим устройством и, в общем случае, гидравлические усилители (сервомоторы) со стабилизирующими связями н рычажными передачами (рис. 17,6 — д). Исполнительный орган (рейка тонливного насоса в дизелях или заслонка карбюратора в карбюраторных двигателях) воздействует на ноток энергии, поступающей в двигатель в виде цикловых подач топлива, причем это воздействие имеет импульсный характер.  [c.36]

Уравнения движения регулятора на заданном режиме стабилизации скорости вращения ДВС при непрямой однокаскадной схеме регулирования можно составить в координатах г/, = х,/хтт, Ус = xjx m, где Хг, Ха — текущие смещения выходного звена (муфты) центробе кного измерителя регулятора и сервопоршня усилительного элемента относительно соответствующих равновесных положений на регулируемом скоростном режиме Qp двигателя, Хгт, Хст — те же смещения при изменении цикловой задачи топлива в ндлпндрах ДВС от минимальной (на холостом ходу) до максимальной (при работе двигателя по внешней характеристике). Тогда па основании изложенного динамическое описание регуляторной характеристики M[q, и) дизеля можно представить системой дифференциальных уравнений  [c.39]

Условия мажорирования частотной характеристики САРС машинного агрегата с ДВС определяются следующими допущениями а) текущее значение частоты может совпадать с одной из собственных частот механического объекта регулирования б) необратимые потери энергии при колебаниях в центробежном измерителе угловой скорости отсутствуют в) потери энергии х и колебаниях в механическом объекте регулирования характеризуются постоянным коэффициентом поглощения, определяемым по параметрам низкочастотных резонансных колебаний силовой цепи ыашпны г) при наличии амплитудно-импульсных звеньев процесс управления принимается непрерывным д) постоянная времени центробежного измерителя, а в системах непрямого регулирования и постоянные времени сервомоторов принимаются равными своим минимальным значениям е) расчетный скоростной режим САРС соответствует минимальной степени неравномерности регулятора.  [c.141]


При анализе динамических процессов, в пусковом скоростном диапазоне рассматриваемых машинных агрегатов с регулятором скорости обратная тахомет-рическая связь, как правило, не учитывается. Правомерность такого рассмотрения обусловлена характером задающего воздействия регулятора при запуске двигателя. В предстартовой фазе запуска па вход задающего устройства регулятора поступает постоянное по величине воздействие, соответствующее определенному регулируемому скоростному режиму в рабочем диапазоне. Вследствие такой характеристики стартового задающего воздействия регулятора машинный агрегат в пусковом днаназопе представляет o6oii  [c.164]

Момент и интенсивность действия регулятора максимальных оборотов коленчатого вала двигателя определяются натяжением пружины 11. При поворачивании фасонной гайки 15 натяжение пружины 11 возрастает, вследствие чего прикрытие дросселя за счёт скоростного напора произойдёт при ббльших числах оборотов. При поворачивании муфты 12 изменяется количество рабочих витков пружины, что изменяет характеристику пружины.  [c.231]

Фиг. 95. Турбина высокого давления ЛМЗ мощностью 50 000 кет при 3000 об/мин (ВК-50-1) 7—5—камеры отбора пара для регенерации 5—пароподводяшая труба 7—паровая коробка 8 — клапан с удлинённым диффузором 9 — сварная средняя часть цилиндра 20 — сварной выхлопной патрубок 12 — валоповоротное устройство 22 — переднее лабиринтовое уплотнение 73 —заднее лабиринтовое уплотнение 7 — неподвижная точка 75 — опорно-упорный подшипник 76 — зубчатая передача к масляному насосу и регулятору 17 — червячная пара к регулятору 28 — предельные скоростные регуляторы 79 — масляный зубчатый насос 20 — редукционный масляный клапан 22 — роликовые подшипники 22 — зубчатая рейка для привода кулачкового вала. Фиг. 95. <a href="/info/65467">Турбина высокого давления</a> ЛМЗ мощностью 50 000 кет при 3000 об/мин (ВК-50-1) 7—5—камеры отбора пара для регенерации 5—пароподводяшая труба 7—паровая коробка 8 — клапан с удлинённым диффузором 9 — сварная средняя часть цилиндра 20 — сварной <a href="/info/400910">выхлопной патрубок</a> 12 — <a href="/info/121830">валоповоротное устройство</a> 22 — переднее <a href="/info/107251">лабиринтовое уплотнение</a> 73 —заднее <a href="/info/107251">лабиринтовое уплотнение</a> 7 — <a href="/info/359326">неподвижная точка</a> 75 — <a href="/info/386677">опорно-упорный подшипник</a> 76 — <a href="/info/1089">зубчатая передача</a> к <a href="/info/27438">масляному насосу</a> и регулятору 17 — <a href="/info/153392">червячная пара</a> к регулятору 28 — предельные скоростные регуляторы 79 — масляный зубчатый насос 20 — редукционный масляный клапан 22 — <a href="/info/50894">роликовые подшипники</a> 22 — <a href="/info/5019">зубчатая рейка</a> для привода кулачкового вала.
Усиление затяжки пружины регулятора вызывает перевод машины на режим с большей угловой скоростью, т. е. центробежный регулятор не только способен поддерживать заданный скоростной релсим, но и может пере-  [c.518]

Характерное свойство изодромного регулятора заключается в следующем. Окончание процесса регулирования определяется, во-первых, тем, что пружина 10 принимает свободное, ненапряжённое состояние и ставит воспринимающий поршень 9 и втулку 4 в среднее положение. В то же время поршень сервомотора 12 и компенсирующий поршень 6 устанавливаются в положение, соответствующее нагрузке двигателя, поэтому общее количество жидкости, заключающееся между поршнями 6 и 9, изменяется сообразно нагрузке. Избыток или недостаток масла перетекает через игольчатый клапан 11. Другим условием, определяющим окончание процесса регулирования, является перекрытие трубки 13, соединяющей золотниковую камеру с сервомотором. Это достигается установкой золотника 3 против соответствующего окна в трубке 4, стоящей в среднем положении. Следовательно, золотник 3, а вместе с ним и муфта 14 устанавливаются по окончании процесса всегда в одном и том же положении. Основным свойством изодромного регулятора является абсолютно точное поддержание скоростного режима независимо от нагрузки машины.  [c.521]

Переключение числа оборотов производится путём изменения затяжки пружины. Это действие осуществляется перестановкой пол-зущки 15, положение которой фиксируется специальным механизмом 16 с воздушным приводом. Управление переключающим механизмом —дистанционное. На тепловозе переключающий механизм чисто пневматический, причём ползушка 15 может занимать любое положение между своими крайними и устанавливать любой скоростной режим дизеля в рабочей области оборотов. Такой регулятор называется всережимным. На тепловозах ТЭ и Д применён электропневматический переключающий механизм, устанавливающий лишь восемь вполне определённых скоростных режимов. Такой регулятор называется многорежимным.  [c.521]


Смотреть страницы где упоминается термин Регулятор скоростной : [c.543]    [c.19]    [c.253]    [c.358]    [c.340]    [c.147]    [c.156]    [c.112]    [c.96]    [c.56]    [c.206]    [c.520]    [c.629]   
Теория механизмов (1963) -- [ c.516 ]



ПОИСК



Паровые машины скоростные регулятор

Регулятор скоростной Эвипга

Регуляторы динамические скоростные — Типы

Скоростные тормоза (регуляторы скорости)

Типы скоростных регуляторов

Тормозное оборудование со скоростным регулятором нажатия колодок

Устойчивост Регуляторы безопасности скоростны



© 2025 Mash-xxl.info Реклама на сайте