Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Схемы движения

Рис. 13.6. Схемы движения теплоносителей в Рис. 13.6. Схемы движения теплоносителей в

Точно таким же получается выражение для Ш и при других схемах движения теплоносителей, изображенных на рис. 13.6. Обратите внимание, что Д/б и Д/ — это перепады температур между теплоносителями на концах теплообменника. Только в прямоточном теплообменнике значение Д/б всегда равно разности температур теплоносителей на входе, а Д/м — на выходе. В противоточном теплообменнике теплоносители движутся  [c.107]

Средняя разность температур при перекрестном токе меньше, чем при противотоке, но больше, чем при прямотоке. При расчете Ш для сложных схем движения теплоносителей вначале определяют А7 в предположении, что теплообменник противоточный, а затем вводят поправки, численное значение которых берут для каждого конкретного случая из справочников [15]. При числе перекрестных ходов более трех, например, для широко распространенных змеевиков теплообменников (рис. 13.8 б) схему движения можно считать чисто противоточной или чисто прямоточной.  [c.108]

Общие уравнения движения твердого компонента при различных схемах движения компонентов соответственно имеют вид  [c.39]

По второму способу, т. е. при неподвижной детали, отверстия шлифуют на горизонтальных или вертикальных станках с планетарным движением шпинделя. На рис. 94, а показана схема движения шпинделя при шлифовании отверстия у неподвижной детали шпиндель с шлифовальным кругом I имеет четыре движения I — вращение вокруг своей оси, // — планетарное движение по окружности внутренней поверхности детали 2, III — возвратно-поступательное движение вдоль оси детали п IV — поперечное перемещение, т. е. поперечную подачу. На такого рода станках можно шлифовать и наружные цилиндрические поверхности деталей, которые нельзя шлифовать на обыкновенных круглошлифовальных станках.  [c.224]

По графику для рассматриваемой схемы движения теплоносителей (см. рис. П-4 приложения) находим при  [c.224]

При выводе основного уравнения теплопередачи (24-6) принималось, что температуры горячей и холодной среды в теплообменном аппарате не изменяются. В действительности температуры рабочих жидкостей при прохождении через аппарат изменяются, причем на изменение температур большое влияние оказывают схема движения жидкостей и величины условных эквивалентов.  [c.487]

Рис. 13.1. Схема движения тока в дефектах коррозионностойкого (а) и протекторного (6) покрытий Рис. 13.1. Схема движения тока в дефектах коррозионностойкого (а) и протекторного (6) покрытий

Рис. 6.7. Схема движения непрерывно действующего источника мощностью д, перемещающегося со скоростью v Рис. 6.7. Схема движения <a href="/info/332164">непрерывно действующего</a> <a href="/info/202448">источника мощностью</a> д, перемещающегося со скоростью v
Рнс. 6.20. Различные схемы движения и расположения источников теплоты при нагреве сплошного круглого цилиндра  [c.192]

Рис. 6-28. Схема движения образца в полости. Рис. 6-28. Схема движения образца в полости.
Рис. 10.1. Схема движения теплоносителя Рис. 10.1. Схема движения теплоносителя
Открытие --мезонов (пионов). В послевоенные годы с новой силой возобновилось исследование элементарных частиц. В 1947 г. английский физик С. Пауэлл с сотрудниками на больших высотах над уровнем моря облучили космическими лучами ядерные фотопластинки, После проявления они обнаружили на пластинках треки заряженных мезонов с массой (200 300) /и,,. Дальнейшее более обстоятельное изучение показало, что треки принадлежат новым, неизвестным до сих пор частицам. Иа рисунке 24, а приведена схема движения н последовательного распада этой неизвестной (л ) частицы. При распаде этой частицы образуется мюон (р." ). Неизвестная частица была названа я -мезоном  [c.75]

Рис. 24. Схема движения и последовательного распада Рис. 24. Схема движения и последовательного распада
Типы дислокаций Схема движения краевой дислокации.  [c.159]

Вместе с тем значение модели ядерных оболочек нельзя переоценивать. Область применения ее весьма ограничена она позволяет объяснить явления, относящиеся к некоторым свойствам сферических ядер (главным образом легких) в основном и слабо возбужденном состояниях. Но даже и в этой области наблюдаются отдельные нерегулярности в заполнении состояний и плохое соответствие вычисленных магнитных моментов с экспериментальными значениями. Модель оболочек совсем не пригодна для описания несферических ядер. Она дает абсолютно неверные значения квадрупольных электрических моментов и даже спинов этих ядер. Эти несоответствия связаны с грубостью использованной схемы (движение частиц в среднем постоянном сферически симметричном ядерном поле), которая неприменима для несферических ядер.  [c.199]

Рекуперативные теплообменники подразделяют в зависимости от направления движения теплоносителей (рис. 15.2). Если теплоносители движутся параллельно в одинаковом направлении, теплообменник называют прямоточным (рис. 15.2, а), при противоположном направлении движения — противоточным (рис. 15.2, б). В теплообменнике с перекрестным током теплоносители движутся во взаимно перпендикулярных направлениях, при этом возможен однократный (рис. 15.2, в) и многократный (рис. 15.2, г) перекрестный ток. Встречаются и более сложные схемы движения теплоносителей (рис. 15.2, due).  [c.454]

Аналитическая оценка среднего температурного напора для теплообменников с перекрестным током и другими более сложными схемами движения приводит к громоздким формулам. Поэтому средний температурный напор для таких схем движения теплоносителей определяют по формуле  [c.458]


Зависимости ед = / (/ , Р) рассчитаны для различных схем движения теплоносителей и приводятся в справочной литературе.  [c.458]

Полученные формулы позволяют сравнить средние температурные напоры при различных схемах движения теплоносителей. Сравнение показывает, что при одинаковых температурах теплоносителей на входе и выходе из теплообменного аппарата в противоточном  [c.458]

Благодаря большей величине среднего температурного напора рабочая поверхность при противоточной схеме движения жидкостей и прочих равных условиях будет наименьшей. Поэтому, если причины конструктивного характера не ограничивают выбор схемы движения теплоносителей, то предпочтение надо отдать противоточному теплообменнику по сравнению с прямоточным.  [c.459]

Но следует заметить, что противоточная схема движения теплоносителей не всегда имеет суш,ественные преимущества перед прямоточной. Расчеты показывают, что при большом значении одного  [c.459]

При сравнении противоточной и перекрестной схем движения необходимо принять во внимание не только изменение величины среднего температурного напора, но и изменение условий теплообмена. При одинаковом гидравлическом сопротивлении и условии  [c.459]

При проектировании теплообменного аппарата конструктор выбирает форму рабочей поверхности, схему движения теплоносителей и их скорости, конструктивные параметры (диаметр трубок, расстояние между ними, расстояние между пластинами). При этом выполняется тепловой и гидравлический расчеты нескольких вариантов аппарата с тем, чтобы выбрать из них наиболее эффективный.  [c.463]

Рис. 6.7. Схема движения к оптимуму методом Зайделя— Рис. 6.7. Схема движения к оптимуму методом Зайделя—
Рис. 6.10. Схема движения симплекса Рис. 6.10. Схема движения симплекса
Так как число Рейнольдса пропорционально отношению инерционной силы к силе вязкости, нахождение условий, определяющих границы устойчивости, должно производиться с учетом вязких свойств жидкости. Однако первое представление о механизме возникновения неустойчивости в прямолинейном потоке можно получить с помощью схемы движения поверхности раздела двух слоев идеальной жидкости.  [c.360]

Приведенная схема движения качественно воспроизводит структуру течения плоской струи, вытекающей из широкого щелевого отверстия, или течения в меридиональной плоскости круглой струи.  [c.379]

Рис. 2.4. Схема движения газа за цилиндрической ударной волной Рис. 2.4. <a href="/info/432232">Схема движения газа</a> за цилиндрической ударной волной
Рис. 87, Схема движения луча по детали при работающе системе паведения луча ца стык (а) II график тока вторичных электронов /3 при пересечении стыка лучом (б). Показаны мгновенные положения луча II соответствующие им значения тока на графике Рис. 87, Схема движения луча по детали при работающе системе паведения луча ца стык (а) II график тока <a href="/info/135285">вторичных электронов</a> /3 при пересечении стыка лучом (б). Показаны мгновенные положения луча II соответствующие им значения тока на графике
На практике чаще используются про-тивоточные схемы движения, по кольку при одинаковых температурах входящих и выходящих теплоносителей S7 при противотоке всегда больше, чем при прямотоке. Согласно формуле (13.3) это означает, что для передачи одного и гого же теплового потока Q при против эточной схеме потребуется теплообменник меньшей площади. Еще одно преим щество противоточного теплообменника заключается в том, что холодный теплоноситель в нем можно нагреть до температуры более высокой, чем температ ра греющего теплоносителя на выход t"> t (см. рис. 13.6). В прямоточном теплообменнике этого сделать невозможно.  [c.107]

Одними из последних являются конструкции прямоточных котлов с принудительным — при помощи питательного насоса - движением воды, пароводяной смеси и перегретого пара. Для этих агрегатов необходимость в барабане отпадает, и он не устанавлинается. По прямоточной схеме работают также практически все водогрейные котлы, не имеющие ни испарительных, ни перегревающих поверхностей. Основные схемы движения потока вода — пароводяная смесь — пар в современных котельных агрегатах показаны на рис. 18.3.  [c.149]

Рис. 18.3. Схемы движения воды, иарона/кя-ной смеси и пара в котельном агрегате а - - естественная циркуляция 6 - многократно-принудительная циркуляция в - црямото игос движение / - подвод питательной йоды 2 барабан . 3 — необогреваемые опускные трубы 4 Рис. 18.3. Схемы движения воды, иарона/кя-ной смеси и пара в <a href="/info/94471">котельном агрегате</a> а - - <a href="/info/30041">естественная циркуляция</a> 6 - многократно-<a href="/info/30042">принудительная циркуляция</a> в - црямото игос движение / - подвод питательной йоды 2 барабан . 3 — необогреваемые опускные трубы 4

По-видимому, можно создать такую схему движения топлива в активной зоне, при которой выгружаемые из периферийной области недовыгоревшие твэлы после соответствующей проверки на целостность и герметичность направляются вторично в центральную зону. Подбором скоростей движения и размеров зон можно добиться и в этом случае минимальной радиальной неравномерности тепловыделения.  [c.23]

Можно представить себе следующую схему движения газа в какой-либо элементарной шаровой ячейке, т. е. в элементарном объеме, ограниченном сферическими поверхностями элементов. Максимальная скорость Vq жидкости в струйке возникает в наиболее узком сечении ячейки (просвете), относительная площадь минимального сечения обозначается п. Распространяясь в пространстве между щарами, струя расширяется, отрывается от сферических стенок и подмешивает к себе частицы относительно неподвижного газа, находящиеся в застойной зоне у поверхности шаров. Расширение основной струи происходит до встречи с последующим рядом шаров, отстоящим от предыдущего на величину высоты ячейки /г, после чего начинается сужение сечения и разгон струи. Присоединенные массы могут при этом частично отслаиваться от ядра струи и совершать возвратное движение к устью струи. Конечно, при своем движении через шаровые твэлы отдельные струи могут сливаться или, наоборот, дробиться на несколько отдельных струек, на можно себе всегда представить такую элементарную шаровую ячейку, где происходит именно такой процесс разгона и торможения элементарной струйки.  [c.40]

Рассмотренная схема движения зубьев позволяет понять, что волновая передача может обеспечить одновременное з(щепление большого числа зубьев. Теоретически дуга зацепления может распространяться от б до Л и от й до Л. Или число зубьев в одновременном зацен-ле1ши составляет 50% от г . Например, при ij g=100, z =200 или 100 зубьев в одновременном зацеплении вместо 1...2 в простых передачах. Это одно из основных преимуществ волновых зубчатых передач. Оно обеспечивает им высокую нагрузочную способность при малых габаритах.  [c.194]

Находим средний температурргый напор, приближенно принимая схему движений теплоносителей за противоточную  [c.231]

Напомним еще раз, что термин живое сечение для грунтового потока имеет условный характер. Под живым сечением здесь следует нонимать всю площадь поперечного сечения фильтра в соответствии с положенной выше в основу абстрактной схемы движения грунтовых вод как некоторой непрерывной среды.  [c.299]

Рис. XIII.14. Схема движения потока на повороте трубопровода Рис. XIII.14. Схема движения потока на повороте трубопровода

Смотреть страницы где упоминается термин Схемы движения : [c.381]    [c.364]    [c.486]    [c.123]    [c.226]    [c.234]    [c.88]    [c.459]    [c.461]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте