Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Валы Температура в подшипниках

Пример 4. Определить температуру вала, работающего в подшипнике с текстолитовым вкладышем, характеристика которого следующая d = 0,08 м, F,= = 3000 И, (0 = 21 рад/с. Подшипник смазывается индустриальным маслом 12.  [c.327]

Для сопряжений с большим гарантированным зазором при невысоких требованиях к точности для сопряжений, в которых возможны значительные перекосы в связи с неточностями сборки или при особых условиях работы для сборки деталей, закрепляемых с уплотнением стыка кольцевыми прокладками и т. п. трансмиссионные валы в подшипниках, холостые шкивы на валах, цапфы в подшипниках тракторных плугов, осевые буксы в подшипниках повозок, поршни в цилиндрах компрессоров и паровых машин клапанные коробки в корпусах компрессоров, для удобства разборки которых при образовании нагара и высокой температуре необходим значительный зазор  [c.105]


Примеры трансмиссионные валы в подшипниках, холостые шкивы на валах, цапфы в подшипниках тракторных плугов, осевые буксы в подшипниках повозок, поршни в цилиндрах компрессоров (см. рис. 67) клапанные коробки в корпусах компрессоров, для удобства разборки которых при образовании нагара и высокой температуре необходим значительный зазор (см. рис. 72 и 73) и др.  [c.214]

Стендовые испытания проводятся на экспериментальных стендах в условиях, имитирующих эксплуатационные (чаще всего на рабочих средах — имитаторах), с целью определения работоспособности материалов в реальной конструкции подшипникового узла. При стендовых испытаниях определяются изменения во времени геометрических размеров подшипника и вала, температуры в зоне трения, скорости изнашивания трущихся элементов. Полученные результаты позволяют произвести предварительный расчет срока службы подшипникового узла. 1ем-пература в зоне трения измеряется на расстоянии не более 2 мм от поверхности трения.  [c.18]

При отводе тепла из рабочей зоны подшипника через вал температура в рабочей зоне подшипника будет  [c.29]

Монтаж подшипников облегчается при использовании способа теплового воздействия. Если подшипник насаживается на вал с натягом, то его рекомендуется нагревать в масляной ванне до температуры 80—90° С. Нагрев облегчает сборку и предупреждает порчу поверхности шейки вала. Температура нагрева подшипника не должна превышать 100° С, в противном случае возможно ухудшение механических свойств металла колец и тел качения.  [c.466]

Посадки Н7/с8 и Н8/с9 характеризуются значительными гарантированными зазорами, используют для соединений с невысокими требованиями к точности центрирования. Наиболее часто эти посадки назначают для подшипников скольжения (с различными температурными коэффициентами линейного расширения вала и втулки), работающих при повышенных температурах (в паровых турбинах, двигателях, турбокомпрессорах, турбовозах и других машинах, в которых при работе зазоры значительно уменьшаются вследствие того, что вал нагревается и расширяется больше, чем вкладыш подшипника).  [c.219]

Жидкостные смазки (минеральные масла и др.) применяют для подшипников при окружных скоростях вала свыше 10 м/с. Жидкие смазки обладают значительно меньшим внутренним сопротивлением и потерями на трение, более стабильны и способны работать как при высоких, так и при низких температурах, позволяют применять циркуляционную систему подачи смазки, ее охлаждение, фильтрацию, способны проникать в узкие зазоры, обеспечивают хороший отвод теплоты и удаление продуктов износа, допускают смену смазки без разборки подшипниковых узлов. Однако жидкие смазки требуют более сложных уплотнений и регулярного наблюдения за подачей, менее экономичны. К зависимости от условий работы жидкую смазку можно подавать в подшипник различными способами с помощью масляной ванны в корпусе подшипника (уровень смазки в ванне не должен быть выше центра нижнего тела качения), разбрызгиванием из масляной ванны посредством одного из быстроходных колес или специальных крыльчаток.  [c.535]


Теплота, образуемая в подшипнике при вращении цапфы, отводится смазочным материалом через вал, корпус и передается окружающей среде. На установившемся режиме температура работы подшипника определяется равенством выделяющейся и отведенной теплоты. Эта температура не должна превышать значений, допускаемых для материала подшипника и сорта масла.  [c.439]

Жесткость. Рациональная жесткость достигается подбором таких размеров и материалов деталей и узлов, при которых деформации их ограничиваются пределами, обеспечивающими нормальные условия работы механизма. Деформации деталей механизмов возникают из-за действия сил, изменения температуры, наличия остаточных напряжений и приводят к изменению размеров и формы деталей, характера их сопряжения и существенно влияют на работоспособность механизма. Так, например, изгиб валов вызывает неравномерный износ, увеличение сил трения и даже заедание в подшипниках скольжения, ухудшает условия работы подшипников  [c.209]

Во время работы турбинной установки вахтенный механик держит под особым наблюдением следующие показатели частоту вращения валов, температуру и давление свежего пара, давление пара в камерах отборов и системе уплотнений, вакуум в конденсаторе, температуру и давление масла, температуру подшипников, осевое положение роторов и тепловое расширение корпусов турбин, температуру, уровень и соленость конденсата в конденсаторе.  [c.333]

Пример 10-1. От трения в подшипнике выделяется такое количество тепла, что на конце вала диаметром 60 мм установилась температура выше окружающего воздуха на 60 °С. Как распределяется температура вдоль вала и какое количество тепла при этом передается через вал, если ai = 6 Вт/м . С и 1 = =50 Вт/(м-°С) и если вал рассматривать как стержень бесконечной длины.  [c.284]

Плавающие элементы в сборочных единицах машин предусматриваются также для компенсации тепловых деформаций. Если подшипники закрепить жестко на валу и в корпусе, то удлинение вала при повышении температуры сборочной единицы в процессе его работы вызовет вначале уменьшение осевого перемещения в подшипниках, а затем приведет к защемлению тел качения между кольцами, что снизит долговечность подшипников. Этот недостаток устраняется применением плавающих опор, когда только один из подшипников жестко закрепляется на валу и в корпусе, фиксируя вал вдоль оси, другие же устанавливаются в корпус, расточенный по калибру так, что при жестком закреплении на валу подшипники могут свободно перемещаться в осевом направлении, осуществляя плавание . При двух опорах в качестве плавающей выбирают наименее нагруженную. В многоопорном валу жестко следует закреплять в корпусе наиболее нагруженную опору.  [c.184]

В дифференциальных подшипниках для устранения возможности заклинивания шипа в подшипнике при работе прибора в условиях высоких температур вкладыши из углеграфита (рис. 76, а) запрессовываются во втулки 2, изготовленные из материала (например, латуни), имеющего коэффициент расширения, значительно больший, чем коэффициент расширения шипа (вала). Во втулках 2 имеются специальные пояски, благодаря которым подшипник может свободно расширяться при нагреве.  [c.145]

В период пуска машины и особенно в период приработки неметаллические подшипники необходимо тщательно осматривать. Учитывая малую теплопроводность материалов, во время приработки вкладыши нужно обильно охлаждать смазкой, не допуская чтобы температура вкладыша превышала температуру окружающей среды более чем на 40 Зазоры в неметаллических подшипниках должны быть больше, чем это принято в узлах с бронзовыми или стальными вкладышами. Малый зазор при разбухании подшипниковых материалов может привести к защемлению вала. Зазоры в неметаллических подшипниках должны быть в пределах  [c.374]

Для сопряжений, работающих при высоких температурах, когда рабочий зазор может значительно уменьшиться за счет непропорционально большого расширения охватываемой детали поршни в цилиндрах, валы в подшипниках и аналогичные сопряжения двигателей внутреннего сгорания и других сильно разогревающихся машин  [c.103]


Другими словами, должно наступить равновесие температуры, т. е. тепло, образующееся в результате трения, должно отводиться. При небольших нагрузках достаточен отвод тепла валом и корпусом подшипника, а при большой нагрузке необходимо охлаждать подшипник.  [c.232]

Радиальные зазоры подшипника в зависимости от условий монтажа и нагружения подразделяются следующим образом а) чертёжный — вычисляемый по размерам желобов (или роликовых дорожек) б) контрольный — измеряемый в собранном подшипнике под условной нагрузкой в) монтажный—измеряемый в монтированном на валу и в корпусе подшипнике г) рабочий — существующий в работающем подшипнике при заданной температуре и нагрузке.  [c.584]

Расчёт подшипников скольжения производится исходя из условия, чтобы толщина масляного слоя в подшипнике была больше суммы неровностей обработки вала и вкладыша и чтобы температура подшипника была меньше величины, превышение которой существенно снижает защитную способность масла.  [c.196]

На рис. 27 изображена схема узла, в котором вал вращается в неподвижном подшипнике. При расчете принимается следующая схема тепловых потоков. Тепло образуется на опорной площадке подшипника, ограниченной углом контакта 2ф, в процессе фрикционного взаимодействия рабочих поверхностей подшипника и вала. Избыточная температура вала под подшипником постоянна в радиальном и осевом направлении. Максимальная температура на рабочей поверхности обычно определяется как сумма средней температуры поверхности трения и температурной вспышки на пятне контакта [55, 57]. Формулы для расчета температуры вспышки даны во второй части и в приложении. Однако при скоростях скольжения, имеющих место при эксплуатации рассматриваемых подшипниковых узлов (менее 2,5 м/с—см. гл. 4), роль температурных вспышек на пятнах контакта незначительна, и ими можно пренебречь. Избыточная температура опорной площадки подшипника (на угле контакта 2(р) постоянна и равна Од, а за пределами опорной площадки температура рабочей поверхности подшипника снижается по экспоненциальному закону, достигая минимального значения в точке с рабочей поверхности, наиболее удаленной от опорной площадки (рис. 27).  [c.51]

Рабочий узел машины (рис. 15) смонтирован на станине 2 и состоит из двух валов, один из которых приводится во вращение электродвигателем 1 постоянного тока с регулируемой частотой вращения, а второй расположен в подвижной бабке 4 и может перемещаться в направлении своей оси. Вращающийся вал расположен в подшипниках качения в неподвижной бабке 9. На концах валов имеются образцедержатели с гнездами для установки испытуемых образцов 7 и 5. В гнезде вращающегося вала имеется шаровая опора, что позволяет ускорить процесс приработки и улучшает прилегание поверхностей трения образцов. Осевая нагрузка на образцы создается рычагом 3 с грузом, устанавливаемым на рычажной линейке в определенном положении для данного давления. Силу трения измеряют по углу отклонения маятника 12, жестко связанного с образцедержа-телем неподвижной бабки и осветителем 5, который направляет луч света на градуированную шкалу 6. Машина снабжена приборами для измерения частоты вращения вала 11 и температуры в зоне трения 10.  [c.142]

На основанки работ [42, ПЗ] при определении напряженного состояния в подшипнике с полимерным вкладышем будем считать, что 1) подшипник имеет достаточно большую длину /= (0,4- 1,5)0 (см. рис, 1) 2) втулка заключена в жесткий корпус и исключено ее проскальзывание относительно него 3) толщина втулки намного меньше —Г <С/ (рис. 2) 4) перекосами вала вс втулке можно пренебречь и считать нагрузку равномерно распределенной по длине подшипника 5) материал втулки однородный и изотропный его поведение описывается линейной теорией упругости 6) вследствие значительного различия в механнче-ски.х свойствах взаимодействующих деталей вал и корпус подшипника абсолютно жесткие 7) скорости скольжения вала и приложстные к нему внешние нагрузки таковы, что температура в подшипнике изменяется незначительно 8) нагрузка приложена к осп вала.  [c.150]

Пример I. Определить максимально допустимый днаметральнь7й зазор, обеспечивающий жидкостное трение в подшипнике вала прокатного реверснви010 электродвигателя мощностью 515 кВт при 5,25 рад/с (и = 1,8 м/с), и подобрать для него посадку, если известно, что нагрузка на цапфу вала 350 кН и диаметр ее должен быть не менее 0,7 м, подшипник смазывается маслом (индустриальное 30 ГОСТ 1707—51), рабочая температура которого не превышает 343,15 К, цапфа шлифованная, а для поверхности вкладыша применяется шабрение.  [c.323]

Составной частью расчета при жидкостной смазке является тепловой расчет, так как недопустимое повыпк -ние температуры может принесгп к недопустимому изменению свойств или кипению смазочного материала, к выплавлению заливки вкладыша, а также к недопустимым темпера1урным деформациям и захватыванию вала в подшипнике.  [c.383]

Пластичные смазки (солидолы, смазка 1-13 и др.) применяют при / -с/дСЮО или при трудном доступе масляных брызг к подшипникам, например в подшипниках вала шестерни конического редуктора. Они лучше жидких масел защищают подшипники от коррозии, не требуют сложных уплотнении, проще в эксплуатации. Однако пластичные смазки чувствительны к изменению температуры и наличию влаги в окружающей среде. Смазкой заполняют свободное пространство корпуса подшип-киковой опоры, а подшипники закрывают с внутренней стороны защитными или маслосбрасывающими кольцами 2 (см. рис. 3.169).  [c.431]

Баббиты - это мягкие антифрикционные сплавы на оловянной, свинцовой, алюминиевой и цинковой основах, в которых равномерно распределены твердые кристаллы (кристаллы - фазы SnSb или кристаллы сурьмы, иглы меди). Баббиты отличаются низкой твердостью (13-23 НВ), невысокой температурой плавления (340-500°С, алюминиевые бронзы - 630-750°С), отлично прирабатываются и имеют низкий коэффициент трения со сталью, хорошо удерживают фаничную масляную пленку. Мягкая и пластичная основа баббита при трении в подшипнике изнашивается бь[стрее, чем вкрапленные в нее твердые кристаллы других фаз, в результате шейка вала при вращении скользит по этим твердым кристаллам. При этом уменьшается площадь фактического касания трущихся поверхностей, что, в свою очередь, снижает коэффициент трения и облегчает поступление смазки в зону трения. Благодаря хорошей прирабатываемости баббитов все неточности поверхностей трения вследствие механической обработки или установки деталей при сборке в процессе обкатки подшипников быстро устраняются. В табл. 1.6 приведены основные свойства и структура баббитов.  [c.22]


Пластичные смазочные материалы (солидол, кон-сталин и др.) изготовляют загущением жидких минеральных масел специальными загус1ителями. Применяют в подшипниках с небольшим тепловыделением и при отсутствии необходимости отвода теплоты с помощью масла. Они хорошо заполняют зазоры, герметизируя узел трения. Применяются в широком диапазоне температур и режимов эксплуатации. Особенность этих смазочных материалов — удерживаться па вертикальной плоскости, что имеет важное значение для смазки подшипников вертикальных валов.  [c.306]

Молотковая мельница с аксиальным подводом воздуха (рис. 22-3). состоит из стального кожуха /, в котором вращается ротор с системой бил. Топливо, поступающее в мельницу, разбивается этими билами и одновременно подсушивается потоком горячего воздуха, который проходит в мельницу через рукава 5 и выносит размолотое топливо в размещенный над ней сепаратор (на рисунке не показан). Готовая, достаточно тонко размолотая пыль из сепаратора поступает в топку, а более крупные частицы пыли возвращаются в мельницу. На фронтальной стене кожуха имеются створчатые двери 7, через которые можно заменять изношенные била и билодержатели, не разбирая мельницы. Ротор мельницы состоит из стального вала 2, на который посажен ряд дисков к этим дискам особыми пальцами шарнирно крепятся билодержатели 4, на концах которых закреплены стальные или чугунные била 3. Вал ротора опирается на два роликовых или шариковых подшипника 6 с водяным охлаждением. У крупных мельниц, кроме того, предусматривается водяное охлаждение вала. Вал мельницы непосредственно соединен с валом электродвигателя, установленного на общей с мельницей стальной раме. По условиям охлаждения вала и работы подшипников температура воздуха, поступающего в мельницу, не должна превышать 350—400° С.  [c.267]

Принятые величины. Диаметр шейки вала d = 0,14 м отношение dlL = 1,5 относительный зазор г ) — 0,002 критическая толш,ина масляной пленки /г = 0,015 мм средняя температура масла в подшипнике ср = 50 °С масло — турбинное Тп-22. Параметры масла плотность р = = 875,4 кг/м коэффициенты вязкости кинематической v — 0,214-10 м /с, динамической ц = 0,018 74 Н-с/м- теплоемкость с= 1950 Дж/(кг-К).  [c.309]

Неисправности в работе подшипников. Выражаются прежде всего повышенным нагревом подшипников, выбиванием из них масла, увеличением осевого давления. Наиболее вероятные причины недоброкачественное масло, недостаточное его поступление или высокая температура, дефекты в подшипниках, нарушение центровки валов, переполнение корпуса подшипника маслом, чрезмерный зазор в уплотнениях, повышенное осевое усилие. Последнее обстоятельство, в свою очередь, вызывается увеличенными зазорами в уплотнениях -диафрагм и думмиса, заносом проточной части солями, сминанием кромок лопаток (например, вылетевшей лопаткой).  [c.336]

Вращешю цапфы в подшипнике противодействует момент сил трения. Работа трения нагревает подшипник и цапфу. От поверхности трения тепло отводится через корпус и вал, а также уносится смазывающей жидкостью. При установившемся режиме работы температура подшипника не должна превышать некоторой предельной величины, допускаемой для данного материала подшипника и сорта смазки. В противном случае понижается вязкость масла и увеличивается вероятность заедания цапфы в подшипнике, что в конечном результате приводит к выплавлению вкладыша. Перегрев подшипника является основной причиной его разрушения. С величиной работы трения связан также износ вкладыша и цапфы, нарушающий правильность работы механизма.  [c.320]

Смазка подшипников качения является необходимым условием правильной и надежной работы опор осей и валов. Основное назначение смазки предохранение подшипников от коррозии, уменьшение трения в подшипниках, отвод теплоты, выделяющейся вследствие работы трения и уменьшени-г шума при работе подшипников. Важнейшими параметрами, определяющими выбор сорта смазки, являются удельная нагрузка, воспринимаемая опорой, частота вращения вала в подшипнике и рабочая температура. Чем выше удельная нагрузка, частота вращения и температура, тем больше должна быть вязкость масла. Смазка подшипников в редукторах общего назначения обычно осуществляется жидким маслом (например, машинным, автолом и др.) с помощью общей масляной ванны, разбрызгиванием его зубчатыми колесами или применением маслособирательных желобов, располагаемых на стенках редуктора. Применяют также консистентные смазки, например солидол, консталин и др., периодически закладываемые в корпус подшипникового узла. Последний защищают от масла редуктора и внешней среды уплотнительными устройствами.  [c.428]

Посадки типа H/d дают легкоподвижные соединения общего применения, которые допускают радиальное перемещение и компенсируют погрешности взаимного р положения трущихся поверхностей вследствие перекоса и прогиба вала, погрешности формы в осевом и радиальном сечениях, эксцентриситетов опор и шеен вала в многоопорных конструкциях. Они используются в тех случаях, когда необходимо компенсировать погрешности сборки или температурные де<1юрмации. Точные посадки H7/de, H8/d8 имеют ограниченное использование. Они применяются щ№я точных соединений, работавощих при значительном перепаде температур и тяжелых режимах работы, например в подшипниках турбин, валков прокатных станов и т. д.  [c.74]

Гидродинамические радиальные подшипники выполняются втулочными или сегментными. Для герметичных ГЦН преимущественно используются более простые гидродинамические подшипники втулочного типа, которые могут применяться как для вертикального, так и для горизонтального вала. На рис. 3.4 показана конструкция одного из таких подшипников. Он состоит из корпуса 1, в котором крепится гильза 2 из стали 1Х17Н2. В гильзу встраивается составная графитовая втулка 4 из фторопластоугле-графитового материала 2П-1000-ЗП по легкопрессовой посадке или с минимальным зазором, и стопорится штифтом 3. Втулка 4 имеет восемь продольных каналов 6 с радиусом 4 мм, необходимых для интенсивного отвода тепла от рабочей поверхности. Работает она в паре с втулкой вала, выполненной из хромоникелевого сплава ВЖЛ-2. Эта пара дает хорошие результаты при окружных скоростях до 32 м/с, удельных нагрузках до 0,4 МПа и температуре до 160 °С. Диаметральный зазор в подшипнике принят равным 0,2 мм при размере втулки вала 100 мм.  [c.47]

Схема насоса с опорами вала, работающими на перекачиваемом теплоносителе, и механическим уплотнением вала с чистой запирающей водой представлена на рис. 8.11. Вертикальный вал направляется двумя радиальными дроссельными гидростатическими подшипниками 2 и 8. Нижний подшипник питается горячей водой с напора осевого рабочего колеса 1 при помощи винтового насоса 3 с многозаходными резьбовыми втулками, а слив из подшипника организован на всасывание рабочего колеса по каналам, выполненным в его ступице. Верхний радиальный ГСП питается охлажденной контурной водой от импеллера, выполненного заодно с пятой 7. В подшипниках применима пара трения сталь по стали. Осевая сила воспринимается двухсторонним гидростатическим осевым подшипником, работающим на охлажденном теплоносителе. Элементы, образующие пары трения, изготовлены из силицированного графита. Сегментные самоустанавли-вающиеся колодки снабжены ребрами качания и опираются на рессоры. Для снятия тепла, выделяющегося в осевом и верхнем радиальном ГСП, в корпусе насоса встроен трубчатый холодильник 6. Поток воды из пяты-импеллера сначала попадает на осевой подшипник, затем в верхний рад1 альный ГСП, после чего, проходя через трубчатый холодильник, охлаждается, поступает в зазор между валом и корпусом насоса, снимает тепло с вала и вновь попадает в пяту-импеллер. Такая система циркуляции позволяет поддерживать постоянной температуру (примерно 70°С) в полости пяты, предохраняя тем самым уплотнение вала от воздействия высокой температуры со стороны проточной части ГЦН. Между полостью пяты и проточной частью расположен тепловой барьер, представляющий собой каналы, засверленные в корпусе насоса. Через трубчатый холодильник 6 теплового барьера циркулирует вода промежуточного контура, имеющая на входе температуру примерно 45 °С. В верхней части ГЦН размещено уплотнение вала, представляющее собой блок из трех пар торцовых уплотнений, работающих на холодной запирающей воде. Первая ступень предотвращает протечки запирающей воды в контур с перепадом давления на нем около 2 МПа, вторая ступень предотвращает протечки в атмосферу и работает под полным давлением запирающей воды, а третья ступень является резервной и автоматически включается в работу в случае выхода из строя второй ступени уплотнения.  [c.280]


Обычно температура нагрева подшипников при сборке назначается в пределах 60—100° С. Подшипники целесообразно нагревать в электрованне с точным контролем температуры масла. Нагретый подшипник устанавливают на вал и доводят до места небольшим осевым усилием. При этом сторона подшипника, на которой нанесено заводское клеймо, должна быть снаружи.  [c.355]

Диаметральный зазор в подшипнике должен быть равен 0,002— 0,003 диаметра вала. Максимально допустимая температура 50° С. Допустимая нагрузка подшипника зависит от скорости скольжения и степени чистоты поверхностей скольжения. Для тонкошлифованного вала подшипника с высотой микронеровностей, не превы-шаюш,ей 0,2-10" мм при твердости поверхности вала НВ 250, допустимые нагрузки видны из рис. 134.  [c.259]


Смотреть страницы где упоминается термин Валы Температура в подшипниках : [c.383]    [c.243]    [c.152]    [c.296]    [c.466]    [c.119]    [c.329]    [c.305]    [c.230]    [c.321]    [c.59]    [c.256]    [c.229]   
Проектирование деталей из пластмасс (1969) -- [ c.164 ]



ПОИСК



Подшипники качения игольчатые — Монтаж при разности температур вала и корпуса

Подшипники, температура



© 2025 Mash-xxl.info Реклама на сайте