Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Узлы трения

Решающее значение имеет правильная смазка узлов трения. Везде, 1де это возможно, следует обеспечивать жидкостное трение и устранять полужидкостное и полусухое. Следует избегать открытых механизмов, смазываемых периодически набивкой. Нецелесообразно применение открытых зубчатых и цепных передач. Все трущиеся части должны быть заключены в закрытые корпуса и надежно защищены от пыли, грязи и атмосферной влаги.  [c.31]

Чем меньше влияние температуры на вязкость масла, тем в более широком диапазоне температур оно может работать и тем более постоянный режим работы имеет место в узлах трения. С ростом температуры (особенно выше 100°С) вязкости различных масел существенно сближаются.  [c.143]


Свойство материала оказывать сопротивление изнашиванию в определенных условиях трения, оцениваемое величиной, обратной скорости или интенсивности изнашивания, называют износостойкостью. На износостойкость влияют твердость материалов, их упругие свойства, режим работы (нагрузка, скорость, температура), внешние условия (смазка, окружающая среда), конструктивные особенности узла трения.  [c.246]

В последнее время большое внимание уделяют материалам деталей машин, механизмов и приборов, предназначенных для работы в узлах трения без специальной смазочной среды материалы на основе полимеров (подшипники, зубчатые колеса, кулачки и др.), углеграфитные материалы (уплотнительные элементы, вкла-  [c.246]

Для этих смазок характерна хорошая влагостойкость, т. е. сохранение свойств в контакте с водой и нагревостойкость. Консистентные смазки обладают следующими достоинствами могут применяться в тяжело нагруженных узлах трения, работающих при высоких температурах, в узлах трения, подверженных динамическим нагрузкам они герметизируют зазоры, предохраняя трущиеся поверхности от попадания загрязнений.  [c.168]

Повышение износостойкости деталей достигается применением специальных износостойких материалов, уменьшением давления между трущимися поверхностями, улучщением условий смазки, снижением температуры узлов трения, термической или химикотермической обработкой деталей.  [c.170]

Третья стадия изнашивания характеризуется резким увеличением энергетических характеристик трения, что вызывает переход от нормального режима изнашивания к режиму катастрофического изнашивания. В реальных узлах трения этот переход может быть вызван следующими причинами  [c.75]

Для смазки узлов трения различных механизмов  [c.744]

Однако надо заметить, что узлы трения первого рода более износостойкие, так как детали соприкасаются поверхностями, по  [c.98]

Цветные сплавы. Из цветных металлов наибольшее применение в деталях судовых машин находит медь, но не в чистом виде, а в виде цветных сплавов. Цветные сплавы — латунь, бронза, баббит— дорогостоящие, поэтому надо стараться, где это возможно, заменять их сталью, чугуном и заменителями цветных металлов. В судовой практике эти сплавы находят применение в деталях тонкостенного литья, в деталях, которые должны хорошо сопротивляться окисляющему действию воды и пара, а также в узлах трения, где детали подвергаются сильному износу.  [c.323]

Детали, работающие в узлах трения.  [c.326]

Износостойкость - в узлах трения, каления или скольжения с твердым, жидким смазочным материалом или без него. К таким отливкам относятся литые детали, работающие на износ распределительные валы, коромысла клапана, седла клапана и т. д. двигателей внутреннего сгорания.  [c.131]


Комбинированные материалы используют в узлах трения, работающих без смазочного материала.  [c.125]

Решение задачи надежности и долговечности современных машин и механизмов возможно при наличии высококвалифицированных кадров инженеров-конструкторов и технологов, в совершенстве владеющих современными достижениями науки в области трибологии, эффективными методами и технологиями модифицирования и приповерхностного упрочнения деталей и узлов трения машин и обрабатывающих инструментов. В нашей стране при подготовке инженеров в течение длительного периода недооценивалось значение трибологических факторов в обеспечении работоспособности машин, приборов и технологического оборудования. Это привело к тому, что многие изделия отечественного машиностроения до сих пор уступают лучшим мировым образцам по основным техническим и экономическим характеристикам.  [c.3]

При решении прикладных задач трибологии - по созданию деталей и узлов трения для современных машин - не обойтись без материаловедения и технологии обработки материалов. При этом необходимо обеспечить максимальные износостойкость и срок службы деталей узлов трения и добиться высокой производительности процесса обработки конструкционного материала при максимальной стойкости (или износостойкости) металлообрабатывающего инструмента. В связи с многообразием условий эксплуатации различных трибосистем и условий резания сталей и сплавов (контактное давление, скорость скольжения, температура, окружающая среда, свойства конструкционных материалов) для решения вышеназванных задач разрабатывают различные методы модификации конструкционных и инструментальных материалов.  [c.5]

Абсолютное большинство современных технических систем, включая приборы, машины, технологическое оборудование, имеют в своем составе подвижные сопряжения деталей, образующие узлы трения различного типа. Контактное взаимодействие деталей при их относительном движении при работе машин сопровождается развитием сложных физико-химических процессов, приводящих к изменению структуры и свойств материалов деталей узла трения. Современная наука о внешнем трении - пограничная область знаний, имеющих фундаментальное и прикладное значение. Ее содержание является синтезом соответствующих разделов физики, химии, механики. В 80-х годах утвердилось новое название науки о трении, изнашивании и смазки машин - трибология.  [c.7]

Надежность и долговечность в значительной степени зависят от свойств материалов и правильности их выбора для заданных условий работы узла трения. При выборе материалов для трибосистемы необходимо учитывать способность их к совместимости. Под совместимостью материалов трибосистем (деталей узлов трения) понимают способность обеспечить оптимальное состояние в заданном диапазоне условий работы по выбранным критериям (9, 10]. Такими критериями могут быть критическая температура, температура перехода в смешанный режим трения, предельная нагрузка переходного режима, предельная нагрузка образования задира, коэффициент нагруженности и т.п. [10]. При хорошей совместимости обеспечиваются невысокие уровни трения, износа и длительная работа трибосистемы без повреждения трущихся поверхностей.  [c.10]

Материалы деталей узлов трения должны обладать необходимыми теплофизическими свойствами хорошей тепло- и температуропроводностью, достаточно высокой теплоемкостью и стабильными коэффициентами линейного и объемного температурного расширения. Теплофизические свойства обеспечивают отвод и рассеивание тепла, генерируемого в зоне трения, предохраняя детали узлов трения от чрезмерного нагрева, способного вызвать ухудшение механических и триботехнических свойств материалов.  [c.14]

Износостойкость сталей и чугунов зависит от их структуры. Каждая из структурных составляющих обладает различными свойствами, которые следует учитывать при выборе технологии обработки стали или чугуна, предназначенных для различных узлов трения (табл. 1.2)  [c.14]

Рассмотрим основные типы сталей, наиболее широко применяемые в узлах трения.  [c.15]

В табл. 1.3 приведены данные о режимах термообработки и свойствах некоторых цементуемых конструкционных легированных сталей, применяемых в узлах трения различного назначения[11].  [c.16]


Перлитный высокопрочный чугун АЧВ-1 предназначается для работы в узлах трения с повышени ,1ми ок )ужными скоростями в паре с закаленным пли нормализованным валом.  [c.150]

Вследствие высоких антифрикционных свойств и достаточной прочности (сГд = 250Н-400 МПа) при 120 С эти сплавы могут заменять бронзы для узлов трения, температура которых не превышает 100 °С. При более высоких температурах сплавы размягчаются и налипают на вал.  [c.359]

В резьбовых соединениях обычной точности не обеспечивается строгая перпендикулярность торца нарезной детали относительно среднего диаметра резьбы, поэтому недопустимо, например, пспользовать торец гайки в качестве опорной поверхности, воспринимающей осевые силы/в узлах трения (к). В этом случае неизбежен перекос торца гайки относительно оси вала, вызывающий одностороннее приложение силы и повышенньш износ, поверхностей трения.  [c.507]

Бронзы по основному, кроме меди, компоненту разделяют на оловянные, свинцовые, алюминиевые, бериллиевые, крем-нист1з1е и др. Бронзы, как правило, обладают высокими антифрикционными свойствами, хорошим сопротивлением коррозии, универсальными технологическими свойствами (имеются литейные бронзы и бронзы, обрабатьжаемые давлением,- алюминиевые, часть оловянных, бериллиевые, кремнистые). Все бронзы хорошо обрабатываются резанием. Указанные свойства бронзы позволяют широко применять их I) в узлах трения — подшипниках скольжения, направляющих, червячных и винтовых колесах, гайках ходовых и грузовых винтов 2) в водяной, паровой и масляной арматуре.  [c.34]

Исследование температурных полей и деформаций. Исследования температурных полей нужны для оценки работоспособности узлов трения, теплостойкости и точности машии. Температура сказывается на работе узлов трении в связи с температурными изменениями зазоров, резким изменением вязкости масла, изменением свойсги поверхностных слоев материалов, особенно коэффициентов сухого трения. При высоких температурах понижаются механические свойства материалов, происходит тепловое охрупчивание и ползучесть. Температурные деформации существенно влияют на точность измерительных маптин, прецизионных станков и других машин.  [c.481]

Износ деталей влияет на надежность и долговечность механизмов, так как уменьшает прочность деталей, увеличивает зазоры в кинематических парах, уменьшает точность механизмов н увеличивает вибрации и динамические нагрузки. Мероприятия для уменьшения износа сводятся к подбору материалов трущихся пар, соответствующей их технологической обработке и применению смазок. К конструктивным мероприятиям, уменьщающим износ, относятся обеспечение равномерного распределения давления по поверхности трения в сопряжениях деталей, отвод теплоты из зоны трения, защита узла трения от попадания абразивных частиц.  [c.131]

УЗЛЫ ТРЕНИЯ. Пары трения при эксплуатации проходят три стадии изнашивания приработку, установившееся состояние и стадию катастр0фичес. 0Г0 изнашивания. В результате приработки происходит сглаживание неровностей, причем всегда при сухом и граничном трении формируется новая шероховатость, которая является оптимальной для данных условий трения и обеспечивает при этих условиях минимум износа. При приработке происходит также изменение структуры, текстуриро-вание в направлении скольжениями трибологическая система переходит в такое равновесное состояние, при котором устанавливается минимальная диссипация энергии.  [c.75]

Металлургическая № ЗГ ГОСТ 9974-62 90 200—260 - Для смазки узлов трения металлургическою оборудования В автотракторостроенин  [c.741]

Затраты на ремонт и недополучение выпускаемой продукции, В1,1з-ванное простоем оборудования, приводят к значительным экономическим потерям, а отказы узлов трения транспортных машин - к аварийным ситуациям. Избежать или свести к минимуму вероятность отказа узлов трения машин и элементов технологических систем возможно на основе применения и развития методов модификации структуры и свойств конструкционных и инструментальных материалов при грамотном использовании основных положений трибофизики и рациональном использовании различных методов (технологий) поверхностного модифицирования материалов трибосистем, рассмотрение которых является содержанием настоящего учебного пособия.  [c.6]

Тр ибо технология - эго направление в трибологии, предметом исследования и разработки которой являются технологические методы управления трибологическими характеристиками (трение, износостойкость) трибосопряжений. Триботехнология охватывает две крупные области приложения трибологии I) изучение процессов формообразования деталей узлов трения, обработки материалов разру-п1аюп ими и деформирую1цими методами во взаимосвязи с триботехническими характеристиками трибосопряжений и 2) разработка технологических методов получения требуемых триботехнических характеристик поверхностей трения.  [c.9]

Переход трибосистемы из неравновесного термодинамически нелинейного состояния в стационарное равновесное связан с образованием диссипативной поверхностной структуры, происходящим в результате самоорганизации. Для реализации процесса самоорганизации необходимы соответствующие условия. Задача создания таких условий должна решаться при выборе и разработке материалов трибосистем для конкретных условий трения, выборе смазочных материалов, конструкции деталей узлов трения. Так, при разработке полимерных композиционных материалов для металлополимерных трибосистем предложен комплекс требований к составу, структуре и свойствам (табл. 1.1), обеспечивающий минимизацию накопления энтропии в трибосисте-ме [6].  [c.12]

Многообразие конструкций узов трения (трибосистем) и условий их работы в мап)инах и приборах не позволяет рекомендовать какой-то универсальный материал, обеспечивающий высокую надежность различных технических устройств. Основными факторами, которые должны учитываться в первую очередь при выборе материалов, являются нафузочные характеристики (контактное давление, скорость скольжения), заданный технический ресурс (общая продолжительность работы узла трения в часах), температурные условия эксплуатации, условия смазки (наличие и вид смазочного материала), характер окружаюЕцей среды (атмосферный воздух или инертный газ и их влажность, вакуум), требования к моменту (коэффициенту) трения.  [c.12]


Догюлнительно могут учитываться технические и экономические возможности использования материала, ограничения по массе узла трения, радиационная стойкость материала, особые требования и ограничения по условиям применения трибосистемы, например ограничения по испаряемости материала в вакууме, которая может приводить к загрязнению находяищхся рядом оптических или других систем.  [c.12]

Для каждого класса характерны определенные виды контактного взаимодействия поверхностей трения для классов 0-VI - упругое взаимодействие (упругое и упруго-пластическое) для классов VII, VIII -пластическое для класса IX - микрорезание. Отсюда следует, что при проектировании узла трения и выборе материала необходимо стремиться к обеспечению упругого взаимодействия поверхностей трения, при котором интенсивность изнашивания значительно меньше, чем при пластическом.  [c.13]

Следуюп(им важным требованием к материалам деталей узлов трения являются высокие характеристики механических свойств предела прочности (о ), предела упругости (а ), предела текучести (а,.), относительного удлинения и сужения (е, Предел прочности определяет несущую способность узла, а предел упругости и предел текучести характеризуют предельное значение контактных напряжений для упругих деформаций при фрикционном взаимодействии. Относительное удлинение и относительное сужение - это, как известно, показатели пластичности, играюпдие большую роль в механизме фрикционного взаимодействия.  [c.13]

Черные металлы и сплавы. Металлы до (юследнего времени были основным материалом, используемым для деталей узлов трения. Это объясняется тем, что они, как правило, больше других материалов удовлетворяют разнообразным условиям эксплуатации узлов трения и техническим требованиям к свойствам материалов. Металлы обладают такими качествами, как прочность и пластичность, высокая твердость и теплопроводность, способность образовывать различные виды соединений с одним или несколькими элементами, приобретая новые важные свойства. В зависимости от химической природы элементов и условий, в которых находится система, металлы могут образовывать между собой, а также с неметаллами твердые растворы, эвтектические смеси и хи мические соединения.  [c.14]


Смотреть страницы где упоминается термин Узлы трения : [c.182]    [c.150]    [c.69]    [c.247]    [c.743]    [c.98]    [c.330]    [c.178]    [c.6]    [c.13]    [c.491]    [c.93]    [c.132]   
Промышленные полимерные композиционные материалы (1980) -- [ c.385 ]

Основы метрологии, точность и надёжность в приборостроении (1991) -- [ c.279 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте