Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защитная способность

Заедание зубьев (рис. 10.10, в) заключается в местном молекулярном сцеплении контактирующих поверхностей в условиях разрушения смазочной пленки. В заедании зубьев превалирующую роль может играть выдавливание или изнашивание масляной пленки вследствие высоких давлений или понижение вязкости и защитной способности масла от нагрева, связанного с большими скоростями скольжения.  [c.159]


Червячные передачи работают с большим тепловыделением. Между тем нагрев масла до температуры, превышающей предельную [ мтах] 95 °С, приводит к потере им защитной способности и к опасности заедания в передаче. Расчет при установившемся тепловом состоянии производят на основе теплового баланса, т. е. приравнивая тепловыделение теплоотдаче.  [c.242]

Схватывание обычно происходит вследствие местной потери масляной пленкой своей защитной способности из-за повышенных общих и особенно местных  [c.383]

РЕЗУЛЬТАТЫ ИСПЫТАНИЙ. Испытания, проведенные в Шеффилде (Англия), указывают на плохую защитную способность в промышленной атмосфере ЛКП, нанесенных на поверхность стали, предварительно выдержанную на воздухе — см. табл. 15.Г. Относительно большой срок службы, обнаруженный для ЛКП на неповрежденной прокатной окалине, по-видимому, не реализуется в практических условиях. Например, трудно было бы предотвратить растрескивание больших участков прокатной окалины различного состава, которое может происходить до и после покраски. Разрыв прокатной окалины приводит к отслаиванию ЛКП, особенно после того, как началось электрохимическое взаимодействие между металлом и окалиной в результате проникновения водного раствора к поверхности металла.  [c.254]

Теплостойкость — способность конструкции сохранять работоспособность в пределах заданных температур. Чрезмерный нагрев уменьшает прочность и жесткость деталей снижает защитную способность масляного слоя, что повышает износ деталей или вызывает их заедание изменяет зазоры в сопряженных деталях, что приводит к заклиниванию и поломке. Для установления температурного состояния изделия при работе производят тепловые расчеты и при необходимости применяют водяное охлаждение, циркуляционную смазку или вносят другие конструктивные изменения.  [c.263]

Значения некоторых показателей адсорбционной и защитной способности соединений представлены в табл. 26.  [c.268]

Защитную способность композиций, вводимых в реагент для повышения нефтеотдачи пластов РВ-ЗП-1, изучали методом  [c.280]

Защитная способность ингибиторов и композиций в реагенте РВ-ЗП-1 при концентрации 100 мг/л  [c.281]

Наиболее плотные пленки с высокой защитной способностью дает форма Zn(0H)-(l,6 - 1,4) С0з(0,2 -0,3) Н О, кристаллизующаяся в слой неупорядоченной структуры.  [c.53]

Эффективность защитной способности покрытий в наводорожи-вающих средах, несомненно, зависит от их полярности и пористости.  [c.70]

Высокие защитные свойства хромового покрытия при толщине слоя 40-45 мкм достигаются за счет низкой водопроницаемости карбидного слоя, а также малой чувствительности к водородному охрупчиванию обезуглероженного слоя, образующегося под карбидной зоной. Цинковые покрытия обладают, также высокой защитной способностью. Важную роль в повышении защитного зффекта цинковых покрытий играет химический состав цинкового слоя, зависящий от состава исходного сырья.  [c.89]


Была исследована защитная способность борированной стали в  [c.89]

ПОВЫШЕНИЕ ЗАЩИТНОЙ СПОСОБНОСТИ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ  [c.90]

Способами повышения защитной способности металлических покрытий является хроматная и хроматно-фосфатная пассивация. Пассивацию используют для повышения защитной способности практически всех металлов и покрытий (Zn, d, Al, Ni, Fe).  [c.97]

Повышение защитной способности покрытий при пассивации связано прежде всего со снижением эффективности анодного процесса биметаллической системы. Так, пассивация в бихромате натрия d-Ti-покрытия позволила в 2-2,5 раза увеличить поляризуемость анода в сероводородсодержащей среде и повысить его коррозионную стойкость (см. табл. 26).  [c.97]

Это подтверждает диффузионный механизм сцепления и говорит об участии материала подложки в различных химических реакциях в зоне пробоя. Наиболее высокой защитной способностью в коррозионных средах обладают пленки, сформированные на основе пигментов с размером частиц 10-15 мкм и имеющие относительно невысокую (не более 2273 К) температуру плавления, что обеспечивает получение защитных слоев с малой пористостью.  [c.126]

Повышение адгезионной связи покрытия с основой является более эффективным методом улучшения защитной способности неметаллических покрытий. Высокая прочность сцепления покрытия с металлом обеспечивается за счет хемосорбционной связи при взаимодействии активных функциональных групп как самих пленкообразующих, так и отверди-телей, вулканизаторов, модифицирующих добавок с активными центрами поверхности металла. ПАВ могут служить также применяемые органические растворители толуол, гептан и др.  [c.129]

Данные по диффузионной, сорбционной и защитной способности поливинилхлоридных пленок в атмосферных условиях приведены ниже (г числителе при температуре 293 К, в знаменателе - при 333 К).  [c.139]

Защитную способность ингибитора ИКБ-4 для стали повышают легкие фракции прямой перегонки нефти. Хорошее диспергирование ингибитора и углеводорода благоприятствует защите, с чем связаны высокие ингибирующие свойства ИКБ-4 при интенсивном движении минерализованного водного раствора. Так, при скорости потока 1 -м/с скорость коррозии армко-железа снижается на 95,7 % при содержании ингибитора в среде 75 мг/л.  [c.171]

Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве едст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванические ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестяпщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51.  [c.234]

Применение метода группового учета аргументов (МГУА) показало, что индексами защитной способности (ИЗС) этих пяти соединений являются энергия ВЗМО, количество атомов и электронов в молекулах, дипольный момент молекул.  [c.267]


В табл. 29 приведены результаты исследования защитной способности разработанных ингибиторов в условиях коррозии стали 20 под напряжением в среде NA E, которые свидетельствуют о том, что эти реагенты в жестких условиях эксплуатации металлического оборудования эффективно препятствуют развитию сероводородного растрескивания (СР) и коррозионной усталости (КУ) металла.  [c.276]

ГОСТ 9.041 - 74. ЕСКЗС. Ингибиторы атмосферной коррозии. Методы испытаний защитной способности.  [c.143]

ГОСТ 9.054 - 75. ЕСКЗС. Консервационные масла, смазки н нефтяные ингибированные тонкопленочнне покрытия. Методы ускорения испытаний защитной способности.  [c.143]

Защитная способность углеводородов связывается как с их способностью образовьтать эмульсию вода в масле, так и со смачивающей способностью.  [c.31]

Ориентировка кристаллов и текстура осадка существенно влияют на защитную способность покрытий. Скорость растворения гексагонального плотно упакованного аСО в 1 н. H2SO4 для разных кристаллитов возрастает в последовательности (0,001) < (1011) < (1120) < (1010), ащтяцинка (0,001) < (1010).  [c.56]

Структура покрытий, переходных зон, окисных пленок, формирующихся в процессе нанесения, оказывает существенное влияние на их защитный эффект при наводороживании. Больщой интерес представляет изучение защитной способности покрытий, полученных диффузионным насыщением поверхности стали порощковыми материалами, нанесенны-  [c.63]

Малорастворимые продукты коррозии уменьшают размер пор, что снижает роль пористости покрытия в наводороживании металла основы. Окисные пленки, образующиеся на основном металле, также оказьшают влияние на стойкость покрытий в наводороживающих средах. Дополнительная обработка стали с покрытием в пассивирующих растворах повышает их защитную способность.  [c.72]

Специфика поведения алюминиевых покрытий в хлорсодержащих средах связана с наличием пассивной пленки, возможностью открытого контакта алюминия с железом в порах покрытия и разрушающим действием ионов хлора на оксидную пленку. По отношению к незащищенной стали независимо от способа нанесения алюминиевые покрытия служат анодом в среде 3 % Ного раствора Na l. Защитная способность алюминиевых покрытий в хлорсодержащих средах существенно зависит от способа их нанесения.  [c.80]

Анодная поляризация алюминиевых вакуумных покрытий в 3 %-ном Na l незначительна, что указывает на сравнительно легкий процесс анодного растворения в присутствии галогенов. Покрытия, полученные из порошковых материалов, имеют плотные и толстые окисные пленки, вызывающие более значительную анодную поляризацию. Анодная кривая обратного хода для всех исследуемых покрытий смещается в отрицательную сторону, причем для электрофоретического покрытия на 40-50 мВ, вакуумного и электростатического - на 60 - 70 мВ. Эти данные свидетельствуют о различной защитной способности окисных пленок, имеющихся на алюминиевых покрытиях.  [c.81]

Потенциал поверхности алюминиевого вакуумного покрытия через сутки испытаний близок к потенциалу стали. Характерная особенность поведения пористого вакуумного покрытия — локализация коррозионного процесса в порах с образованием труднорастворимых продуктов коррозии байерита и бемита, которые экранируют пору. Вследствие уменьшеыия pH раствора на дне поры создаются условия для анодного раст]ворения железа, и на поверхности алюминия появляются точки ржавчины. Для алюминиевьк беспористых покрытий защитная способность более значительна.  [c.82]

Легирование и обработка металлических покрытий. Защитная способность покрытий зависит от физических и электрохимических параметров. Один из методов повыщения защитной способности покрытий — их легирование различными элементами и обработка составами, способствующими улучшению их физичесю1х параметров и электрохимических характеристик. Результаты исследований показали перспективность использования металлических покрытий в агрессивных средах нефтегазовой промышленности, в том числе в сероводородсодержащих. В сероводородсодержащих средах цинковые покрытия независимо от способа получения как при наличии ионов хлора, так и без них являются анодными по отношению к стали. В последние годы появилось значительное количество публикаций, в которых рассматривается вопрос увеличения защитной способности цинковых покрытий легированием их металлами  [c.90]

Стационарный потенциал цинкового покрытия при легировании его титаном смещается в отрицательную область на 70—75 мВ, при этом цинковое покрытие продолжает оставаться анодом по отношению к стали. При введении титана в цинковое покрытие облегчается протекание катодного процесса, и катодная поляризуемость снижается почти в 3 раза анодное поведение Zn— d-покрытия практически не изменяется. Следовательно, легирование титаном кадмиевых покрытий благоприятно сказывается на повьшхении их защитной способности в наводорожи-вающих средах, а легирование цинковых покрытий титаном приводит к противоположному эффекту.  [c.93]

В сероводородсодержащих средах, в том числе в присутствии СГ, никелевые покрытия имеют электрохимические характеристики, обеспечивающие высокие защитные свойства значительную область анодной пассивности от О до +900 мВ и малые величины тока в пассивном состоянии (г пп = 20 мкА/см ). При наложении растягивающих напряжений, равных 0,9 Оо,2. защитная способность никелевых покрытий остается достаточно высокой, хотя пассивная область сдвигается от О до +700 мВ и пробой пассивной пленки наступает при потенциале +700 мВ, в то время как без, наложения растягивающих нагрузок при 900 мВ. Дальнейшее повышение напряжения приводит к отслаиванию покрытий на отдельных участках поверхнс.)Сти. Так1.)е доведение никелевых покрыгии (.вязано и высоким уровнем внутренних напряжений и их низкой пластичностью.  [c.95]


Обработку металлов и покрытий можно проводить также в хромат-но-фосфатных растворах, которые используются в основном для обработки металлов и покрытий на основе алюминия и его сплавов, цинка, кадмия и др., с целью получения поверхностных слоев, отличающихся высокими коррозионно-защитными свойствами и повышенной стойкостью к истиранию. Защитная способность пленок в коррозионноактивных средах связана с наличием шестивапентных ионов хрома, обладающих сильным пассивирующим действием, а также соединений трехвалентного хрома, образующего труднорастворимые соединения, а повышение стойкости пленок в условиях истирания - с наличием в растворе нитрата свинца [9].  [c.98]

Механизм повышения защитной способности хромовых покрытий с микротрещинами при наличии никеля заключается в том, что за счет сетки микротрещин увеличивается анодная поверхность, в результат -чего снижается коррозионный ток системы. Двухслойное хромовое покрытие с постепенным увеличением внутренних напряжений от основы может формироваться по следующему технологическому циклу. В качестве подслоя, непосредственно прилегающего к железной основе, наносится хромовое покрытие из стандартного электролита или слой никеля, содержащего мелкие токонепроводящие частицы. Верхний слой хрома (толщиной 0,25 мкм) наносят на первый подслой из электролитов, содержащих специальные добавки, обеспечивающие образование равномернораспределенных по всей поверхности микротрещин. Такой эффект чаще всего достигается введением солей селена. Ниже приведен состав электролита, используемый для получения второго слоя, г/л 250 хромового ангидрида, 2,5 серной кислоты, 0,013 селеновой кислоты температура раствора 315—317 К, плотность тока 24 А/дм  [c.110]

Для повьпиения защитной способности покрытий их обрабатывают различными составами, заполняющими структурные или случайные поры. Обработка хромового покрытия в пропитьтающих жидкостях при повышенных температурах (383—393 К) способствует удалению влаги из пор и повышению защитной способности хромовых покрытий. В качестве пропитьтающих составов используют пассивирующие растворы (нитраты, фосфаты, хроматы), ингибированные смазки (АМС-3, К-17), полимеризующиеся или поверхностно-активные вещества (льняное масло, клей БФ, гидрофобная кремнийорганическая жидкость ГКЖ-94, фторопласт, полиэтилен и др.).  [c.110]

Оценка влияния покрытий из алюминия и окиси алюминия на стойкость к сульфидному растрескиванию стальных образцов показала, что высокую защитную способность, близкую к алюминиевым покрытиям, обеспечивают композиция из 75 % А1 и 25 % AI2O3 и многослойное покрытие, нижний слой которого состоит из алюминия, средний - переходный от алюминия к окиси алюминия, а наружный — из окиси алюминия (габл. 30).  [c.112]

Высокая защитная способность ДГУ в условиях электрохимической коррозии в двухфазных средах электролит-углеводород связана с наличием в композищш изощюната, который реагирует с водой на поверх- ности металла, снижает скорость коррозионного разрушения, увеличивая адгезию с подложкой. По данным нефтяных фирм США, покрытия на основе полиуретанов с толщиной слоя 250 мкм, применяемые для защиты трубопроводов различного диаметра, обеспечивают защитное действие в течение 20 лет. Сообщается также об эффективности защиты насосно-компрессорных труб в условиях гидроабразивного потока, содержащего агрессивные хлор- и сероводородсодержащие компоненты.  [c.140]

Защитные свойства вязких ингибированных композиций связаны с их изоляционной способностью, препятствующей паро- и влагопрони-цаемости, которая, однако, не имеет решающего значения при оценке защиты от электрохимической коррозии пленками смазочного материала. В основном эффект защитного действия определяется поляризационной составляющей, т.е. торможением электрохим 1ческих реакций. Повысить защитную способность ингибированных композиций можно введением в их состав ПАВ, способных вытеснять электролит с поверхности металла, образовывать на поверхности металла адсорбционно-хемосорбционные защитные пленки. Маслорастворимые ПАВ способны только физически вытеснять адсорбированную воду, наличие которой обусловливает развитие электрохимической коррозии. Химически связанная с поверхностью металла вода наряду с кислородом и водородом участвует в формировании хемосорбционно-адсорбционных пленок.  [c.173]


Смотреть страницы где упоминается термин Защитная способность : [c.363]    [c.364]    [c.143]    [c.56]    [c.87]    [c.121]    [c.145]    [c.166]    [c.169]    [c.150]   
Электролитические покрытия металлов (1979) -- [ c.0 ]



ПОИСК



Защитная способность и долговечность лакокрасочных покрытий

Защитная способность и долговечность металлических покрытий

Защитная способность кадмиевых покрытий

Защитная способность нехроматированных и хроматированных осадков

Защитная способность покрытий. Принципы контроля и управления качеством защитных покрытий

Защитная способность фосфатных пленок

Защитная способность цинковых покрытий

Контроль качества покрытий — Внутренние напряжения 2.104—106 Защитная способность 2.106, 107 Микротвердость 2.103, 104 — Пористость покрытий 2.100—103 — Прочность сцепления

Контроль качества покрытий — Внутренние напряжения 2.104—106 Защитная способность 2.106, 107 Микротвердость 2.103, 104 — Пористость покрытий 2.100—103 — Прочность сцепления метод 2.83—85 — Потенциометрический метод

Метод испытаний защитной способности покрытий КАСС 2.107 — Особенности

Напреенко С. П., Опарин А. Н. Оценка защитной способности органических покрытий методом электрохимического компарирования

Повышение защитной способности металлических покрытий

Покрытий защитная способность

Покрытия защитные защитная способность

Роль адгезии в защитной способности полимерных покрытий

Свиденюк, Е. Г. Бордоносенко, Т. А. Свиденюк, 0. В. Бобович. О защитной способности пентапластовых покрытий, содержащих окислы металлов



© 2025 Mash-xxl.info Реклама на сайте