Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы с контурами

Пусть задан набегающий поток газа, то есть функции ги х,у), в х,у), р(х,у), р х,у), удовлетворяющие системе уравнений (1.6)-(1.9). В поток (рис. 3.6) помещается некоторое тело с образующей у = Д(ж), которая соединяет точки а и Ь. Поскольку рассматриваются только сверхзвуковые течения, обтекание верхней и нижней поверхностей плоского профиля можно изучать независимо друг от друга, а в осесимметричном случае достаточно рассмотреть одну меридиональную плоскость течения. Волновое сопротивление X тела с контуром аЬ, то есть проекция равнодействующей сил давления на ось х, выражается формулой  [c.63]


В пространстве q, p, t выберем произвольный замкнутый контур С и выпустим из него трубку прямых путей гамильтоновой системы с гамильтонианом Н. Пусть преобразования (ИЗ) переводят эту гамильтонову систему в некоторую новую систему гамильтоновых уравнений (по условию теоремы преобразование каноническое ), трубку прямых путей старой — в трубку прямых путей новой гамильтоновой системы, а замкнутый контур С — ъ замкнутый же контур С.  [c.316]

Для системы с гамильтонианом Я имеет место интегральный инвариант Пуанкаре — Картана. Поэтому интеграл в правой части выписанного равенства не зависит от выбора контура С на трубке прямых путей этой системы. Значит, не зависит от выбора этого контура и интеграл в левой части равенства  [c.317]

Для того чтобы выяснить возможность описания процесса в рассматриваемой вырожденной динамической системе с помощью уравнения (6.19), рассмотрим схему, представленную на рис. 6.14, в которой малые параметры (индуктивность контура и инерционность газового разряда) учтены малой индуктивностью L.  [c.232]

Вернемся к доказательству утверждения, на котором основаны изложенные выше общие соображения. Прежде всего введем некоторые определения. Совокупность состояний равновесия и периодических движений и их интегральных многообразий назовем скелетом динамической системы. Замкнутый контур, составленный из фазовых траекторий, конец каждой из которых соединен с началом следующей, назовем циклом. На рис. 7,27 приведен пример цикла, составленного из трех фазовых траекторий.  [c.279]

Происхождение этой невесомости объясняется так же, как и для тел, находящихся внутри корабля космонавт, находящийся внутри или вне корабля, но вблизи него, рассматривая движение находящегося вблизи корабля тела, относит это движение к системе отсчета, связанной с корпусом корабля. В этой системе отсчета существует поле сил инерции, которое можно считать однородным в некоторой ограниченной области (границы этой области никак не связаны с контурами корабля, его размерами и т. п.). Поэтому поле сил инерции имеет совершенно одинаковую напряженность как внутри корабля, так и  [c.359]

При рассмотрении колебательных систем мы должны уделить особое внимание системам с малым затуханием, в которых величина энергии, рассеиваемой за период (или почти период) колебаний. мала по сравнению с общим запасом энергии, связанным с исследуемым движением. В подобных системах наиболее ярко проявляются их колебательные свойства. В большом числе практических применений мы встречаемся с высокодобротными колебательными системами. Можно упомянуть резонансные элементы входных цепей радиоприемных устройств, колебательные контуры, входящие в состав полосовых фильтров, маятник или баланс в часовых механизмах, колебательные элементы в частотомерах и спектр-анализаторах и др.  [c.14]


Для контуров с нелинейным затуханием резонансные кривые при малых величинах у и при небольших амплитудах внешней силы незначительно отличаются от обычных резонансных кривых для линейного контура, и лишь для больших амплитуд наблюдается уплощение их вершин. Это связано с ростом эффективного затухания системы с возрастанием амплитуды колебаний по закону бг = б(1 А- иур А ).  [c.119]

Одноконтурный параметрический генератор с нелинейным затуханием. Рассмотрим последовательный колебательный контур с элементами I, С, R и допустим, что во времени меняется только реактивный параметр С (1), а активное (омическое) сопротивление зависит от проходящего через него тока R ( ). Тогда при параметрическом воздействии такая колебательная система с нелинейным сопротивлением (рис. 4.22) при определенных условиях, налагаемых на параметры системы, может стать одноконтурным параметрическим генератором.  [c.163]

Автоколебательные системы с электронными лампами. Для генератора с колебательным контуром в цепи сетки (рис. 5.20)  [c.202]

Возможность получения в колебательных системах с термисторами автоколебаний, сколь угодно близких к гармоническим, позволяет использовать системы, содержащие добротные контуры, термисторы и активные элементы с линейными падающими участками вольт-амперных характеристик, в ряде эталонов частоты (времени).  [c.213]

Многие реальные механические и электрические устройства могут рассматриваться как системы с двумя степенями свободы. Примеры таких систем — связанные колебательные контуры, широко используемые в радиотехнике в качестве полосовых фильтров, в двухконтурных параметрических усилителях и т. д. Механической системой с двумя степенями свободы будем считать, например, балку, установленную на двух упругих опорах.  [c.239]

Общее рассмотрение автоколебательной системы с дополнительным контуром  [c.269]

Рассмотрим теперь поведение автоколебательной системы с двумя степенями свободы при изменении парциальной частоты первого контура. При частоте VJ< V2 в системе существует гармоническое колебание с частотой 1, близкой к v . При увеличении VI система входит в область, где возможно существование колебаний как частоты 2, так и частоты 2. Эта область носит название области затягивания частоты. В области затягивания режим генерации зависит от предыстории. Если система вошла в нее со стороны малых VI (см. рис. 7.12), то в ней будут существовать колебания с частотой 2 и амплитудой А . При дальнейшем увеличении VI система при VI = VII скачком перейдет в режим генерации колебаний с частотой 2 и амплитудой А . Если система входит в область затягивания со стороны больших V2, то в ней происходят колебания с частотой 2 и амплитудой А. . Переход в режим ( ц Л ) наступает при Vl2, значительно меньшей VJJ. Частоты VJl и v 2, определяющие границы области затягивания, можно найти из условий нарушения устойчивости соответствующих колебаний. Различаются частотные и амплитудные условия устойчивости. Частотные условия устойчивости нарушаются при частотах, на которых кривая = /(v1) имеет вертикальную касательную. Амплитудная неустойчивость возникает при нарушении условий (7.5.7) или (7.5.9). Пусть при некоторой частоте VI в системе выполняются условия (7.5.6) и (7.5.7). При увеличении VI частота также увеличивается и приближается к V2. При этом правая часть (7.5.6) растет и Ах уменьшается. Что касается правой части (7.5.7), то она уменьшается, а левая часть (7.5.7) растет. Наконец, при некотором V, неравенство (7.5.7) изменит знак. Вклад энергии на частоте а станет больше потерь  [c.276]

Проведенный выше анализ показывает, что под влиянием резонансной нагрузки автоколебательная система может в определенной области частот изменить свою частоту и амплитуду, вообще прекратить колебания (режим гашения) или попасть в режим скачкообразного изменения амплитуды и частоты. Поэтому при использовании резонансной нагрузки необходимо принимать меры для уменьшения ее обратного влияния на автоколебательную систему. Одним из примеров системы с резонансной нагрузкой является генератор, связанный с контуром волномера. Для правильного измерения генерируемой частоты необходимо, чтобы связь между контурами генератора и волномера была достаточно мала (режим отсоса энергии). Явления затягивания и гашений, наступающие при сильной связи, в этом случае снижают точность определения частоты. Однако явление затягивания может быть использовано для стабилизации частоты автоколебаний. Для этого в качестве дополнительного контура в систему включают контур с высокой добротностью. В радиодиапазоне обычно применяется кварцевый резонатор, а в диапазоне СВЧ — высокодобротный объемный резонатор. При малом 63 область затягивания увеличивается. В этой области значительные вариации парциальной частоты контура генератора сопровождаются малыми изменениями генерируемой частоты. На рис. 7.12 жирными линиями изображены области стабилизации частоты при затягивании.  [c.277]


Движение в системе с п степенями свободы описывается п независимыми координатами, выбор которых, так же как и в системе с двумя степенями свободы, произволен. Так, в электрических цепях в качестве переменных можно выбрать напряжения на элементах цепи или токи в соответствующих контурах. Число степеней свободы определяется минимальным числом переменных, необходимым для полного описания движения.  [c.281]

Решение такой задачи имеет практическое значение при расчете конструктивных элементов системы вдува воздуха под днище судна с целью снижения его вязкостного сопротивления. Задачу будем решать в рамках линейной теории, т. е. будем считать толщину каверны и клина малыми, а граничные условия с контура каверны перенесем на горизонтальную ось.  [c.152]

Для приближенного описания упругих колебаний прямоугольной пластинки со сторонами 2а и 2Ь, опертой по контуру и имеющей толщину /г, пластинку приводят к системе с одной степенью свободы, сосредоточивая часть ее массы в центре пластинки. Определить коэффициент приведения, приняв в качестве уравнения изогнутой сре-  [c.172]

Используем изложенный метод определения углового коэффициента применительно к системе плоскопараллельных пластин одинаковой ширины с относительно большими продольными размерами. Заданы (рис. 17-20) ширина а и расстояние между пластинами h. Требуется определить 17i,3 и <р),г. Введем условные поверхности с контурами АС и BD. Тогда получим замкнутую систему, состоящую из четырех тел. Свойство замкнутости выразится зависимостью  [c.418]

Системы с контурами. Предположим, что имеет контур Qo,. .., Qfe , причем траектория простого касания или квазитрансверсального пересечения принадлежит  [c.141]

Буквенно-цифровая запись информации. Для ориентировки в рабочем пространстве станка нанесем оси KoopflHHaT. На рис. 203, а указаны положительные направления X и У, применяемые в системах с Контуром ЗП-68 .  [c.246]

Для защиты программы.от ошибок исполнения в системе с Контуром ЗП-68 применен так называемый контроль по модулю 10, суть которого такова. Каждая цифра, записанная в кадре, принимается за отдельное число и сумма этих чисел (в кадре) делается кратной 10. Буквы при этом не пропускаются, а заменяются числовыми эквивалентами, например, буква Е — числом 1, Д — числом 2, П—числом 5, Ш—числом 6, С—числом 7, В — числом 8, Я — числом 9, Н — ноль. Подсчитаем сумму чисел в кадре 1. Кадр Д56000П27Ш08Н. Сумма чисел будет 2+5+6+0+O-fO-b  [c.249]

Кодирование кадров программы. В системе с Контуром ЗП-68 принят адресный способ задания информации. Поэтому все числа в кадре, кроме контрольного числа , относятся к соответствующим адресам и располагаются от них на строго определенном расстоянии. После адресной буквы Е или Д на ленте располагается одноразрядное число — признак приоритета и направления, и за ним следует четырехразрядное число, например, 6000 — количество шагов по данной координате. После любой из букв П, Ш, С и В ближайшие две строки на ленте отводятся под двухзначные числа — номера команд. Для примера на рис. 205 закодированы кадры 2 и 3 программы.  [c.251]

Применяемый способ выбора системы независимых контуров и сечений основан на построении фундаментального дерева в графе схемы. Используется полюсный граф, повторяющий структуру эквивалентной схемы. Фундаментальное дерево связного графа есть связный подграф, включающий р—1 ребро и не имеющий циклов. Ребра, вошедшие в дерево, образуют множрхтво ветвей дерева (ВД), а остальные ребра — множество ветвей, называемых хордами (ВХ). Контуром k-Pi хорды называют подмножество ребер графа (ветвей схемы), входящих в замкнутый контур, образуемый при подключении k-Pi хорды к дереву. Сечения образуются следующим образом отделим часть вершин графа от остальных с помощью замкнутой линии сечения, проведя ее так, чтобы ни одно ребро не пересекалось более одного раза и при этом пересекалась одна и только одна ветвь дерева. Следовательно, каждому сечению соответствует определенная ветвь дерева. На рис. 4.10, а для примера приведена некоторая схема, а на рис. 4.10, б —ее граф с выделенным жирными линиями фундаментальным деревом. Штрихом показаны линии сечения. Уравнения токов Кирхгофа для сечений ветвей дерева и напряжений Кирхгофа для контуров хорд образуют систему независимых топологических уравнений  [c.179]

В качестве примера нелинейной консервативной колебательной системы с одной степенью свободы рассмотрим электрический колебательный контур без затухания с конденсатором, в котором нет линейной зависимости напряжения от заряда. Подобными нелинейными свойствами обладают конденсаторы, в которых в качестве диэлектрика используются материалы, имеющие сег-нетоэлектрические свойства, и емкости, возникающие в р п-переходах (например, в полупроводниковых диодах) при обратном напряжении смещения.  [c.29]

Из этого выражения отчетливо видна несимметрия области параметрического резонанса, о которой речь шла выше. Несимметрию области параметрического резонанса для колебательной системы с нелинейным реактигным параметром и генератором накачки можно объяснить также качественно. Дело в том, что в рассматриваемом нелинейном колебательном контуре при воздействии на него напряжения накачки возникают вынужденные колебания, которые изменяют среднее значение емкости системы, чем и объясняется начальная расстройка контура в отсутствие параметрически возбужденных колебаний (несимметрия и относительно оси ординат).  [c.178]

Если (—26-f 5Л4(о )>0, то система самовозбуждается. Аналогичное условие самовозбуждения получается для генератора с контуром в цепи анода, если записать очевидное соотношение Ug = М di/dt= =MagigX. Тогда без учета постоянной составляющей ig (5.4.3) примет вид  [c.203]

Для генератора с контуром в цепи сетки уравнение движения имеет вид (5.6.1). Для удобства введем в рассмотрение такую частоту 0J, что р = ш. Из условий р = /гш и р Шц следует, что шя сйц. Введем безразмерное время x = iut, нормированное по (о, т. е. будем искать решение системы (5.6.1) с частотой, точно в п раз меньшей частоты внешнего воздействия р = пы. Если ввести расстройку I = 1 — со5/ш = [р — (tt u)2J/p и аппроксимировать ток ia = f 4) полиномом третьбй степени а = i + о + то с учетом написанных выше соотношений уравнение движения примет вид  [c.219]


Теперь рассмотрим другой крайний случай, когда в автоколебательной системе с запаздыванием вообще отсутствует колебательный контур, т. е. она является системой неосцилляторного типа с очень широкой полосой пропускания (рис. 5.44). Будем считать, что усилитель имеет неограниченную полосу пропускания и принципиально нелинеен, т. е. и2 = > (и ). Элемент задержки (запаздывания) Д/ является идеальным в том смысле, что = = (( —Д ), где к —постоянный коэффициент, не зависящий от  [c.230]

Если затухание второго контура достаточно велико, то существует единственная резонансная частота р = Система с двумя степенями свободы ведет себя в этом случае как система с одной степенью свободы. При ахаз > 0. имеются три значения частоты р, при которых выполняется условие (6.3.8). На частотах р.2 и Ра амплитуда тока достигает максимальных значений, на частоте p = v амплитуда минимальна. Этот минимум тем глубже, чем на большую величину коэффициент связи превышает декремент  [c.252]

Системы с п степенями свободы на.ходят применение в параметрических и автоколебательных устройствах. Параметрическая система с п степенями свободы состоит из нелинейной реактивности и линейной цепи с и контурами, настроенными на комбинационные частоты двух внешних сигналов, действующих на систему. Мэнли и Роу ) показали, что между мощностями, выделяющимися в каждом из контуров, существуют определенные  [c.307]

В последние годы стали находить применение автоколебатель-ньи системы ЕС-типа с числом степеней свободы больше двух. Такие устройства обеспечивают лучшую стабилизацию частоты, чем рассмотренная в гл. 7 автоколебательная система с одним дополнительным контуром ).  [c.311]

Соотношения (7.5.4) и (7.5.5) показывают ), что в автоколебательной системе с двумя контурами всегда осуществляется сильная связь (612621 = 4Р1Р2)- Поэтому бигармонический режим в такой системе невозможен. В газовом лазере преимущественно реализуется случай слабой связи. Это различие обусловлено тем, что в системе с двумя контурами (см. 7.5) усиление колебаний обеих частот происходит в одном и том же нелинейном активном элементе, например в полевом транзисторе или лампе. В газовом же лазере с неоднородным уширением линии поглощения усиление накаждой из генерируемых мод происходит за счет энергии различных атомов активной среды. Поэтому взаимное влияние колебаний различных частот оказывается малым и возможна одновременная генерация двух независимых колебаний.  [c.367]

Лервые уравнения определяют колебания механической системы с 8 степенями свободы вторые — колебания з контурной электрической системы и выражают второй закон Кирхгофа алгебраическая сумма э. д. с. в любом контуре цепи равна алгебраической сумме падений напряжения на элементах этого контура.  [c.204]

О бифуркациях динамических систем, близких к системам с сепара-трисным контуром, содержащим седло-фокус. В сб. Методы качественной теории дифференциальных уравнений . Горький, 1980, 44—72  [c.212]

Для повышения безопасности работ при контроле и ремонте реакторного оборудования должно быть, по возможности, снижено содержание кобальта в системе первого контура. С этой целью при создании модернизированного реактора предусматривается ограничение применения кобальтовых сплавов, в элементах уплотнений арматуры, снижение содержания кобальта в нержавеющих аустенитных сталях, из которых изготовляются поверхности теплообмена, уменьшение поступления кобальта с содержащимися в реакторной воде продуктами коррозии трубопроводов путем замены углеродистых сталей на более коррозионностойкие низко— легированные, а также исключение кобёльтсодержаших сплавов в элементах активной зоны.  [c.41]

Для использования в системах с гидравлической жидкостью MLO-8200, работающих при 93° С, оказался пригодным Вайтон А с асбестовым наполнителем [72]. В этом случае доза облучения составляла 8,77 X X 10 эрг/г. При последующем испытании опорные кольца, изготовленные из Вайтона А с асбестовым наполнителем, тефлона и кожи и используемые в предохранительном клапане, удовлетворительно работали в электрогидравлическом контуре системы регулирования с гидравлической жидкостью на основе низкомолекулярного нолиизобутилена ( Оронайт 8515) при 135° С и давлении 211 кг см . -Доза облучения составляла (l,3- -4,9)-10 эрг/г в зависимости от места расположения деталей в системе. Кольца из тефлона стали хрупкими, но герметичность уплотнений не нарушилась. Опорные кольца из тефлона и Вайтона А оказались настолько прочно связанными с уплотнительными кольцами, что их невозможно было отделить, не повредив.  [c.105]


Смотреть страницы где упоминается термин Системы с контурами : [c.137]    [c.298]    [c.149]    [c.329]    [c.203]    [c.206]    [c.216]    [c.250]    [c.250]    [c.253]    [c.313]    [c.136]   
Смотреть главы в:

Теория бифуркаций  -> Системы с контурами



ПОИСК



Влияние системы регулирования на динамические характеристики Устойчивость контуров ЖРД в области промежуточных частот

Внутренне статически неопределимые системы (замкнутый контур)

Контур в стержневой системе замкнуты

Контур регулирования как система передающих звеньев

Общее рассмотрение автоколебательной системы с дополнительным контуром

Предварительная оценка динамических свойств следящего гидропривода в контуре демпфирования системы управления ЛА

Приборы регулирующие серии Р25 системы Контур

Приборы регулирующие серии РС29 системы Контур

Расположение арматуры на контурах и системах

Система контуров жестких независимых

Система контуров правильная

Система поддержания давления в первом контуре

Система с дополнительным контуром обратной связи

Система управления с замкнутым контуром (системе регулирования с обратной связью)

Система управления с открытым контуром (Система регулирования без обратной связи)

Системы программного с замкнутым контуром

Системы программного с разомкнутым контуром

Станция смешивания теплоносителей I и II контура системы теплоснабжения



© 2025 Mash-xxl.info Реклама на сайте