Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания линейной диссипативной системы

КОЛЕБАНИЯ ЛИНЕЙНОЙ ДИССИПАТИВНОЙ СИСТЕМЫ  [c.325]

КОЛЕБАНИЯ ЛИНЕЙНОЙ ДИССИПАТИВНОЙ СИСТЕМЫ С КОНЕЧНЫМ ЧИСЛОМ СТЕПЕНЕЙ СВОБОДЫ  [c.325]

Вынужденные колебания. Решение задачи о вынужденных колебаниях в диссипативных системах с конечным числом степеней свободы может быть получено с использованием нормальных координат недиссипативной системы. В случае, если матрица В является линейной комбинацией матриц А и С, это решение будет точным. При произвольной матрице В придется пренебречь, как указано выше, недиагональными элементами преобразованной матрицы демпфирования.  [c.326]


Ограничивая качественное рассмотрение свободных колебаний в линейных и нелинейных диссипативных системах разобранными примерами, отметим, что в более сложных случаях, особенно для нелинейных задач, целесообразно пользоваться методом изоклин, построение которых позволяет составить представление об основных чертах фазового портрета исследуемой системы и, тем самым, о характере совершаемых ею движений. При этом, как уже указывалось, в диссипативных системах мы должны получить независимо от начальных условий такие движения, которые приводят систему к устойчивой особой точке — состоянию покоя, т. е. к диссипации всей энергии, связанной с изучаемым движением.  [c.55]

Как и исследование линейных систем, изучение вынужденных колебаний в идеализированных консервативных системах дает нам очень много ценных сведений о протекании самого явления в реальных диссипативных системах. Для нелинейных систем это, вероятно, еще более справедливо, так как для большого класса явлений в таких системах основным фактором, определяющим характер вынужденных процессов, служат именно нелинейные свойства элементов, а не наличие затухания, как было в линейных системах.  [c.98]

Из выражения для А , ясно видна роль нелинейности сопротивления (Р) системы. Если Р О, т. е. если уменьшать нелинейность системы, то амплитуда параметрических колебаний будет постепенно увеличиваться, и в пределе дтя линейной системы должна обратиться в бесконечность, что согласуется с теорией параметрического возбуждения линейных диссипативных систем,  [c.165]

Широкополосное (шумовое) воздействие. В процессе работы колесо подвергается силовому воздействию типа широкополосного шума, что отражается в спектре отклика на него. Когда линейная упругая система находится под воздействием широкополосного шума, в окрестности собственных частот ее спектральная плотность отклика возрастает, образуя пик. Предположим, что вблизи собственных частот спектральная плотность постоянна (белый шум). Тогда кривая отклика в этих окрестностях будет совпадать с соответствующими резонансными кривыми, максимумы кривой отклика будут отвечать частотам, близким ж собственным частотам системы. Таким образом, по спектру отклика на широкополосный шум можно судить о величине собственных частот системы. Если же собственные частоты достаточно далеки друг от друга (когда резонансные колебания по различным собственным формам допустимо рассматривать как колебания независимых осцилляторов), то по ширине резонансных пиков можно оценивать и диссипативные свойства системы [33].  [c.193]


Цля диссипативной системы с линейной восстанавливающей силой (рис. 1, а) суммарная силовая характеристика показана на рис. 1,6 площадь, ограниченная гистерезисной петлей, по величине равна работе силы сопротивления за один период движения. При нелинейной восстанавливающей силе осевая (скелетная) линия гистерезисной петли — криволинейная (рис. 1, в). Если при заданной амплитуде изменяется частота колебаний, то осевая линия петли остается неизменной, но расстояния между ветвями петли и ограниченная ими площадь, как правило, изменяются, причем законы этих изменений зависят от характеристики сопротивления исключениями служат случаи кулонова трения, а также внутреннего трепия в материале, когда гистерезисная петля не меняется при изменениях частоты колебаний (рис. 1,е).  [c.17]

Для диссипативной системы с линейной восстанавливающей силой осевая скелетная) линия петли гистерезиса представляет собой прямую, проходящую через начало координат (рис. 6.5.3, а). При нелинейной восстанавливающей силе скелетная линия петли гистерезиса -криволинейна (рис. 6.5.3, 6). Если при заданной амплитуде изменяется часг ота колебаний, то осевая линия петли остается неизменной, но расстояние между ветвями и ограниченная ими площадь, как правило, изменяется, причем законы этах изменений зависят от характеристики трения исключениями служат случаи кулонова трения (рис. 6.5.3, в), а также внутреннего трения в материале, когда гистерезисная петля не меняется при изменениях частоты колебаний [66].  [c.365]

Свободные колебания диссипативной системы (F (i) = О, г >> 0) постепенно затухают, причем их частота не остается постоянной, а огибающая отличается от экспоненты, характерной для линейных систем этой задаче, в частности, посвящена работа Л. Г. Лойцянского (1954).  [c.95]

Свободные колебания линейного гармонического осциллятора, если они происходят в вязкой среде, постепенно затухают в результате действия со стороны среды диссипативных сил трения. Как было показано в 29, для полного описания движения механической системы, подверженной действию сил вязкого трения, необходимо наряду с лагранжианом ввести диссипативную функцию Рэлея (29.19), описывающую процесс рассеяния механической энергии. Для одномерной механической системы, совершающей малые колебания вблизи положения устойчивого равновесия, указанные функции имеют вид  [c.223]

Потери энергии в нелинейных диссипативных системах вызываются большей частью сухим (кулоновым) трением, иногда в сочетании с вязким, а также внутренним неупругим сопротивлением, которое возникает в материале частей системы, деформирующихся при колебаниях. Все эти сопротивления, как правило, нелинейны и не линеаризуемы. Расчет колебаний систем с такими сопротивлениями представляет существенно нелинейную задачу, которая не может быть решена методами линейной теории.  [c.490]

Аналогично рассматривается и случай двух ударов за период. Замкнутая фазовая траектория для этого случая представлена на рис. 2.43. Здесь проявляется принципиальное отличие автоколебательных систем от диссипативных и консервативных систем. В диссипативных системах незатухающие колебания невозможны по определению (см. 2.12). В консервативных системах (см. 2.11) возможны периодические колебания и, следовательно, возможны замкнутые фазовые траектории в фазовом пространстве этих систем. Однако там всегда был континуум неизолированных замкнутых кривых. Отметим еще, что в любых линейных системах замкнутые изолированные траектории также невозможны.  [c.91]

С этим связано то обстоятельство, что сами по себе диссипативные колебательные системы, не содержащие источников энергии, имеют только одно стационарное состояние покой. В самом деле, любые начальные условия, любой исходный запас энергии служит исходной причиной, вызывающей начало затухания свободных колебаний, которые через достаточно большой промежуток времени в реальных системах прекратятся или (в случае идеализированных законов диссипации, например, линейное трение) их амплитуды станут меньше любых наперед заданных малых величин.  [c.42]


Отмеченные выше существенные особенности диссипативных систем, заключающиеся в том, что любые свободные колебания в системе, предоставленной самой себе, неизбежно затухают, приводят к тому, что для количественного рассмотрения свободных колебаний с учетом потерь нельзя без существенных оговорок пользоваться методом последовательных приближений, в котором за нулевое приближение принимается гармоническое движение. Данный метод может применяться лишь для ограниченных временных интервалов в случае достаточной малости затухания, и поэтому его использование с подобными оговорками существенно снижает его практическую ценность. Это заставляет нас в тех случаях, когда не удается найти прямое и точное решение дифференциального уравнения, описывающего систему, искать другие пути нахождения приближенного решения, учитывающего специфику нелинейных диссипативных систем и пригодного для любого интервала времени. Из возможных методов нахождения приближенного решения следует в первую очередь указать на метод поэтапного рассмотрения н, в частности, на кусочно-линейный метод, а также на метод медленно меняющихся амплитуд. Кусочно-линейный метод, пригодный для любых типов трения и нелинейности, основывается на замене общего рассмотрения движения всей системы в целом решением ряда линейных задач — уравнений, приближенно описывающих различные этапы движения системы, на которых ее можно считать более или менее  [c.45]

Так же. как и при линейных колебаниях, можно различать нелинейно колеблющиеся системы — консервативные (ни из системы, нн в систему энергия не поступает), диссипативные (с течением времени происходи г уменьшение суммы потенциальной и кинетической энергий системы за счет перехода энергии в другие виды или за пределы колеблющейся системы) и, наконец, системы, в которые при их колебаниях поступает энергия. Различают также свободные и вынужденные нелинейные колебания. Однако вследствие нелинейности последние представлять в виде суммы общего решения однородного уравнения и частного решения неоднородного уравнения нельзя.  [c.220]

Линеаризация упругих характеристик соединений превращает ряд нелинейных дифференциальных уравнений математической модели системы в линейные. Линеаризованная модель позволяет при помощи достаточно простых методов оценить спектр собственных частот исследуемой системы и выявить наличие и расположение резонансных режимов в ее эксплуатационном диапазоне. Используя энергетический учет эффекта диссипативных сил, на основе линеаризованной модели можно также оценить уровень установившихся вынужденных колебаний, пиковые нагрузки при переходных режимах и динамическую устойчивость системы в малом [39].  [c.14]

Твердое тело, находящееся в потенциальном поле сил, давно служит в качестве динамической модели или расчетной схемы при изучении динамики самых разнообразных объектов техники (спутников, гироскопических систем, систем виброзащиты, управления и т. д.). На начальном этапе многие задачи о колебаниях тел рассматривались на базе хорошо разработанного аппарата теории линейных дифференциальных уравнений с постоянными коэффициентами. Однако представления линейной теории о колебаниях твердых тел не всегда могут соответствовать действительности, поскольку колебания твердых тел в пространстве описываются системой дифференциальных уравнений, которые содержат различные нелинейные связи между обобщенными координатами системы, отражающие действие сил различной природы, например инерционных, потенциальных, диссипативных и т. д. Наличие таких нелинейных связей при выполнении определенных условий создает предпосылки для радикального перераспределения энергии колебаний между обобщенными координатами механической системы. В этом случае динамическое поведение твердых тел может резко отличаться от того, которое ожидается согласно известным линейным представлениям, т. е. колебания тел могут иметь совершенно разные качественные и количественные закономерности в зависимости от того, имеется ли существенное перераспределение энергии или нет. Оказывается, что для указанного перераспределения необходимо наличие в системе определенных нелинейных резонансных условий [3, 4, 14].  [c.264]

Предлагаемый метод позволяет определять поведение динамической системы в резонансе, не определяя предварительно резонансного воздействия на систему. Этот метод целесообразно применять лишь в таких системах вида (1), для которых фазовая траектория в 2п-мер-ном пространстве находится на замкнутой поверхности (т. е. движение системы есть совокупность нескольких колебаний постоянной амплитуды). При поиске резонансного движения в диссипативной колебательной системе метод неприменим, так как при воздействии у(1) вида (6) амплитуда колебаний убывает (хотя и с меньшей скоростью, чем при у = 0). Это очевидно для диссипативных линейных систем вида  [c.108]

В трех методах измерения динамических упругих свойств твердых тел, которые были рассмотрены, — свободные колебания, вынужденные колебания и распространение волн — упругие постоянные и внутреннее трение не могли бы быть выведены из измерений, если бы не были сделаны некоторые предположения о природе диссипативных сил и о линейности системы. Эти предположения заключались в том, что диссипативная сила пропорциональна скорости изменения деформации и что тип механического поведения не зависит от амплитуды деформации в области напряжений, использованных в опытах. Предполагая, что имеет место принцип суперпозиции Больцмана, можно было бы построить функцию памяти из серии экспериментов, проведенных во всей области частот, и отсюда сделать теоретический вывод о механическом поведении твердого тела, подверженного негармоническому воздействию напряжений.  [c.139]


Рассмотрим колебания системы при наличии потенциальных и гироскопических сил, а также диссипативных сил, линейных относительно скоростей точек. В остальном сохраним предположения о силах и связях, сформулированные в предыдущем параграфе. Тогда кинетическая энергия Г, обобщенный потенциал % и диссипативная функция О будут иметь вид (см. (5.55), (5.75), (5.81))  [c.289]

Рассмотрим систему с одной степенью свободы, на которую наложены голономные стационарные связи и действуют заданные стационарные силы при этом предположим, что у системы имеет-ся положение устойчивого равновесия. Разложение кинетической, потенциальной и диссипативной функций в окрестности этого положения вплоть до членов второго порядка малости включительно приводит к линейному уравнению. Однако во многих практически важных задачах возникает необходимость исследования колебаний с достаточно большими амплитудами и скоростями. В таких случаях линейное приближение оказывается недостаточным и приходится учитывать последующие члены разложений, приводящие к нелинейным уравнениям. Если при этом отклонения от положения равновесия и скорости точек не слишком велики, то соответствующие уравнения будут описывать малые нелинейные колебания.  [c.311]

Практически свободные колебания будут, конечно, затухать благодаря неизбежному наличию рассеяния энергии. Желая подчеркнуть это обстоятельство, мы будем называть такую систему диссипативной. В линейных системах диссипативные силы (силы сопротивления) пропорциональны скорости движения  [c.13]

В гл. 15-17 изучаются колебания в линейных и нелинейных системах (к правило, невысокого порядка), находящихся под действием периодически внешних сил. В главе 15 рассматривается действие синусоидальной внеш ней силы на диссипативную систему - нелинейный осциллятор с рас сеянием энергии. В гл. 16 исследуется синусоидальное воздействие н автоколебательную систему (в качестве характерного примера взят лам новый генератор с симметричной кубической характеристикой). Наконец в гл. 17 изучаются параметрические колебания, т.е. колебания, обуслов ленные периодическими изменениями параметров системы.  [c.263]

В гл. 15 исследована нелинейная (и очетп. кратко - линейная) диссипативная система только с одной степенью свободы. Осталась в стороне вся теория вьшужденных колебаний в линейных системах с двумя и И степенями свободы. Эта теория подробно изложена в лекциях Л.И. Мандельштама [17], в уже упоминавшейся книге С.П. Стрелкова [24] и в учебных пособиях [3,21]. Краткий анализ нелинейных систем с П степенями свободы дан в гл. 5 справочника [8] и в цитированной в нем литературе по механическим колебаниям (в той же главе можно найти дополнительные сведения и по колебаниям нелинейной системы с одной степенью свободы). Теория неавтономных квазилинейных систем с двумя степенями свободы разработана Н.В. Бутениным [5, 6] и получила дальнейшее развитие в зарубежных работах [9].  [c.325]

Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]

Конкуренция мод — подавление одних мод другими в автоколебат. системах — связана с тем, что конкурирующие моды черпают энергию на покрытие диссипативных расходов из общего источника. В результате одни моды создают дополнит, нелинейное затухание для других. Благодаря эффектам конкуренции и взаимной синхронизации колебаний в автоколебат. системах с большим числом степенен свободы (или даже бесконечным числом — в случае распределённых систем) возможно установление из нач. шума (нарастающих в результате развития линейных неустойчивостей флуктуаций на разл. частотах) реж]1ла регулярных периодич. А. Эффекты конкуренции и синхронизации оказываются принципиальными и для появления высокоорганизованных структур в нелинейных неравновесных средах.  [c.14]

Все остальные системы можно отнести к неконсервативным. Будем считать, что во всех колебательных системах имеются позиционные консервативные (квазиупру-гие) силы. Системы, находящиеся под действием диссипативных сил, будем называть диссипативными системами. В зависимости от характера сил диссипации будем различать системы с полной диссипацией, с неполной диссипацией и с отрицательной диссипацией. Первые два типа систем называют также пассивными системами. Системы с отрицательной диссипацией и (или) с позиционными неконсервативными силами относят к активным системам. В пассивных системах возможны либо стационарные, либо затухающие колебания. В активных системах возможно самовозбуждение колебаний. Активные линейные системы являются линейными моделями автоколебательных или потенциально автоколебательных систем.  [c.90]

В заключение приведем результаты физического эксперимента с простой диссипативной системой КЬС-контуром), в котором режим стохастических автоколебаний также возникал в результате последовательности удвоений [22]. Исследовались колебания в последовательном нелинейном ЛХС-контуре, на который подводился периодический сигнал с частотой, равной собственной частоте контура в линейном приближении (/о = 1,784 МГц). В качестве нелинейного элемента использовался полупроводниковый диод, емкость которого зависела от напряжения по формуле С и) = Со(1 - г//г/о)-° 4. с ростом амплитуды внешнего воздействия в спектре колебаний появлялись последовательно субгармони-  [c.482]


Диссипативные системы характеризуются рассеянием энергии за счет сопротивлений, что при отсутствии поступления энергии извне обусловливает затухание колебательного процесса. Мы рассмотрим здесь две наиболее существенные нелинейные задачи свободные колебания системы с сухим, или кулоновым трением и свободные колебания с квадратичным сопротивлением. В обоих случаях ограничимся линейной восстанавливающей силой. В заключение рассмотрим графический метод, предложенный французским инженером Льенаром и одинаково эффективный в применении к диссипативным системам и к системам автоколебательным, которым посвящен следующий параграф.  [c.121]

В обычных жидкостях (а также в нематических жидких кристаллах) существует лишь одна ветвь слабозатухающих звуковых колебаний — продольные звуковые волны. В твердых криста ллах и аморфных твердых телах существуют три звуковые (акустические) ветви линейного закона дисперсии колебаний ( 22, 23). Одномерные кристаллы — смектйки — и здесь занимают промежуточное положение в них имеются две акустические ветви Р. G. de Gennes, 1969), Не интересуясь здесь коэффициентами затухания этих волн, и имея в виду лишь определение скоростей их распространения, пренебрежем в уравнениях движения всеми диссипативными членами. Полная система линеаризованных уравнений движения складывается из уравнения непрерывности  [c.241]

Таким образом, если перемещения всех точек линейной системы имеют фазовый сдвиг я/2 по отношению к монофазному гармоничному возбуждению, то система совершает вынужденные колебания по собственной форме консервативной системы независимо от того, связывают диссипативные силы нормальные координаты или нет. Монофазное силовое распределение в этом случае должно удовлетворять условию (11.13.47). Использование этого условия для выбора сил затруднено, поэтому на практике обычно прибегают к фазовому критерию резонанса. Соответствующее силовое распределение выбирают либо вручную, либо в полуавтоматическом режиме работы вибрационных установок. Ест предположить, что диссипативные силы не связывают нормальные координаты, то можно получить более простое выражение для монофазного силового распределения  [c.378]

Мы рассмотрели два класса систем во-первых, системы неконсервативные, но линейные, и убедились в том, что для этого класса систем периодические движения вообще невозможны во-вторых, мы рассмотрели системы консервативные (линейные и нелинейные) и убедились, что в этих системах возможны периодические движения, но что таких движений всегда возможно бесчисленное множество и амплитуда их целиком определяется начальными условиями. Между тем, как уже неоднократно указывалось, нас интересуют главным образом такие периодические движения, амплитуда которых определяется свойствами самой системы. Затем, нас в первую очередь интересуют такие системы, характер движений в которых не изменяется существенно при малых, достаточно общих изменениях самих систем консервативные системы, как только что было указано, не удовлетворяют и этому требованию. Мы увидим дальше, что лишь неконсервативные нелинейные системы являются адэкватными математическими моделями интересующих нас реальных физических систем, т. е. такими моделями, которые позволяют получать ответы на вопросы, интересующие физику колебаний. В настоящей главе мы познакомимся на примерах с двумя основными типами таких нелинейных и неконсервативных систем — с системами диссипативными и с системами автоколебательными.  [c.168]


Смотреть страницы где упоминается термин Колебания линейной диссипативной системы : [c.607]    [c.141]    [c.563]    [c.80]    [c.103]    [c.308]    [c.222]    [c.182]    [c.57]    [c.672]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.0 ]



ПОИСК



Диссипативных систем колебани

Колебания диссипативных систем

Колебания линейные

Колебания линейных систем

Линейные диссипативные системы

Система диссипативная

Система линейная



© 2025 Mash-xxl.info Реклама на сайте