Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диссипативных систем колебани

Отмеченные выше существенные особенности диссипативных систем, заключающиеся в том, что любые свободные колебания в системе, предоставленной самой себе, неизбежно затухают, приводят к тому, что для количественного рассмотрения свободных колебаний с учетом потерь нельзя без существенных оговорок пользоваться методом последовательных приближений, в котором за нулевое приближение принимается гармоническое движение. Данный метод может применяться лишь для ограниченных временных интервалов в случае достаточной малости затухания, и поэтому его использование с подобными оговорками существенно снижает его практическую ценность. Это заставляет нас в тех случаях, когда не удается найти прямое и точное решение дифференциального уравнения, описывающего систему, искать другие пути нахождения приближенного решения, учитывающего специфику нелинейных диссипативных систем и пригодного для любого интервала времени. Из возможных методов нахождения приближенного решения следует в первую очередь указать на метод поэтапного рассмотрения н, в частности, на кусочно-линейный метод, а также на метод медленно меняющихся амплитуд. Кусочно-линейный метод, пригодный для любых типов трения и нелинейности, основывается на замене общего рассмотрения движения всей системы в целом решением ряда линейных задач — уравнений, приближенно описывающих различные этапы движения системы, на которых ее можно считать более или менее  [c.45]


Для диссипативных систем, у которых знак ф у) обязательно совпадает со знаком у, наклоны фазовых траекторий во всех точках фазовой плоскости таковы, что сами траектории проходят внутрь окружности, которую можно провести через данную точку с центром в начале координат. Это справедливо для любой формы функции ф(г/), определяющей характер зависимости потерь от состояния системы, при условии, что система остается диссипативной. Такая окружность являлась бы фазовой траекторией нашей системы для ф( /) = 0, т. е. в отсутствие затухания. Эти соображения подтверждают заключение о том, что в случае диссипативной системы фазовые траектории соответствуют более или менее быстрому уменьшению амплитуды колебаний и имеют вид спиралей или сходных с ними кривых, стягивающихся в начало координат (состояние покоя).  [c.57]

Обратимся к особо важному случаю гармонического воздействия и из всего многообразия нелинейных диссипативных систем с одной степенью свободы выберем слабо нелинейные системы, в которых вынужденные колебания при таком воздействии также близки к гармоническим. Требование малости диссипации не столь уж принципиально, но поскольку нас интересуют в основном системы с отчетливо выраженными колебательными свойствами, а не апериодические, то мы в нашем рассмотрении ограничимся случаями небольшого затухания (малой диссипации).  [c.112]

Из выражения для А , ясно видна роль нелинейности сопротивления (Р) системы. Если Р О, т. е. если уменьшать нелинейность системы, то амплитуда параметрических колебаний будет постепенно увеличиваться, и в пределе дтя линейной системы должна обратиться в бесконечность, что согласуется с теорией параметрического возбуждения линейных диссипативных систем,  [c.165]

Для диссипативных систем чаще всего строят огибающую кривую свободных затухающих колебаний.  [c.222]

СВОБОДНЫЕ КОЛЕБАНИЯ ДИССИПАТИВНЫХ СИСТЕМ  [c.91]

Общее решение задачи о свободных колебаниях. Рассмотрим линейную диссипативную систему, движение которой описывается матричным уравнением (1) с симметричными матрицами А, В и С. Уравнение будет удовлетворено, если положить  [c.91]

Пример 3. В качестве тестового примера рассмотрим механическую диссипативную систему с двумя степенями свободы. Уравнения собственных колебаний имеют вид  [c.489]

В качестве причины взаимодействий статистического характера до сих пор приводился пример теплового движения частиц газа. Другими важными примерами служат влияние тепловых колебаний решетки, а также влияние хаотического электромагнитного излучения на атомную систему. К этим случаям также применима схема воздействия диссипативной системы на динамическую, тогда как обратное действие нас здесь не интересует, поскольку диссипативную систему мы считаем очень большой.  [c.101]

Диссипативной мы назвали динамическую систему, любое движение которой при t оо стремится к одному из ее устойчивых состояний равновесия. Из этого определения сразу же вытекают следующие дв свойства диссипативных систем 1) отсутствие замкнутых фазовы траекторий и соответственно отсутствие периодических колебаний 2) отсутствие фазовых траекторий, уходящих (при / -> схэ) в бесконечность, т.е. отсутствие неограниченно нарастающих движений.  [c.86]


В гл. 15-17 изучаются колебания в линейных и нелинейных системах (к правило, невысокого порядка), находящихся под действием периодически внешних сил. В главе 15 рассматривается действие синусоидальной внеш ней силы на диссипативную систему - нелинейный осциллятор с рас сеянием энергии. В гл. 16 исследуется синусоидальное воздействие н автоколебательную систему (в качестве характерного примера взят лам новый генератор с симметричной кубической характеристикой). Наконец в гл. 17 изучаются параметрические колебания, т.е. колебания, обуслов ленные периодическими изменениями параметров системы.  [c.263]

Виброзащитные устройства и их эффективность. Демпферы, динамические гасители и виброизоляторы образуют в совокупности виброзащитные устройства. Пассивными называют устройства, состоящие из инерционных, упругих и диссипативных элементов. Активные устройства могут кроме перечисленных содержать элементы немеханической природы и, как правило, обладают независимым источником энергии. Эффективность виброзащитных систем принято оценивать отношением величины какого-либо характерного параметра колебаний объекта с виброзащитным устройством, к величине того же параметра при отсутствии виброзащиты. Это отношение называется коэффициентом эффективности вибрационной защиты  [c.278]

Диссипативные силы. При колебаниях упругих систем происходит рассеяние энергии в окружающую среду, а также в материале упругих элементов и в узлах сочленения деталей конструкции. Эти потери вызываются силами неупругого сопротивления—диссипативными силами, на преодоление которых непрерывно и необратимо расходуется энергия колебательной системы или возбудителей колебаний. Для описания диссипативных сил используются характеристики, представляющие зависимость диссипативных сил от скорости движения масс колебательной системы или от скорости деформации упругого элемента. Вид характеристики определяется природой сил сопротивления. Наиболее распространенные характеристики диссипативных сил представлены на рис. 10.8.  [c.279]

В механической системе тел 1—2 с одной степенью свободы возникают вынужденные колебания под действием силового возмущения. Схемы механических систем в положении покоя показаны на рис. 243 — 245. Необходимые сведения о параметрах системы и силового возмущения приведены в табл. 63. Диссипативные свойства системы заданы логарифмическим декрементом колебаний системы.  [c.352]

Ограничивая качественное рассмотрение свободных колебаний в линейных и нелинейных диссипативных системах разобранными примерами, отметим, что в более сложных случаях, особенно для нелинейных задач, целесообразно пользоваться методом изоклин, построение которых позволяет составить представление об основных чертах фазового портрета исследуемой системы и, тем самым, о характере совершаемых ею движений. При этом, как уже указывалось, в диссипативных системах мы должны получить независимо от начальных условий такие движения, которые приводят систему к устойчивой особой точке — состоянию покоя, т. е. к диссипации всей энергии, связанной с изучаемым движением.  [c.55]

Как и исследование линейных систем, изучение вынужденных колебаний в идеализированных консервативных системах дает нам очень много ценных сведений о протекании самого явления в реальных диссипативных системах. Для нелинейных систем это, вероятно, еще более справедливо, так как для большого класса явлений в таких системах основным фактором, определяющим характер вынужденных процессов, служат именно нелинейные свойства элементов, а не наличие затухания, как было в линейных системах.  [c.98]

С учетом всех этих оговорок можно сформулировать задачу следующим образом требуется найти параметры (амплитуду и фазу) приближенно гармонического колебания, возбуждаемого в слабо нелинейной колебательной системе с малым затуханием, при заданной гармонической внешней силе. С подобной задачей мы встречаемся не только при рассмотрении механических систем, но и при анализе различных колебательных цепей в радиотехнических устройствах при наличии нелинейных диссипативных элементов (полупроводниковые приборы, радиолампы), а также при использовании ферромагнитных или сегнетоэлектрических материалов в катушках индуктивности и конденсаторах этих цепей.  [c.113]

Посмотрим теперь, как изменяются главные колебания консервативных систем под действием малых диссипативных сил ). Введем нормальные координаты 6 , в . В этих координатах  [c.265]

Вынужденные колебания и диссипативные силы. Свободные колебания возникают в том случае, когда систему выводят из положения равновесия и затем предоставляют самой себе. Однако часто наблюдаются такие колебания, при которых внешние силы действуют на систему не только в момент = О, но и в дальнейшем. Частота такого вынужденного колебания определяется тогда не собственными частотами системы, а частотой возмущающей силы. Что же касается вычисления амплитуд таких колебаний, то эта задача сильно упрощается, если пользоваться главными координатами, полученными при исследовании свободных колебаний.  [c.368]

Все наши рассуждения были до сих пор не вполне реальными, так как мы не учитывали диссипативных сил (сил трения). В большинстве физических систем эти силы пропорциональны скоростям движущихся точек и поэтому могут быть получены с помощью диссипативной функции З (см. 1.5). Рассмотрим сейчас влияние этих сил на свободные колебания.  [c.370]


Ссылка автора на теорему Ляпунова ошибочна, а его точка зрения на значение метода малых колебаний при рассмотрении частных практических вопросов может ввести читателя в заблуждение. Метод малых колебаний приводит к исчерпывающему ответу, если все корпи характеристического уравнения имеют действительные отрицательные части или в том случае, когда хотя бы один из них имеет положительную вещественную часть. Если же имеются корни, действительные части которых равны нулю, то нельзя судить об устойчивости и неустойчивости по первому приближению, так как все будет зависеть от членов более высокого порядка в уравнениях возмущенного движения. Если псе корпи чисто мнимые, то требуется дополнительное исследование. Обычно это встречается при исследовании устойчивости консервативных систем, по в этих случаях можно вывести необходимое заключение из анализа интеграла энергии. Если в рассмотрение входят диссипативные силы, что обычно и бывает при решении технических проблем, то можно потребовать, чтобы все корни характеристического уравнения имели отрицательные действительные части. В тех случаях, когда все же нельзя удовлетворить этому условию и когда входит, например, один нулевой корень, следует обратиться к исследованиям особых случаев" Ляпунова или изменить постановку задачи, что иногда бывает возможно.  [c.425]

Так же. как и при линейных колебаниях, можно различать нелинейно колеблющиеся системы — консервативные (ни из системы, нн в систему энергия не поступает), диссипативные (с течением времени происходи г уменьшение суммы потенциальной и кинетической энергий системы за счет перехода энергии в другие виды или за пределы колеблющейся системы) и, наконец, системы, в которые при их колебаниях поступает энергия. Различают также свободные и вынужденные нелинейные колебания. Однако вследствие нелинейности последние представлять в виде суммы общего решения однородного уравнения и частного решения неоднородного уравнения нельзя.  [c.220]

Таким образом, даже при резонансе, вызванном относительно большой возбуждающей силой (1000 кГ), вынужденные относительные колебания приводов имеют незначительные амплитуды. Это объясняется большим диссипативным действием гидравлических турбомуфт на упругую систему, обладающую низкими собственными частотами колебаний. В связи с этим при проектировании многоприводных конвейерных установок не следует опасаться возникновения опасных относительных колебаний приводов.  [c.296]

Значение упругих гироскопических систем с распределенными и сосредоточенными массами в современном машиностроении продолжает возрастать. Изучение их динамики во многих случаях приводит к рассмотрению систем квазилинейных дифференциальных уравнений в частных производных с квазилинейными краевыми условиями [1]. Б реальных объектах среди действующих сил всегда присутствуют также и диссипативные силы. Однако в большинстве случаев при исследовании колебаний упругих систем силы демпфирования учитывают только в зонах резонанса. Вне этих зон ими обычно пренебрегают. Исключение составляют враш ающиеся системы, где внутреннее трение может служить причиной потери устойчивости в закритической области [2] и привести к возбуждению автоколебаний 3].  [c.5]

Однако так как жидкости и системе присущи диссипативные свойства, то для реальных систем неограниченно развивающихся колебаний не будет, поэтому практическое значение имеют только положительные значения чисел Фруда.  [c.44]

Для учета диссипации энергии при колебаниях механических систем широко применяют комплексную гипотезу неупругого сопротивления Е. С. Сорокина [80]. По этой гипотезе диссипативные силы зависят от величины деформации упругих связей механической системы и сдвинуты во времени по сравнению с фазой деформации на 90°, а по амплитудному значению пропорциональны векторам упругих реакций  [c.341]

Последний подблок обработки результатов интегрирования (см. рис. 106, в) предназначен для оценки притока и рассеяния энергии в режиме вынужденных колебаний, а в режиме свободных колебаний для контроля точности моделирования динамических процессов. В подблоке сопоставляются первые производные полной энергии каждого из главных направлений пространства по времени, которые получены в результате моделирования, с соответствующими компонентами векторов диссипативных функций, не участвовавшими в операциях моделирования динамических процессов дискретных механических систем.  [c.356]

Следовательно, синергетика логически связана с теорией нелинейных колебаний и волн, которая ыожет служить общей теорией структур в неравновесных средах. В связи с этим и методы, используемые при изучении нелинейных колебаний и волн, могут применяться и для описания структур в неравновесных средах. Примеры применения теории нелинейных колебаний при математическом моделировании диссипативных систем в окрестностях точки бифуркации даны в [13, 14].  [c.253]

Точное решение задачи о свободных колебаниях в нелинейных диссипативных системах в подавляющем большинстве случаев наталкивается на весьма большие и очень часто неразрешимые трудности. Поэтому (как и в случае консервативных систем) приходится искать методы приближенного расчета, которые с заданной степенью точности позволили бы найти количественные соотношения, определяющие движения в исследуемой системе при заданных начальных условиях. Из ряда возможных приближенных методов рассмотрим в первую очередь метод поэтапного рассмотрения. Мы уже указывали, что этот метод заключается в том, что в соответствии со свойствами системы все движение в ней заранее разбивается на ряд этапов, каждый из которых соответствует такой области изменения переменных, где исследуемая система с достаточной точностью описывается или линейным дифференциальным уравнением, или нелинейным, но заведомо интегрируемым уравнением. Записав решения для всех выбранных этапов, мы для заданных начальных условий находим уравнение движения для первого этапа, начинающегося с заданных начальных значений. Значения переменных 1, х, у = х) конца первого этапа считаем начальными условиями для следующего этапа. Повторяя эту операцию продолжения решения от этапа к этапу со сшиванием поэтапных решений на основе условия непрерывности переменных х и у = х, мы можем получить значения исследуемых величин в любой момент времени. Если разбиение всего движения системы на этапы основано на замене общей нелинейной характеристики ломаной линией с большим или меньшим числом прямолинейных участков, то подобный путь обычно называется кусочно-линейным методом. В этом случае на каждом этапе система описывается линейным дифференциальным уравнением. Условие сшивания решений на смежных этапах — непрерывность х я у = х — необходимо и достаточно для системы с одной степенью свободы при наличии в ней двух резервуаров энергии и двух форм запасенной энергии (потенциальной и кинетической, электрической и магнитной). Существование двух видов резервуаров энергии является также необходимым условием для возможности осуществления в системе свободных колебательных движений, хотя для диссипативных систем оно недостаточно. При большом затухании система и с двумя резервуарами энергии может оказаться неколебательной — апериодической.  [c.60]


Так как тормозная тяга и окружающая среда, включая нить подвеса, представляют собой диссипативную систему, то в ходе испытаний сохранялись неизменными система подвеса, система крепления ВИП, а также состав н расположение оборудования в помещении, где проводились испытания. Поме-н енне отапливалось, колебания температуры не превышали 5°С от номинальной +20°С, влажность и атмосферное давление в нем не контролировались.  [c.13]

Том второй посвящен нелинейным колебаниям механических систем. В нем приведены сведения о нелинейных колебаниях систем и рассмотрены их основные модели (консервативные, диссипативные, автоколебательные системы, системы с заданным внешним воздействием). Изложены. математические. методы изучения нелинейных колебаний, в то.м числе важнейшие методы исследования устойчивости. В отличие от известных руководств по нелинейным колебаниям то.м содержит раздел, в котором рассмотрены задачи о взаимодействии нелинейных колебательных систем с источниками возбуждения, проблемы синхронизации колебательных и вращ,атель-ных движений, виброперемещение и виброреология, теория виброударных и электромеханических систем, колебания сосудов с жидкостью, колебания твердого тела на нелинейно-упругих опорах.  [c.12]

Определение термина диссипативная система см. в гл. I. О вынужденных колебаниях диссипативных систем см. в гл. V. Ниже приведены сведения, относящиеся к свободным затухающим колебаниям дисснпативпых систем с одной степенью свободы, когда нелинейность обусловлена только силами сопротивления, Предполагаем, что силы сопротивления обладают отрицательной мощностью, т. е. F- q > О, где q) — уравнение характеристики силы сопротивления (/ [ равно взятой с противоположным знаком обобщенной силе сопротивления). В пп. 1—4 рассмотрены случаи, когда силы сопротивления определяются только скоростями системы, а в п,. 5 — случаи, когда силы сопротивления зависят также от координат системы (позиционное трение, внутреь нее трение).  [c.150]

Виброударной называют механическую систему, колебания которой сопровождаются систематическими соударениями ее элементов [5, 6, 44]. Динамические процессы, сопровождающие фунющонирование виброударной системы, называют виброударными. Виброударные процессы характеризуются резкими изменениями упругих и диссипативных сил, происходящими при контактах срударяющихся эле.ментов. Поэтому виброударные системы относят к классу сильно нелинейных систем.  [c.381]

Мы уже видели, что хаотическое движение может возникать в диссипативных потоках с размерностью фазового пространства не меньше трех, или в соответствующих этим потокам обратимых отображениях Пуанкаре, размерность которых не менее двух. В общем случае хаотическое движение имеет место лишь для узких интервалов параметров. В этом существенное отличие от гамильтоновых систем, где хаотическое движение сохраняется, как правило, в широком диапазоне параметров. Ниже описаны два критерия локальной стохастичности для диссипативных систем. В п. 7.3а метод квадратичной ренормализации применяется к двумерным обратимым отображениям и показывается сходимость последовательности бифуркаций удвоения периода и возникновение локального хаотического движения. В п. 7.36 получен критерий перехода к хаотическому движению вблизи сепаратрисы на примере вынужденных колебаний осциллятора с затуханием. Наконец, в п. 7.3в pa ютpeнa модель ускорения Ферми с диссипацией и используется описание хаотического движения с помощью уравнения ФПК. Это уравнение позволяет получить первое приближение для инвариантного распределения на странном аттракторе.  [c.453]

Интенсивные исследования нелинейных диссипативных систем с трехмерным фазовым пространством позволили в последние годы обнаружить совершенно новый класс автоколебательных систем. Это автогенераторы шума — диссипативные системы, совершающие незатухающие хаотические колебания, колебания со сплошным спектром за счет энергии нешумовых источников. Замечательно, что даже столь привычный нам осциллятор (14.10) в широкой области параметров является автогенератором шума. Открытие стохастических автоколебаний — это, пожалуй, наиболее яркое достижение современной теории. Почему же оно появилось только сейчас Дело в том, что со времен Пуанкаре до недавнего времени предельный цикл был единственным примером нетривиального притягивающего множества в фазовом пространстве нелинейных диссипативных систем. Правда, уже довольно давно были обнаружены сложные многопетлевые предельные циклы. Устойчивые многопериодические движения были обнаружены при исследовании синхронизации автогенераторов.  [c.305]

Сочетание ВУ с устройством прямого измерения изменяет все характеристики весов чувствительность, период колебаний, условия демпфирования, уравнение движения [13]. Для вывода уравнения движения воспользуемся уравнением Лагранжа, рассматривая весы как динамическую диссипативную систему с одной степенью свободы. Изменением углов наклона тяг, вследствие их малости, при колебаниях весов можно пренебречь и за обобщенную координату принять угол отклонения коромысла, а за обобщенную скорость производную этого угла по времени. Силы сопротивления жидкостного успокоителя колебаний и силы сопротивления ножевых опор принимаем пропорциональными первой степени скорости, коэффициент жесткости упругого элемента силоизмерителя считаем постоянным, не зависящим от деформации. С учетом этого получим дифференциальное уравнение колебаний при внутридиапазонном уравновешивании  [c.82]

Работы Фрелиха находятся в тесной связи с представлениями о высокой чувствительности некоторых биологических систем, особенно биомембран, к слабым электрическим и электромагнитным полям. Эти системы могут накапливать сигнал энергии и таким образом превышать тепловой Больцмановский шум (кТ), они могут обеспечиваться сравнительно малыми энергиями активации и при этом — быть защищены от тепловых флуктуаций [18]. С точки зрения эволюции, биологическая мембрана может быть рассмотрена как одна из наиболее элементарных диссипативных систем [61 ], которая является химически накачанной, открытой и устойчивой, а энергия, поставляемая ей, обеспечивается последовательностью обратных связей, как накопленного результата осцилляторных биохимических реакций [63 ]. Последние являются источником когерентных колебаний в биологической системе, которые могут переходить в низшие колебательные состояния, характеризующиеся высокой степенью пространственной когерентности по типу бозе-конденсации фононов. Общая теория когерентных колебаний в биологических системах была развита Фрелихом [34-38 ], где он рассматривает коллективные химические осцилляции, в которых белки, окружающие ионы и структурированная вода являются главными составляющими и осциллируют между сильным электрически полярным возбужденным состоянием и слабым полярным фоновым состоянием. Слабая химическая осцилляция в них связана с соответствующими электрическими колебаниями. Сильное электрическое взаимодействие между высокополярными состояниями в связи с сильным сопротивлением электрической проводимости налагает лимит-циклические ограничения на эти полярные системы, делая осцилляции крайне чувствительными к внешним электрическим и химическим влияниям. Ответы на них носят кооперативный характер, нелинейны и часто бывают сильными в ответ на сверхслабые стимулы [18 ].  [c.23]

Глава VII этой книги посвящена теории колебаний, и здесь дается четкое доказательство того, что матрицы Т а V могут быть диагонализированы одновременно. Этот вопрос изложен здесь значительно яснее, чем в книге Вебстера. Наиболее ценными являются последние параграфы этой главы, посвященные влиянию связей и колебаниям вблизи режима установившегося движения. 94 главы VIII посвящен колебаниям при наличии диссипативных сил и содержит изложение этого вопроса лишь для систем с двумя степенями свободы.  [c.376]

Нахождение комплексных корней характеристического уравнения и модальных векторов неконсервативной системы представляет собой весьма трудоемкую операцию. Линеаризованные, реконсер-вативные модели механических крутильных систем приводов машин являются обычно определенно-диссипативными системами с малым трением [81], расчет свободных колебаний которых может быть упрощен. Рассмотрим нормальные координаты 8у (у = 1, 2,. . ., п)  [c.163]

Конкуренция мод — подавление одних мод другими в автоколебат. системах — связана с тем, что конкурирующие моды черпают энергию на покрытие диссипативных расходов из общего источника. В результате одни моды создают дополнит, нелинейное затухание для других. Благодаря эффектам конкуренции и взаимной синхронизации колебаний в автоколебат. системах с большим числом степенен свободы (или даже бесконечным числом — в случае распределённых систем) возможно установление из нач. шума (нарастающих в результате развития линейных неустойчивостей флуктуаций на разл. частотах) реж]1ла регулярных периодич. А. Эффекты конкуренции и синхронизации оказываются принципиальными и для появления высокоорганизованных структур в нелинейных неравновесных средах.  [c.14]

Понятие Д.ф. употребляется в применении и к ие-механич. систе.мам, когда ур-ння движения могут быть записаны в. лагранжевой форме. Панр., колебания электрич. тока /, в г-м контуре системы контуров могут быть записаны как вышеприведённые ур-ния Лагранжа, в к-рых иод q нужно понимать заряд е,-па обкладках г-го конденсатора, иод ( //—соответствующий ток l, deiidt, а под Д. ф. величину Я = где Я, —омическое сопротивление г-го контура. Тогда диссипативный член в правой части ур-ния Лагранжа будет равен = — дВjde . Он характеризует в данном случае переход анергии упорядоченного тока в джоулеву теплоту.  [c.653]



Смотреть страницы где упоминается термин Диссипативных систем колебани : [c.345]    [c.45]    [c.268]    [c.141]    [c.227]    [c.220]    [c.243]    [c.162]   
Аналитическая динамика (1999) -- [ c.309 ]



ПОИСК



Вынужденные колебания в диссипативных системах

Вынужденные колебания диссипативных упругих систем

Вынужденные колебания установившиеся в диссипативных системах

ДЕМПФИРОВАНИЕ КОЛЕБАНИЙ Диссипативные характеристики механических систем

Исследование свободных колебаний в нелинейных диссипативных системах с одной степенью свободы методом поэтапного рассмотрения

Качественное рассмотрение свободных колебаний в диссипативных системах при различных законах трения

Колебание диссипативной системы около положения абсолютного равновесия

Колебания в диссипативных системах с степенями свободы

Колебания векторные нелинейные диссипативной систем

Колебания диссипативных систем

Колебания диссипативных систем

Колебания диссипативных упругих систем

Колебания линейной диссипативной системы

Колебания линейной диссипативной системы конечным числом степеней свободы вынужденные

Колебания линейной диссипативной системы с конечным числом степеней свободы (М.М.Ильин)

Рассмотрение вынужденных колебаний в слабо нелинейных диссипативных системах при гармоническом силовом воздействии методом гармонического приближения

Свободные затухающие колебания системы при силе сопротивления, пропорциональной первой степени скорости. Диссипативная функция Релея

Свободные колебания в диссипативных системах с вязким трением

Свободные колебания диссипативных систем

Система диссипативная

Собственные колебания системы под действием потенциальных, гироскопических и диссипативных сил

Траектории фазовые автоколебани свободных колебаний механических систем нелинейных диссипативных

Траектории фазовые свободных колебаний механических систем нелинейных диссипативных



© 2025 Mash-xxl.info Реклама на сайте