Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебательный Определение

Уровни поступательной энергии могут быть приближенно определены, если рассматривать молекулу как свободную частицу, движение которой ограничено заданной областью пространства. Вращательные энергетические уровни могут быть приближенно оценены, если рассматривать вращающуюся молекулу как жесткую систему определенных размеров. Колебательные энергетические уровни могут быть приближенно определены, если считать различные виды колебаний гармоническими. В действительности различные виды энергии в молекуле не являются строго независимыми, когда все виды движения происходят одновременно. Например, расстояния между атомами и углы между связями в молекуле не фиксированы, но изменяются около некоторых равновесных значений вследствие колебательных движений длина равновесной связи сама по себе — функция вращательной энергии силы притяжения между молекулами будут изменять и вращательную, и колебательную энергии. Эти различные эффекты приводят к взаимодействию или возмущающему влиянию одного вида энергии на другой. Поправки на такое влияние могут быть сделаны только для более простых молекул, хотя они обычно относительно малы.  [c.70]


Для определения момента инерции У данного тела относительно некоторой оси АВ, проходящей через центр масс О тела, его подвесили жестко скрепленными с ним стержнями АО и ВЕ, свободно насаженными на неподвижную горизонтальную ось ОЕ, так, что ось АВ параллельна ОЕ приведя затем тело в колебательное движение, определили продолжительность Т одного размаха.  [c.285]

Быстровращающиеся детали машин не могут быть идеально сбалансированы и в практических случаях всегда возникают инерционные силы дисбаланса, уводящие вращающуюся деталь (вал, ротор) от оси Вращения. При этом, как показывает опыт, при определенных угловых скоростях вращения, называемых критическими, имеют место наибольшие прогибы системы и наиболее сильная ее раскачка. При дальнейшем увеличении числа оборотов раскачка уменьшается. Этому явлению можно дать довольно простое объяснение, рассматривая упругую систему как колебательную, а силы дисбаланса — как возмущающие силы.  [c.495]

Такое описание движения тяжелого симметричного волчка носит чисто качественный характер и является приближенным. В действительности в случае Лагранжа регулярная прецессия возникает лишь при вполне определенных начальных условиях. В иных случаях возникает более сложное движение угловая скорость прецессии не сохраняет постоянного значения, а ось волчка не только прецессирует вокруг вертикали, но и совершает колебания в вертикальной плоскости. Это колебательное движение соответствует изменению угла 0 и называется нутацией.  [c.206]

Эта глава, которая является вводной, содержит изложение основных понятий и положений, необходимых для изучения нелинейных колебаний. Прежде всего следует сказать несколько слов о колебательных явлениях вообще и о нелинейных колебаниях в частности. Общие закономерности, которыми обладают колебательные процессы в системах различной физической природы, составляют предмет науки, получившей название теории колебаний. Под колебательным явлением принято понимать либо то, что связано с фактом установившегося движения в рассматриваемой системе, либо то, что связано с процессом перехода от одного установившегося движения к другому. Установившееся движение характеризуется повторяемостью и определенной устойчивостью (смысл последнего понятия будет уточнен ниже). Переходные процессы характеризуются тем установившимся движением, к которому они приближаются. Множество переходных процессов данного установившегося движения образует его область притяжения. Смена установившихся движений, которая происходит в результате изменения какого-нибудь физического параметра рассматривае.мой системы при его переходе через некоторое значение, называется бифуркацией. Если при этом смена установившихся движений происходит достаточно быстро, т. е. скачкообразно, то говорят о жестком возникновении нового режима. В противном случае возникновение нового режима называют мягким . Колебательные явления, возникающие в так называемых нелинейных системах, называются нелинейными колебаниями. Однако, прежде чем определить, что такое нелинейная система, рассмотрим более общий класс систем, называемых динамическими системами.  [c.7]


Выбор посадок колец подшипников качения на вал и в корпус зависит от значения, направления и характера нагрузок, типа II размеров подшипника, условий эксплуатации, метода регулирования зазоров и условий сборки. Различают местное, циркуляционное и колебательное нагружения неподвижных колец местная нагрузка воспринимается ограниченным участком дорожки качения и передается на ограниченный участок корпуса циркуляционная нагрузка воспринимается всей окружностью дорожки качения колебательная нагрузка распределяется на определенный участок кольца.  [c.321]

Если точка переменит свое движение на возвратное, например, если точка совершает колебательные движения на каком-либо участке кривой, то обычно не меняют положительного направления естественных осей, а приписывают скорости знак минус, если точка движется н сторону уменьшения дуговой координаты. Так в естественном способе задания движения точки, вместо модуля скорости появилась алгебраическая скорость , по абсолютной величине равная модулю, но имеющая собственный знак ( + или — ). Это обстоятельство сказывается и на определении касательного ускорения точки при естественном способе задания ее движения.  [c.39]

Фазовая плоскость особенно удобна для изображения колебательных процессов. При колебании механической системы координаты состояния не выходят за определенные пределы, поэтому вся картина движения системы в течение неограниченного времени занимает ограниченную часть фазовой плоскости.  [c.265]

К линейным динамическим системам с постоянными коэффициентами сводятся также малые колебания динамических систем. В рамках механики это такие распространенные в технике явления, как колебательные движения механизмов с малыми амплитудами и скоростями, важная роль изучения которых определяется тем, что в определенных условиях они могут вызывать разрушение систем.  [c.200]

Уравнение частот, как биквадратное уравнение, в общем случае имеет два значения для квадрата частоты . Для системы с двумя степенями свободы, если квадратичные формы для кинетической и потенциальной энергий удовлетворяют условиям определенной положительности (59) и (61), то эти условия необходимы и достаточны для того, чтобы оба решения для были действительными и положительными. Только для действительных и положительных значений обобщенные координаты qx и <72 выражаются синусоидальной зависимостью от времени. Для значений , не удовлетворяющих этим условиям, движение системы не является колебательным.  [c.436]

Для определения закона колебательного движения определим постоянные С, и Сг- Пусть в момент, когда t = О, положение звена характеризуется перемещением Xq. Тогда начальная скорость  [c.304]

Если собственные колебания соизмеримы с вынужденными и не гасятся, то функция, описывающая закон колебательного движения, получится из выражения (24.17) определением постоянных Сх и Са при рассмотрении начальных условий. Если в начальный  [c.306]

Атомы (ионы) располагаются на таком расстоянии один от другого, при котором энергия взаимодействия минимальна. Этому состоянию соответствует равновесное состояние a . Сближение атомов (ионов) на расстояние, меньшее а , или удаление их на расстояние, большее do, осуществимо лишь при совершении определенной работы против сил отталкивания и притяжения. Поэтому в металле атомы располагаются закономерно, образуя правильную кристаллическую решетку, что соответствует минимальной энергии взаимодействия атомов. Ее следует представлять как мысленно проведенные в пространстве в направлении трех осей координат прямые линии, соединяющие ближайшие атомы и проходящие через их центры, около которых они совершают колебательные движения. Проведенные линии образуют объемные фигуры правильной геометрической формы. Таким образом, элементарная кристаллическая ячейка - это наименьший объем кристалла, дающий представление об атомной структуре металла во всем объеме.  [c.274]


Стержни с шарами на концах обладают определенной индуктивностью и электроемкостью и представляют собой электрический колебательный контур. Поместив на некотором расстоянии от этого контура контур из проволоки с двумя шарами на концах, Герц обнаружил, что при проскакивании искры между шарами колебательного контура возникает искра и между шарами на концах витка провода (рис. 240). Следовательно, при электрических колебаниях в открытом контуре в пространстве вокруг него образуется вихревое электрическое поле. Это поле создаем электрический ток во вторичном контуре.  [c.248]

Составим дифференциальные уравнения колебательного движения, предполагая сначала, что, кроме восстанавливающих сил, определенных потенциальной энергией П, на материальную систему действуют силы сопротивления, определяемые функцией рассеяния R. Далее будет рассмотрен более общий случай сил сопротивления.  [c.257]

Мы получили дифференциальное уравнение движения физического маятника, изображающего колебательное движение гироскопа. Очевидно, эти колебания происходят относительно определенного положения оси гироскопа 0 , соответствующего положению статического равновесия физического маятника. Указанное положение оси гироскопа соответствует углу 0, равному нулю. Это значит, что в положении равновесия ось гироскопа параллельна оси вращения Земли.  [c.447]

Величина f называется относительными потерями энергии или, сокращенно, потерями. Вместо величины / иногда оперируют с добротностью резонатора Qr. Под добротностью колебательной системы понимают отношение энергии, запасенной в системе, к энергии, выходящей из системы за один период колебаний 2.л/со. Легко показать, что для оптических резонаторов добротность, определенная таким образом, связана с потерями / соотношением  [c.781]

Зеркальная симметрия интенсивностей поглощения и флуоресценции вытекает из зеркальной симметрии спектров. Интенсивности поглощения или флуоресценции с определенными частотами, соответствующими переходам между энергетическими уровнями нормального и возбужденного состояний, зависят от распределения молекул по этим уровням (от степени заселенности уровней обеих систем) и величины вероятностей переходов между уровнями этих систем. Поэтому симметрия интенсивностей требует вполне однозначных соотношений между распределением молекул по колебательным уровням нормального и возбужденного состояний и определенных соотношений вероятностей прямых и обратных электронных переходов.  [c.253]

С помощью первых лучше понимаются и запоминаются законы сохранения. В немногочисленных задачах на определение уравнений движения системы тел рассматривается, как правило, их колебательное движение. Решаются эти задачи после составления диф. уравнения движения - то есть после решения задачи второго типа. Далее каждая из этих задач является обычной второй задачей динамики.  [c.120]

Обратим внимание на определенное сходство рассеяния Мандельштама — Бриллюэна с комбинационным рассеянием света на молекулах. Пусть о — частота колебаний молекулы (если молекула двухатомная, то эта частота единственная молекулы с тремя (и более) атомами характеризуются несколькими колебательными частотами). При рассеянии света частоты со на такой молекуле возможен как переход молекулы на более высокий колебательный уровень, так и переход ее на более низкий колебательный уровень. В первом случае частота рассеянного света равна (О—О)о, э во втором — (о- -соо. Соответственно говорят о стоксовом и антистоксовом компонентах комбинационного рассеяния света.  [c.154]

Динамическая теория решетки. Метод, предложенный для вычисления теплоемкости Борном и Карманом [6—8], основан на расчете действительного вида колебательного спектра при определенных предположениях о характере межатомных сил. Частоты собственных колебаний решетки вычисляются здесь как корни секулярного уравнения, получающегося из определителя преобразования к нормальным координатам. Степень такого уравнения есть 3. (5—число атомов в одной ячейке), а число уравнений равно числу ячеек. Поэтому все-таки для окончательного вычисления g(v) должны быть развиты соответствующие приближенные методы. Борн и Карман [8] использовали метод, в основном подобный тому, каким мы пользовались при выводе формул (5.1) и (5.2), и показали, что их результаты подтверждают закон Дебая для низких температур, согласно которому теплоемкость  [c.320]

Среди разнообразных физических явлений широко распространены колебательные явления, обладающие общими чертами и даже подчиняющиеся общим закономерностям, несмотря на то, что эти колебательные явления имеют различную природу (например, механические и электрические колебания). Среди этого обширного класса явлений к механике относятся механические колебательные движения, подчиняющиеся уже известным нам законам механики. Общая черта всех колебательных движений состоит в том, что они представляют собой движения, многократно повторяющиеся или приблизительно повторяющиеся через определенные промежутки времени.  [c.587]

Резонансными свойствами, т. е. способностью особенно сильно отзываться на колебания одной определенной частоты, обладают только системы с малым затуханием. Поэтому для-использования явления резонанса, например для измерения частоты колебаний, необходимо применять резонаторы с возможно малым затуханием. Наоборот, в тех случаях, когда явление резонанса играет вредную роль и его необходимо устранить, следует по возможности увеличивать затухание колебательной системы.  [c.611]

Легко понять, почему у упругой гантели появилась лишняя степень свободы по сравнению с жесткой гантелью. В жесткой гантели расстояние между шарами не может изменяться в упругой гантели расстояние между шарами может изменяться н появляется еще одна степень свободы. Однако эта степень свободы не допускает любых движений шаров гантели, так как координата, определяющая положение шаров гантели относительно центра тяжести, может изменяться не по произвольному, а только по вполне определенному (гармоническому) закону. Значит, эта последняя степень свободы является ограниченной степенью свободы . Поскольку эта степень свободы допускает только колебательные движения, она называется колебательной степенью свободы .  [c.647]


Поэтому мы ограничимся описанием только некоторых простейших типов колебаний молекул, характер которых может быть определен при помощи простых соображений, и при этом ограничимся только одной моделью молекулы, именно трехатомной линейной молекулы, в которой все три атома в недеформированной молекуле лежат на одной прямой и на равном расстоянии друг от друга (рис. 423). Прежде всего определим число типов колебаний, которые могут происходить в такой молекуле. Общее число степеней свободы системы, состояш,ей из п атомов, если эти атомы не связаны жестко между собой, равно 3/г (так как каждый атом обладает тремя степенями свободы). Но если атомы связаны между собой упругими силами, то часть этих степеней свободы превращается в колебательные степени свободы. А так как  [c.648]

Таким образом, мы обнаружили множество колебаний одинакового типа и периода. Между тем у нас остались незаполненными только две колебательные степени свободы. Как согласовать между собой эти как будто противоречащие друг другу результаты Дело в том, что колебательной степенью свободы мы называем такую степень свободы, с которой связано одно независимое колебание определенной формы и частоты. Это значит, что характер колебания, связанного с данной колебательной степенью свободы, никак не зависит от того, происходит ли другое такое же колебание, связанное с другой степенью свободы. Рассмотренные нами колебания, вызывающие нарушение линейности молекулы, будут независимы в указанном выше смысле, только если два таких колебания происходят в двух взаимно перпендикулярных плоскостях (так как только при этом условии смещения двух атомов от оси молекулы будут происходить независимо). Таким образом, мы обнаружили два независимых колебания, вызывающие нарушение линейности молекул, которые как раз занимают два места, оставшиеся незаполненными из общего числа колебательных степеней свободы.  [c.650]

В стержне кратковременный начальный импульс все время движется как целое, без изменения формы. В системе с одной степенью свободы такой кратковременный импульс не может распространяться без искажения формы, так как под действием пружины груз большой массы только постепенно набирает скорость, т. е. импульс размывается. Поэтому в системе с одной степенью свободы, где импульс не может двигаться как одно целое, представление о движении энергии становится мало наглядным, а понятие скорости движения энергии — не вполне определенным. Но, как показано выше, физическая картина качественно остается прежней собственные колебания в системе с одной степенью свободы сопровождаются перемещением энергии в пределах колебательной системы, и эти перемещения происходят со скоростями того же порядка, как в стержне, имеющем длину, массу и упругость, соответствующие свойствам рассматриваемой системы с одной степенью свободы.  [c.703]

Вследствие отражения звуковых волн у концов трубы столб воздуха, заключенный в трубе конечной длины и диаметра, малого но сравнению с длиной волны, как и стержень, представляет собой одномерную колебательную систему, обладающую определенными нормальными колебаниями — основным тоном и гармоническими обертонами. Частоты этих колебаний и распределение их амплитуд вдоль трубы, а также возникновение резонанса при вынужденных колебаниях определяются совершенно теми же условиями, что и в случае стержня, причем закрытый конец трубы аналогичен закрепленному концу стержня, а открытый конец трубы — свободному 154).  [c.734]

Сварочный осциллятор представляет собой искровой генератор затухающих колебаний. Он содержит (рис. 75, а) низкочастотный поит.т пающий трансформатор ПТ, вторичное напряжение которого достигает 2—3 кВ, разрядник Р, колебательный контур, состав-леппый из емкости 6 , индуктивности Lk, обмотки связи и блокировочного ] опдепсатора С(. Обмотки и L образуют высокочастотный трансформатор ВТ. Вторичное напряжение ПТ ъ начале полупериода заряжает конденсатор Си и при достижении определенной величины вызывает пробой разрядника Р. В результате колебательный коптур Ь Ск оказывается закороченным и в нем возникают затухающие колебания с резонансной частотой  [c.138]

Численные значения поступательных, вращательных, колебательных и электронных энергетических уровней, определенных по спектроскопическим данным или вычисленных с помощью квантовой механики, обычно выражают относительно самого низкого или основного уровня молекулы. Если такие значения используют для вычисления внутренней энергии, полученная внутренняя энергия представляет собой избыточную энергию относительно основного состояния системы, когда все частицы находятся на самом низком энергетическом уровне при температуое абсолютного нуля. Для процессов, в которых общее число частиц данных молекулярных объектов остается постоянным, изменения внутренней энергии могут быть вычислены без сведений об основном состоянии. Однако если число частиц данных молекулярных объектов изменяется, как в химической реакции, то для вычисления изменения внутренней энергии процесса должна быть известна разность между основными состояниями различных соединений.  [c.115]

Присадка подается короткими возвратно-поступательными движениями и должна находиться под возможно меньшим углом к изделию. Конец прутка опирается на край расплавленной ванны. Однопроходная сварка выполняется без колебательных движений. Присадочная проволока берется того же состава, что и основной металл. Поверхность свариваемого изделия и присадочной проволоки подготавливается под сварку. Для сварки применяется Аг марки Б ГОСТ 10157—62 (Аг 99,96%). Сварка вольфрамовым электродом ведется на переменном токе при определенных режимах, указанных в табл. 6. При стыковой сварке металла толщиной 1—1,5 мм с отбортовкой без присадки сила тока снижается на 10—15%.  [c.102]

Для ускорения темпа укладки трубопроводов процесс сварки расчленяют на ряд последовательных операций. При поточно-расчлененном методе одновременно работают звено сборщиков и несколько звеньев сварщиков. Так, применительно к укладке трубопровода диаметром 1420 мм каждый из четырех сварщиков звена выполняет только свой определенный участок слоя. Два сварщика с лестниц-стремянок ведут сварку верхней полуокружности трубы, а два других спаривают нижнюю полуокружность трубы. Впереди движется звено сборп1,иков-свар)циков, собирающее стыки с помощью внутреннего центратора, это же звено выполняет сварку корневого шва методом опирания электрода на кромки без колебательных движений, что обеспечивает образование обратного валика, исключающего необходимость подварки корня шва внутри трубы. После-дуюпгие слои выполняют с поперечными колебаниями электрода.  [c.307]

Физическил1 маятником называют твердое тело, обладающее горизонтальной осью вращения, вокруг которой оно совершает колебательные движения под действием своего веса (рис. 12.4). Положение маятника полностью определяется углом ф его отклонения от положения равновесия, поэтому для определения закона движения маятника достаточно найти зависимость угла ср от времени. Уравнение  [c.182]

Периодическая возмущающая сила вызывает вынужденные колебания материальной точки. Если возмущающая сила не является периодической функцией времени, то она вызывает также непериодическое движение, К этому выводу можно прийти на основании содержания 197 первого тома. Обращаем внимание на то, что при рассмотрении колебаний материальной точкй исходные предположения приводили к определению закона движения точки из линейного дифференциального уравнения. Далее будем иногда называть, как и в предыдущем параграфе, материальные системы, закон движения которых определяется из системы линейных дифференциальных уравнений, линейными системами и соответствующие колебательные движения — линейными колебаниями.  [c.276]


В зависимости от соотношения амплитуд, частот и начальных фаз этих колебаний получаются те или другие кривые. Отсюда вытекают практические применения этих кривых в акустике, оптике, электротехнике и механике для изучения колебательных движений. Проектируя след зайчика или вообще колеблющуюся прямолинейно точку на фотопластинку, соверщающую в свою очередь определенное гармоническое колебание в перпендикулярном направлении, анализируют полученную фигуру Лиссажу и по ней определяют амплитуды, частоты и фазы составляющих взаимно перпендикулярных гармонических колебаний. Таково, например, применение фигур Лиссажу в катодном осциллографе и других приборах.  [c.154]

Общий признак всех колебательных движений состоит в том, что они представляют собой движения, многократно повторяющиеся через определенные промежутки времени. При изучении непов-торяющихся движений определяются преимущественно положе-  [c.256]

В качестве еще одного примера рассмотрим спектры поглощения и люминесценции молекулы красителя родамина 6G. Молекулярные оптические спектры обусловлены значительно более сложной картиной переходов, нежели спектры атомов или ионов. В этом случае начальное и конечное состояния представляют собой не отдельные электронные уровни, а совокупности колебательных и вращательных уровней, каждая из которых соответствует определенному электронному состоянию молекулы. Чем сложнее молекула, тем богаче указанная совокупность колебательно-вращательных состояний, тем плотнее расположены уровни в этой совокупности. Все это объясняет, почему спектры поглощения н люминесценции молекул красителей обычно не обнаруживают тонкой структуры и характеризуются большой шириной (порядка 0,1 мкм). Вид этих спектров для молекулы родамина 6G приведен на рис. 8.5, а (1—спектр поглощения, 2 — спектр люминесценции). Рисунок хорошо ИЛЛЮСТ- fy 1  [c.193]

Группа 16. а) Медь. Результаты отдельных экспериментов для меди неплохо согласуются друг с другом. Результаты, полученные Эстерманом и др. [60], несколько превышают средние значения это объясняется скорее всего недостаточной чистотой их образца и сравнительно большим разбросом данных. Результаты Кеезома и Кока [85, 86] лежат примерно на 5% выше результатов Корака [75], хотя разброс данных первых авторов имеет тот же порядок величины. Экспериментальные результаты по определению зависимости в(Т ) приведены на фиг. 5 как легко видеть, они очень хорошо согласуются с теоретическими кривыми, построенными Лейтоном на основании вычислений колебательного спектра.  [c.338]

Допущение о постоянной плотности импульсов квантов (см. п. 5) в нро-странстве импульсов в рассматриваемом случае верно только в отношении очень низких частот. В случае решетки графита распределение является анизотропным, что должно привести к квадратичной зависимости теплоемкости от температуры в некотором интервале. Однако различные авторы по-разному оценивают вид колебательного спектра графпта и границы температурного интервала, в пределах которого выполняется квадратичная зависимость теплоемкости от температуры. Вместе с тем все исследователи сходятся на том, что ниже определенной температуры квадратичная зависимость должна смениться обычной кубической, хотя само значение этой температуры определяется пока в основном принятым способом вычислений. Точные количественные теоретические предсказания такого рода усложняются тем, что для оценки межатомных взаимодействий нужно знать упругие постоянные, которые для графита не измерялись.  [c.346]

Еще до работы Накаджимы Фрелих [126], а также Китано и Накано [127] независимо испо.чьзовали сходные методы теории поля для определения влияния движения электронов на колебательные частоты, исходя из гамильтониана Блоха, в который не было явно включено кулоновское взаимодействие между электронами, С точки зрения теории поля между электронами существует взаимодействие, вызванное виртуальным рождением и поглощением фононов предполагается, что именно это взаимодействие обусловливает сверхпроводимость [15]. Существует такн е собственная энергия фононов, которая может быть весьма велика, если только взаимодействие достаточно сильно для того, чтобы вызвать сверхпроводимость. Физически это означает, что при выводе фононных частот необходимо принять во внимание движение электронов ([16], стр. 264).  [c.756]

Теория Фрелиха основана па выражении (40.12) для энергии Е . Отметнд , что эта энергия не зависит от возбуждения колебательных ветвей. Определенная Фрелихом энергия Е , которую мы будем обозначать Еоф., включает в себя только часть Е , которая представляет взаимодействие между электронами в к-пространстве  [c.769]

Другим типичным примером механической автоколебательной системы является часовой механизм. Колебания маятника или баланса часов поддерживаются за счет той энергии, которой обладает поднятая гиря Или заведенная пружина часов. Проходя через определенное положение, маятник приводит в действие храповой механизм. При этом маятник получает толчок, пополняющий потери энергии за период. Маятник сам открывает и закрывает доступ энергии из заводного механизма. При нормальном ходе часов энергия, которую получает маятник, как раз равна потере энергии на трение за время между двумя толчками (обычно за полупериод). Поэтому колебания и оказываются стационарными. Если начальное отклонение маятника боЛьше нормального, то потери на трение оказываются больше, чем поступление энергии нз заводного механизма. Колебания затухают до тех пор, пока потери не окажутся равными поступлению энергии. Автоматически устанавливается как раз такая амплитуда колебаний, при которой потери на трение компенсируются поступлением энергии из источника. Следовательно, амплитуда колебаний определяется не величиной начального толчка, а соотноншнием между потерями и поступлением энергии, т. е. свойствами самой колебательной системы. Это уже знакомая нам по предыдущему примеру характерная черта автоколебаний, отличающая их от собственных колебаний (амплитуда которых определяется начальными условиями).  [c.603]


Смотреть страницы где упоминается термин Колебательный Определение : [c.88]    [c.112]    [c.67]    [c.68]    [c.218]    [c.355]    [c.357]    [c.98]    [c.234]   
Вибрации в технике Справочник Том 1 (1978) -- [ c.15 ]



ПОИСК



XYS, молекулы, нелинейные симметричные (см. также Асимметричные волчки) определение угла из колебательного

Камертонный прерыватель. Резонанс. Прерывистые колебания. Общее решение для одной степени свободы Неустойчивость. Члены второго порядка вызывают появление производных тонов. Поддержание колебаний. Методы определения абсолютной высоты тона Колебательные системы в общем случае

Колебательные

Колебательные Параметры — Определение

Определение Уравнения колебательного движения

Определение действующего на муфту момента с учетом удара и колебательных процессов

Определение дисперсии ошибки и показателя колебательности с помощью номограмм

Определение колебательной температуры

Определение потоков генерируемой колебательной энергии

Основные понятия и определения колебательных процессов

Основные понятия и определения. Графическое изображение колебательных процессов

Параметры, характеризующие машину как источник вибраМетоды и средства определения динамических сил, действующих на опорные и неопорные связи со стороны машины, и колебательной мощности, излучаемой машиной

Приемы обработки экспериментальных данных о свободных колебаниях простейшего колебательного звена второго порядка для определения динамических свойств этого звена

Системы колебательные механические — Определение параметро

Точечная группа молекулы, определение наблюденного колебательного спектр

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ИДЕНТИФИКАЦИЯ И ДИАГНОСТИКА МЕХАНИЧЕСКИХ СИСТЕМ Определение частотных характеристик и колебательной мощности механических систем (В. В. Яблонский)



© 2025 Mash-xxl.info Реклама на сайте