Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изменение внутренней энергии

Какая доля теплоты, подведенной к I кг кислорода в изобарном процессе, затрачивается на изменение внутренней энергии  [c.19]

Общий метод расчета по Л, s-диаграмме состоит в следующем. По известным параметрам наносится начальное состояние рабочего тела, затем проводится линия процесса и определяются его параметры в конечном состоянии. Далее вычисляется изменение внутренней энергии, определяются количества теплоты и работы в заданном процессе.  [c.38]


Перегретый пар расширяется в турбине по адиабате от начального давления 8 МПа и температуры 500 °С до р2= 100 кПа. Определить конечное состояние пара, изменение внутренней энергии и работу расширения.  [c.43]

Для идеального газа изменение внутренней энергии в адиабатном процессе ui — ui = l вычисляется по формуле (4.20), поэтому  [c.46]

Таким процессом является, например, изотермическое расширение идеального газа, находящегося в тепловом контакте с горячим источником. Так как в этом процессе изменение внутренней энергии равно нулю, то согласно первому закону термодинамики, работа, совершенная при расширении газа, равна количеству теплоты, переданной от горячего источника. Таким образом, имеет место полное превращение теплоты в работу. Но это не противоречит второму закону термодинамики, который утверждает, что невозможен процесс, единственным конечным результатом которого будет превращение в работу теплоты, извлеченной от горячего источника. Действительно, в конце изотермического процесса газ занимает объем больше, чем он занимал вначале. Изменение состояния газа и является компенсацией превращения теплоты в работу.  [c.209]

Изменение внутренней энергии  [c.210]

С макроскопической точки зрения энергию системы, соответствующую ее массе, называют внутренней энергией. Внутренняя энергия — это свойство системы, которое полностью определяется ее состоянием и известно как функция состояния . Изменение внутренней энергии при переходе системы из одного состояния  [c.30]

Так как измеряет скорость изменения внутренней энергии с изменением температуры при постоянном объеме, то приближенное значение С может быть получено прямым дифферент рованием значения внутренней энергии (табл. 1) по температуре Теплоемкости идеальных газов при постоянном объеме и постоянном давлении приведены в табл. 2.  [c.33]

Изменение внутренней энергии системы удобнее всего определять с помощью теплоемкости при постоянном объеме, вычисляемой по уравнению (1-1). Для процесса при постоянном объеме  [c.40]

Работа, выполненная при течении процесса в закрытой системе при постоянном объеме, равна О, так как любые перемещения отсутствуют. Следовательно, теплота, добавленная системе при течении процесса при постоянном объеме, равна изменению внутренней энергии. Путем сочетания уравнений (1-5) и (1-14) получаем  [c.40]

Для жидкостей и твердых тел величина v/ p обычно бывает незначительна по отношению к изменению внутренней энергии, тогда  [c.41]


Так как изменение внутренней энергии при течении изотермического процесса в системе из твердого тела, жидкости или идеального газа практически равно нулю, то теплота, сообщенная системе, равна произведенной работе.  [c.43]

Работу и изменение внутренней энергии можно легко вычислить, определив отношение конечной температуры к начальной с помощью уравнения (1-47) и подставив его численное значение в уравнение (1-31).  [c.45]

Пример 2. Вычислить произведенную работу, передачу теплоты и изменение внутренней энергии для каждого из следующих процессов.  [c.46]

Для идеального газа с независимой от температуры С, = = 3 брит. тепл. ед./(фунт-моль °R) [3 тл1 моль ° ] изменение внутренней энергии составит  [c.49]

В процессе при постоянном объеме не происходит никаких перемещений и работа равна нулю. Перенесенная теплота в этом случае равна изменению внутренней энергии  [c.51]

Определить количество переданной теплоты, выполненной работы, изменение внутренней энергии и изменение энтальпии при сжатии 1 моля идеального газа от давления 1 атм при следующих условиях  [c.67]

Изменение внутренней энергии может быть выражено в функции изменения и Z путем нахождения частных производных  [c.130]

Согласно первому закону термодинамики, замкнутая система может испытывать изменение внутренней энергии только в результате обмена теплотой и работой с окружающей средой. Так как для этой системы изменение объема указывает на передачу энергии в форме работы, то второе слагаемое уравнения (4-33) можно отождествить с работой, обратимо выполненной системой. Ограничение в виде обратимости необходимо, так как коэффициент при dv представляет собой свойство системы, а именно — давление системы  [c.131]

Общее изменение внутренней энергии замкнутой системы постоянного состава может быть выражено в функции изменений температуры и объема с помощью уравнения (5-2) для полного дифференциала  [c.152]

Окончательно выражение для общего изменения внутренней энергии в функции р, V, Т я Со может быть получено подстановкой уравнений (5-4) и (5-10) в уравнение (5-3)  [c.153]

При использовании закона идеального газа для вычисления изменений термодинамических функций получаются простые соотношения, которые выражают внутренние свойства, обусловленные незначительностью межмолекулярных сил и молекулярного объема. Например, чтобы вычислить изменение внутренней энергии, согласно уравнению (5-11), необходимо вычислить частную др  [c.164]

Таким образом, изменение внутренней энергии идеального газа не зависит от давления и объема и является функцией только температуры.  [c.164]

Изменение внутренней энергии может быть вычислено из определения энтальпии  [c.175]

В начальный момент тело А имеет внутреннюю энергию температуру и величина W для него будет Wa тело В имеет внутреннюю энергию Eg, температуру Гд и величина W для него будет Wq. Для бесконечно малого количества теплоты, переданного от тела А к телу В, изменение внутренней энергии тела А может быть вычислено согласно уравнению (6-1)  [c.190]

Изменение внутренней энергии тела В  [c.190]

Изменение внутренней энергии части А может быть выражено с помощью уравнения (6-1)  [c.192]

Термодинамическая эффективность такого цикла определяется отношением совершенной работы к поглош,енной теплоте. После каждого полного цикла система возвращается к своему первоначальному состоянию, так что изменение внутренней энергии работающего газа для одного цикла равно нулю. Баланс энергии для одного цикла примет вид  [c.197]

Для получения численных значений эмпирических температур следует обратиться к первому и второму законам термодинамики. Первый закон термодинамики просто констатирует сохранение энергии при условии, что учитывается не только работа, совершаемая над системой, но и обмен теплом через стенки с окружающей средой. Если система в остальных отношениях изолирована, то внутренняя энергия и, представляющая собой экстенсивную величину, может только увеличиваться при совершении над системой некоторой работы. Однако если система термически не изолирована и в результате некоторого процесса переходит из термодинамического состояния А в другое состояние В, то работа совершаемая над системой, разумеется, зависит от того, каким способом система осуществляет переход из состояния А в состояние В. С другой стороны, увеличение внутренней энергии равно и в—и А независимо от способа совершения работы. Следовательно, для термически не изолированной системы увеличение внутренней энергии и в — и а отлично от Разность Q мы назовем количеством теплоты, которая, таким образом, служит мерой отклонения от адиабатических условий. Следовательно, для любого термодинамического процесса, начинающегося в состоянии А и завершающегося в состоянии В, изменение внутренней энергии определяется выражением  [c.15]


При незначительных объемных изменениях тепловой эффект полиморфизма L можно считать следствием изменения внутренней энергии  [c.14]

Изменение внутренней энергии тела не зависит от пути процесса и целиком определяется начальным и конечным состоянием, т. е.  [c.54]

Это наглядно иллюстрируется рис. 5-1. Во всех процессах 1а2, 1Ь2, 1с2 изменение внутренней энергии будет одно и то же.  [c.55]

В круговых процессах изменение внутренней энергии будет равно нулю  [c.55]

Если в ру-диаграмме (рис. 5-3) между изотермами Г) и Гг изобразить ряд произвольных процессов 1-2, 3-4, 5-6, которые имеют различные начальные и конечные объемы и давления, то изменение внутренней энергии идеального газа у всех этих процессов будет одинаковым  [c.56]

Сумма изменений внутренней кинетической и внутренней потенциальной энергии представляет полное изменение внутренней энергии du.  [c.62]

Полученное уравнение является математическим выражением первого закона термодинамики. Оно формулируется так изменение внутренней энергии термодинамической системы равно алгебраической сумме полученной системой энергии в форме теплоты dq и совершенной ею внешней работы dl, или подведенная к рабочему телу энергия в форме теплоты расходуется на изменение внутренней энергии тела и на совершение телом внешней работы.  [c.63]

Изменение внутренней энергии водяного пара при 11 = onst  [c.39]

Из уравнений (1-14) и (1-25) видно, что изменение внутренней энергии идеального газа всегда равно j jiT и не зависит от какого-либо изменения объема или давления оно равно нулю, если начальная и конечная температуры одинаковы. Другими словами, внутренняя энергия идеального газа является функцией только температуры.  [c.42]

Численные значения поступательных, вращательных, колебательных и электронных энергетических уровней, определенных по спектроскопическим данным или вычисленных с помощью квантовой механики, обычно выражают относительно самого низкого или основного уровня молекулы. Если такие значения используют для вычисления внутренней энергии, полученная внутренняя энергия представляет собой избыточную энергию относительно основного состояния системы, когда все частицы находятся на самом низком энергетическом уровне при температуое абсолютного нуля. Для процессов, в которых общее число частиц данных молекулярных объектов остается постоянным, изменения внутренней энергии могут быть вычислены без сведений об основном состоянии. Однако если число частиц данных молекулярных объектов изменяется, как в химической реакции, то для вычисления изменения внутренней энергии процесса должна быть известна разность между основными состояниями различных соединений.  [c.115]

Согласно правилу фаз Гиббса, состояние замкнутой однофазной системы фиксированного состава может быть полностью определено двумя независимыми переменными. Следовательно, изменение внутренней энергии такой H TeNibi можно выразить мате-матетически как функцию изменения температуры и объема  [c.130]

Для полностью обратимых процессов в замкнутой системе одна часть изменения внутренней энергии, представленная полезной работой и работой, выполненной против атмосферного давления Poi o — способна совершить работу над окружающей средой, в то время как другая часть, представленная произведением ГдД5, переходит в виде теплоты к теплоприемнику и полностью непригодна для совершения работы любого вида. Поэтому произведение Tf,AS иногда называют рассеянной энергией .  [c.203]

Изменение энергии выделенного элементарного объема ЛУп возникает ib связи с притоком тепла и работой внешних сил (массовых и поверхностных). Причем это изменение проявится в увеличении кинетической энергии среднего и пульсационного движения и в изменении внутренней энергии элемента. Учитывая, что для дисперсных потоков теплоносителей характерны в основном умеренные скорости течения, пренебрегаем изменением давления и кинетической энергии компонетов. Полагая также, что внутренние источники или стоки энергий отсутствуют, в соответствии с первым законом термодинамики для изобарных процессов получим, что количество переданного элементу ДУц за время Лт тепла AQa равно изменению энтальпии его компонентов  [c.40]


Смотреть страницы где упоминается термин Изменение внутренней энергии : [c.12]    [c.30]    [c.43]    [c.16]    [c.33]    [c.61]    [c.132]    [c.199]   
Теплотехника (1985) -- [ c.22 ]



ПОИСК



Вычисление изменения внутренней энергии и энтальпии идеального газа

Изменение внутренней энергии газа в процессах

Изменение внутренней энергии и работа газа в термодинамическом процессе

Изменение внутренней энергии идеального газа

Работа и теплота газового процесса. Внутренняя энергия газа и ее изменение

Теорема об изменении внутренней энергии системы

Теорема об изменении кинетической энергии. Работа и мощность внутренних сил. Эйлерова форма уравнения изменения кинетической энергии

Уравнение изменения внутренней энергии

Энергия внутренняя

Энергия внутренняя внутренняя

Энергия изменения



© 2025 Mash-xxl.info Реклама на сайте