Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания аппаратов летательных

Колебания аппаратов летательных в  [c.539]

СОВМЕСТНЫЕ КОЛЕБАНИЯ КОНСТРУКЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА С СИСТЕМОЙ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ  [c.493]

Механическим движением называют происходящее с течением времени изменение взаимного положения материальных тел в пространстве. Под механическим взаимодействием понимают те действия материальных тел друг на друга, в результате которых происходит изменение движения этих тел или изменение их формы (деформация). За основную меру этих действий принимают величину, называемую силой. Примерами механического движения в природе являются движение небесных тел, колебания земной коры, воздушные и морские течения, тепловое движение молекул и т. п., а в технике — движение различных наземных или водных транспортных средств и летательных аппаратов, движение частей всевозможных машин, механизмов и двигателе/i, деформация элементов тех или иных конструкций и сооружений, течение жидкости н газов и многое другое. Примерами же механических взаимодействий являются взаимные притяжения материальных тел по закону всемирного тяготения, взаимные давления соприкасающихся (или соударяющихся) тел, воздействия частиц жидкости и газа друг на друга и на движущиеся или покоящиеся в них тела и т. д.  [c.5]


Линейными перегрузками называются кинематические воздействия, возникающие при ускоренном движении источника колебаний. Особенно значительные линейные перегрузки возникают на транспортных машинах, в особенности на летательных аппаратах, при увеличении скорости, торможении, а также различных маневрах (виражи, разворот и т. д.). Основными характеристиками линейных перегрузок являются постоянное ускорение Со (рис. 10.2) и максимальная скорость изменения ускорения da/dt.  [c.268]

На протяжении почти всей истории развития механики можно проследить взаимную связь между проблемами теоретической механики и проблемами техники и физики. Теоретическая механика в наши дни черпает проблемы, нуждающиеся в разработке, из конкретных вопросов космонавтики, вопросов автоматического регулирования движения машин, их расчета и конструирования, из вопросов строительной механики и т. д. Так возникли новые разделы теоретической механики. Например, современная теория колебаний систем материальных точек и теория устойчивости движения в значительной степени обязаны своим развитием необходимости изучения вибраций летательных аппаратов и различных деталей инженерных сооружений, машин и механизмов, необходимости создания надежной теории регулирования движения машин. Конечно, и теоретическая механика влияет на развитие отраслей техники, связанных с расчетами и конструированием деталей машин и инженерных сооружений. Этим объясняется значимость теоретической механики как науки.  [c.19]

Уравнения изгибно-крутильных колебаний. В предыдущих пунктах были рассмотрены стержни, у которых линия, соединяющая центры тяжести, и линия, соединяющая центры изгиба (центры жесткости) сечений, совпадают. На рис. 7.3,а показано сечение стержня (качественно аналогичное сечение имеют крылья летательных аппаратов и лопатки турбин), на котором точками О1 и О2 обозначены соответственно центр тяжести и центр изгиба сечения. Напомним, что такое центр изгиба сечения.  [c.171]

В самом деле, если известно, например, что производная гпг отрицательна и что, следовательно, центр давления расположен за центром масс, то можно сделать вывод лишь о продольной статической устойчивости. Но нельзя сказать, например, какова будет амплитуда колебаний угла атаки при том или ином значении параметра начального возмущения и каким образом по времени будет происходить ее изменение. На все эти и другие вопросы отвечает теория динамической устойчивости летательного аппарата или устойчивости его движения. Эта теория позволяет, естественно, исследовать не только колебания летательного аппарата, но и общий случай движения аппарата на траектории и устойчивость этого движения. Теория динамической устойчивости использует результаты аэродинамических исследований, полученных на режимах неустановившегося обтекания, при котором на тело будут действовать в отличие от статических условий дополнительные аэродинамические нагрузки, зависящие от времени.  [c.37]


В данном частном примере можно наблюдать соответствие мелсду статической и динамической устойчивостью или неустойчивостью. Однако для общего случая движения летательного аппарата такое соответствие необязательно. Можно иметь статически устойчивый аппарат, который, однако, не обладает динамической устойчивостью и в своем стремлении к положению равновесия будет совершать колебания с возрастающей амплитудой. На практике такие случаи наблюдались у некоторых самолетов при малых скоростях полета, а также аппаратов типа летающее крыло при небольшой стреловидности передней кромки.  [c.44]

Теперь рассмотрим вид отклонения рулей, определяемый гармоническим законом n (i) = sin (wj) (8 — максимальная амплитуда сОд — угловая частота вынужденных колебаний органов управления). В этом случае исследование возмущенного движения летательного аппарата позволяет получить представление о его способности следить за отклонением рулей.  [c.55]

Бортовые системы, подлежащие стабилизации на заданном направлении в пространстве, обладают большим весом и моментами инерции при этом в условиях интенсивных колебаний летательного аппарата гироскопическая стабилизация испытывает значительные динамические нагрузки. Требования высокой точности стабилизации бортовых систем на заданном направлении в пространстве и тяжелые условия их эксплуатации привели к созданию гироскопических стабилизаторов.  [c.5]

Определение формы упругой линии имеет, пожалуй, наибольшее значение при решении задач динамики. С помощью форм упругой линии балки при свободных колебаниях может быть выявлено ее поведение при воздействии ударных нагрузок. Динамика движения летательных аппаратов в некоторых случаях также требует определения формы упругой линии несущих плоскостей. Такого рода задачи по определению формы упругой линии решаются, понятно, только численными методами. Но все это относится к задачам динамики. Что же касается условий статического нагружения, то найти примеры необходимого для практических целей определения формы упругой линии балки, скажу прямо, очень трудно. И сейчас мы перейдем к новому вопросу, связанному с упругой линией балки.  [c.62]

Резонансные колебания тела человека и его отдельных сегментов наиболее четко проявляются при действии вибрации с частотами 1—30 Гц (рис, 4). Преимущественно в этой полосе частот расположены спектры вибрации разнообразных транспортных средств, самоходных строительных, дорожных и сельскохозяйственных машин. Возбуждение интенсивной вибрации в полосе частот 1—30 Гц главным образом обусловлено движением по неровным (случайным) профилям поверхностей (автомобильный и рельсовый транспорт), движением по поверхностным волнам (водный транспорт), движением в турбулентных слоях атмосферы (летательные аппараты). Локальные вибрации, как правило, имеют более широкий спектр частот, верхняя граница которого достигает нескольких килогерц.  [c.378]

Другая важная проблема, связанная с влиянием колебаний жидкости на теплообмен, возникает при проектировании и разработке топливных баков и систем подачи рабочего тела в летательных аппаратах. Как известно, маневрирование летательного аппарата (торможение, разгон, разворот по курсу) вызывает 1 3  [c.3]

Дезактивация радиоактивных отходов G 21 F 9/00-9/36 Дезинтеграторы (В 02 С для измельчения отходов резины или пластмасс В 29 В 17/00) Декалькомания В 41 М 3/12, В 44 С 1/16 Декапирование (металлических изделий электролитическими способами С 25 F 1/02-1/18 металлов растворами или расплавами солей С 23 G 1/00-1/36) декомпрессия (водолазов, устройства В 63 С 11/32 двигателей, клапаны для этой цели F 01 L 13/08) Делительные В 23 (приспособления к станкам для изготовления зубчатых колес и реек F 23/10 устройства металлорежущих станков Q 16/02-16/12) демпферы конструктивные элементы 9/32-9/54) для канатных дорог В 61 В 12/04 нутации для космических летательных аппаратов В 64 G 1/38 в подвесках транспортных средств В 60 G 13/00-15/12, 17/06-17/10, В 61 F 5/12, G 01 М 17/04) Демпфирование вибраций или колебаний переднего колеса летательных аппаратов В 64 С 25/50 G 05 (в регуляторах скорости D 13/06 в системах управления В 5/00-5/04)) Демпфирующие ( компенсационные муфты F 16 D 3/12-3/14 устройства (испытание G 01 М 17/04 многоступенчатых карбюраторов F 02 М 11/04))  [c.73]


Еще более существенным это влияние может оказаться в летательных аппаратах, где перегрузки во много раз превосходят силы тяжести. В настоящей работе рассмотрение изгибных колебаний вертикальных роторов ограничивается полем сил тяжести. Однако если ускорение переносного движения имеет составляющую, параллельную оси вала, то полученные здесь результаты могут быть применены для исследования колебаний роторов движущихся объектов при постоянном ускорении переносного движения.  [c.170]

Типичными признаками усталостного разрушения трубопровода от резонансных поперечных колебаний являются повторяющееся разрушение по одной и той же заделке в первый период эксплуатации летательного аппарата. При этом поперечная усталостная трещина быстро развивается по окружности и происходит полный обрыв трубопровода по всему сечению наклеп или истирание материала трубопровода в заделке ослабление затяжки отбортовочных колодок разрушенного трубопровода.  [c.108]

Глава XIX КОЛЕБАНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ  [c.477]

ОСОБЕННОСТИ И ВИДЫ КОЛЕБАНИЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ (ЛА)  [c.477]

Колебательные свойства в значительной степени определяют эффективность применения летательного аппарата (ЛА), надежность и безопасность полета. ЛА как колебательная система является упругим телом, при колебаниях которого происходит диссипация энергии за счет внутреннего трения в элементах конструкции. ЛА взаимодействует со средой (набегающий поток) и с другими телами (прп взлете, посадке, транспортировке), имеет полости с жидкостью и снабжен источниками энергии (двигателями, приводами управления), в полете подвержен воздействию порывов ветра. Конструктивные и эксплуатационные особенности определяют характерные колебательные свойства ЛА  [c.477]

КОЛЕБАНИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ  [c.478]

Знак минус означает, что фаза вынужденных колебаний аппарата отстает от колебаний рулей. Это имеет место всегда, кроме случая, когда демпфирование отсутствует (коэффициент затухания = 0). В этом случае при 0 с < а С и сдвиг фаз отсутствует (ф =0). Если вынужденная частота отклонения рулей больше частоты собственных колебаний ( в> ), тоф = = —180 . В обоих случаях летательный аппарат без запаздывания следует за этим отклонением (идеальное слежение). Исследования показывают, что сдвиг по фазе колебаний угла наклона траектории 0 от колебаний угм а составляет <р = 90°, а угла тангажа = aг tg ( Т (л т), где Т =  [c.55]

Бафтинг характеризуется неустановивщнмися колебаниями конструкций летательных аппаратов при действии аэродинамических импульсов, вызванных снутной струей позади крыльев, рулей, двигателей, выступов корпуса. Структура возмущенного потока сложна, а спектр частот вихрей весьма щирок. При совпадении частот конструкций и возмущающих импульсов возникает резонанс, получивший название бафтинга, который может привести к катастрофичному разрушению конструкции или ее разрушению по истечении некоторого промежутка времени вследствие усталости в материале. Для устранения бафтинга обычно исключают первопричину, т. е. образование снутных струй, а также компоновкой добиваются расположения крыльев и рулей вне возмущенного потока.  [c.194]

Рассмотренные задачи и вопросы, связанные с аэродинамикой профиля и крыла, относятся к случаю их установившегося движения. При таком движении аэродинамические силы и моменты не зависят от времени и определяются при закрепленных рулях, заданных высоте и скорости полета лишь ориентировкой летательного аппарата относительно вектора скорости. Наиболее общим является не-установившееся движение, при котором летательный аппарат испытывает ускорение или замедление и совершает различные по характеру колебания. В обращенном движении это эквивалентно неустано-вившемуся обтеканию воздушным потоком. При таком обтекании аэродинамические свойства аппарата зависят не только от его положения относительно вектора скорости набегающего потока, но и от кинематических параметров, характеризующих движение, т. е. аэродинамические коэффициенты являются функцией времени.  [c.241]

Аэродинамические свойства летательного аппарата, движущегося с некоторой поступательной скоростью и соверщающего одновременно малые колебания, можно определить как результат основного установившегося и дополнительного неустановившегося обтекания. Представьте в обобщенном виде суммарный потенциал скоростей, напишите соответствующие зависимости для аэродинамических коэффициентов и рассмотрите схему расчета параметров установившегося обтекания несжимаемой жидкостью тонкого крыла.  [c.256]

Для повышения эффективности интерцепторы приводятся в колебательное движение, амплитуда и частота которого обычно не регулируются. Величина у правляющей силы изменяется путем пере.мещения центра колебания. Чем ближе центр к поверхности крыла, тем больше время, в течение которого интерцептор будет выдвинут и, следовательно, больше время действия управляющей силы. Недостаток интерцепторного управления заключается в том, что оно не обеспечивает летательному аппарату значительного маневра.  [c.81]

Задаваясь различными значениями 6р, /р и / р, обеспечивающими требуемый момент инерции Jyp, для исходных данных с учетом принятых обозначений строим по (3.6.24) и (3.6.25) графики зависимостей di и 2 (рис. 3.6.4). С помощью этих графиков для подсчитанных значений di = 1,54-10 с и U2 = 1,06-10 с З выбираем следующие параметры роллеронов 1р = 0,096 м Ьр = 0,105 м Rp = 0,042 м. Однако таким значениям параметров соответствует новое значение коэффициента ds = 0,6. Эти расчеты подтверждают известный факт, что только аэродинамическое демпфирование оказывается недостаточным для получения заданных характеристик затухания колебаний самих роллеронов, хотя стабилизация летательного аппарата по угловой скорости крена обеспечивается. Поэтому следует прибегнуть к каким-либо дополнительным средствам демпфирования.  [c.294]


Магазины ( торговые (складские устройства для хранения изделий В 65 G 1/00-1/20, 3/00-3/04 транспортные средства, оборудование под них- В 60 Р 3/025) для хранения инструментов в станках В 23 Q 3/155) Магнетизм, использование при предварительной обработке воздуха, топлива или горючей смеси в две F 02 В 51/04 Магнето в системах зажигания F 02 Р 1/00-1/08 Магнитное [поле (Земли, использование для управления космическими летательными аппаратами В 64 G 1/32 использование (при кристаллизации цветных металлов или их сплавов С 22 F 3/02 при литье В 22 D 27/02 для обработки воздуха, топлива или горючей смеси перед впуском в две F 02 М 27/00, 27/04 для образования струи из абразивных частиц в пескоструйных машинах В 24 С 5/08 в процессах злектроэрозионной металлообработки В 23 Н 7/38 при термообработке металлов и сплавов С 21 D 1/04 для удаления нанесенного избытка покрытия С 23 С 2/24 в холодильной технике F 25 D)> разделение материалов (В 03 С 1/00-1/30 при обработке формовочных смесей В 22 С 5/06) сопротивление, использование для измерения параметров механических колебаний G 01 НИ/02]  [c.108]

Демпферы колебаний, тангажа и автоматы устойчивости предназначены для парирования колебаний летательного аппарата относительно трех основных осей и улучшения характеристик устойчивости и управляемости при пилотировании ЛА на всех режимах полета.  [c.243]

Переменные нагрузки со случайньши амплитудами, вызываемые воздействиями природных факторов, порывами ветра, ударами волн, случайными колебаниями оснований, случайными неровностями дороги, неоднородностями обрабатываемой среды, воздействием рабочих процессов, в том числе тяговой силы реактивных летательных аппаратов.  [c.8]

Главы в томе расположены в соответствии с принципом перехода от простого к сложному. Сначала расспотрены колебания отдельных элементов (криволинейных стержней, пружин, сосудов с жидкостью, зубчатых передач, технологических элементов—станок—инструмент—деталь), а затем колебания гибких валов-роторов современных турбомашин с подшипниками (скольжения и качения). Далее рассмотрена непосредственно турбинная техника (лопатки, диски, турбинный ротор-корпус, электрические машины и их фундаменты, турбоагрегаты). Две главы посвящены колебаниям систем, связанным с двигателем внутреннего сгорания, причем в первой из них проанализированы крутильные колебания, а во второй—колебания агрегата при ограниченной мощности двигателя. Затем рассмотрены колебания специальных машин, применяемых в горном деле, и колебания объектов транспортной техники — железнодорожного состава, судовых конструкций, автомобилей и гусеничных машин, летательных аппаратов. Одна из глав посвящена анализу выносливости деталей машин и конструкций, подверн<енных колебаниям, т. е. анализу усталостной прочности при колебательных воздействиях. Глава Колебания электрических машин в связи с поздним поступлением помещена в конце тома.  [c.9]

Летательные аппараты имеют замкнутые колебательные системы с источниками зиергин. Рабочий процесс в них ие предусматривает колебаний, однако при нарушении условий устойчивости в системе развиваются колебания, которые могут перейти в почти стационарный автоколебательный режим.  [c.478]

Существуют и другие подходы для определения критических параметров (в частности, скорости полета) на границе устойчивости. Для этого в уравнениях свободных колебаний (38) полагают Я, = ш и находят значения скорости, удовлетворяющие этим уравнениям. Критическую скорость флаттера можно также определить экспериментально в аэродинамической трубе на динамически подобной модели и в процессе летных испытаний летательного аппарата. В последнем случае прибегают к экстраполяции, чтобы по тенденции определяющих флаттер параметров с ростом скорости полета найти приближенно величину критической скорости флаттера. Возникновение флаттера связано с определенным тоном свободных упругих колебаний в потоке воздуха. Распределение деформаций по конструкции при потере устойчивости определяет комплексную форму колебаний флаттерного тона. В зависимости от преобладания амплитуд той или иной части ЛА и характера деформированного состояния различают виды флаттера. Например изгибно-крутильный флаттер крыла, изгибно-изгибный флаттер в системе стреловидное крыло — фюзеляж, изгибно-элеронный флаттер, рулевой флаттер и т. д. Для характеристик флаттера несущих поверхностей часто определяющее значение имеют различные грузы, размещенные иа них двигатели, подвесные баки с горючим, шасси. Существенными параметрами являются жесткости крепления этих тел на поверхности крыла. Вообще для флаттера принципиально важны параметры связаииости форм движения. Например, для совместных колебаний изгиба и кручения крыла такими параметрами являются координаты точек (линий) приложения сил аэродинамического давления, инерции и упругости. Смещение центра масс относительно оси жесткости вперед способствует стабилизации системы. Совмещение всех трех точек развязывает виды колебаний, и в этом случае флаттер невозможен. Это свойство обычно имеют в виду при динамической компоновке конструкции. Важными параметрами являются распределенные нли сосредоточенные жесткости. Последние характерны для органов управления  [c.490]


Смотреть страницы где упоминается термин Колебания аппаратов летательных : [c.118]    [c.117]    [c.147]    [c.220]    [c.494]    [c.52]    [c.318]    [c.222]   
Вибрации в технике Справочник Том 3 (1980) -- [ c.0 ]



ПОИСК



Автоматы парирования колебаний летательного аппарата и аппаратура, работающая в комплекте с ними

Колебания аппаратов летательных в потоке воздуха

Колебания аппаратов летательных вынужденные (резонансные)

Колебания аппаратов летательных наземных условиях

Колебания аппаратов летательных при срывиом обтекании

Колебания аппаратов летательных при трансзвуковом обтекани

Колебания аппаратов летательных упругие

Колебания летательных аппаратов (К- С. Колесников, Минаев)

Летательные аппараты

Особенности и виды колебаний летательных аппаратов

Параметры и виды колебаний, возникающих на летательных аппаратах

Совместные колебания конструкции летательною аппарата с системой автоматического управления



© 2025 Mash-xxl.info Реклама на сайте