Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура кристаллографические особенности

На структурном факторе (амплитуде) чрезвычайно сильно сказываются кристаллографические особенности кристаллической структуры ее элементы симметрии, тип решетки, пространственная группа симметрии. Рассмотрим примеры. Если решетка объемно-центрированная, то каждому атому в точке с координатами Xj, У], Zj соответствует атом с координатами V2, У3+Ч2, 2j+V2- В выражении для структурной амплитуды ( После преобразования (1.31) по формуле Эйлера) возникнут две пары членов  [c.45]


Уравнения (III.1) — (III.3) справедливы, если диффузия происходит в направлении оси х (одномерная диффузия). В трехмерном пространстве коэффициент диффузии зависит от направления и в анизотропных кристаллах, особенно с низкой симметрией, различен вдоль разных кристаллографических направлений. Так, в висмуте, имеющем ромбоэдрическую структуру, вблизи температуры плавления D в направлении, перпендикулярном ромбоэдрической оси, в 10 раз больше, чем в параллельном. Анизотропия коэффициента диффузии наблюдалась также в цинке и олове. Только в кубических кристаллах Dx Dy D .  [c.88]

Главная особенность гетерогенных сплавов определяется, содержанием в их структуре фаз, различающихся по химическому составу и кристаллографическим параметрам. Эти фазовые составляющие, как правило, отличаются и по многим физическим и физико-химическим характеристикам адсорбционным, строению двойного электрического слоя на границе фаза — раствор, кинетическим параметрам окислительно-восстановительных реакций, потенциалам пассивации и т. д. Из-за этого коррозионное поведение гетерогенных сплавов во многом зависит от неоднородности их структуры. В данном случае неоднородность носит принципиально макроскопический характер в отличие от однофазных систем, для которых принимается микронеоднородность. (на уровне активных центров), связанная с различным энергетическим положением отдельных атомов на поверхности [12].  [c.152]

Впервые этот эффект для условий СПД был изучен на сплаве Zn — 0,4 % А1 [43]. Установлено, что а, б и коэффициент т значительно изменяются в зависимости от направления вырезки образцов по отношению к направлению прокатки. Этот факт, по мнению авторов работы [43], связан с наличием кристаллографической текстуры в сплаве Zn — 0,4 % А1. Впоследствии анизотропия свойств в условиях СПД была обнаружена у многих сплавов Zn—Л1 [44—46], алюминиевой бронзы [47], латуни [35], Sn—Hi 1 48], Ti — 6% А1 — 4 % V [36], Однако полученные результаты не всегда трактуются как следствие наличия преимущественной ориентировки зерен. Для металлов и сплавов, особенно промышленных, в которых наблюдается эффект СП, из-за специфики подготовки структуры и наличия в них примесей и включений характерна определенная степень неоднородности структуры вытяну-тость зерен и направленность в расположении включений и фаз, что может оказывать влияние на эффект СП. Многие авторы считают, что анизотропия свойств возникает в результате направленного расположения в структуре включений и частиц второй фазы. Так, установлено [35], что и анизотропия микроструктуры и кристаллографическая текстура латуни Л59 обусловливают неоднородность свойств относительно направления прокатки. По-видимому, суммарное влияние этих структурных параметров на анизотропию свойств имеет место и в других случаях, однако этот вопрос изучен недостаточно.  [c.19]


Формирование слоистой структуры в результате диффузионных и деформационных процессов в присутствии поверхностноактивной смазочной среды обусловливает усложненную картину рентгенограммы металла с ГЦК решеткой кроме основных линий твердого раствора появляется другая система линий, соответствующая отражению рентгеновских лучей от кристаллографических плоскостей медной пленки. По соотношению интегральных интенсивностей интерференционных линий разных фаз можно оценить толщину отражающих слоев. Особенно отчетливо выявляются две системы линий на рентгенограммах образцов с высоким начальным содержанием цинка, приводящим к увеличению разности периодов кристаллических решеток. На рис. 61 приведены две рентгенограммы, полученные после испытания на трение латуни Л63 в течение 17 и 40 ч. Соотношение интенсивностей линий сви-154  [c.154]

Тенденция петель принимать кристаллографическую форму алмаза (ромба) была отмечена для ряда чистых металлов и сплавов. Это особенно заметно в сплавах AI—Mg и, как установлено, справедливо для геликоидов и источников переползания, а также для отдельных небольших гомогенно зарожденных петель. Замечательная особенность дислокационных петель в сплавах AI—Mg —это их крайне угловатый вид, который свидетельствует о том, что дислокации могут понижать свою энергию, располагаясь вдоль определенных кристаллографических направлений. Этот факт можно объяснить следующим образом. В металлах с г. ц. к. структурой единичные дислокации обычно диссоциируют на две частичные дислокации в плоскостях Ш , так как это дает возможность снизить энергию системы. В результате этого можно ожидать, что дислокационная петля, лежащая в любой плоскости диссоциирует в тех областях, где Сегмент петли лежит на пересечении с плоскостью (111), При последующем росте этих петель путем переползания зоны петли вдоль плоскостей 111 будут расти, пока это позволит петля, и ее форма определится пересечением характерной плоскости расположения петли с плоскостями 111 . Тогда дислокационная петля должна состоять из двух петель, каж-дая из которых имеет частичный вектор Бюргерса одна петля лежит над другой с полосой дефекта упаковки между ними, причем дефекты упаковки лежат в тех плоскостях 111 , которые содержат единичный вектор Бюргерса.  [c.301]

Роль однородности и стабильности структуры деформируемого материала. К двум названным выше факторам, очень усложняющим установление законов пластической деформации, необходимо добавить факторы, связанные со структурой сплава а) влияние особенностей исходной структуры и б) влияние изменения структуры в процессе деформации. До недавнего времени оба эти обстоятельства обычно не учитывались, т. е. процесс пластической деформации часто рассматривался независимо от особенностей микроскопической и кристаллографической структуры сплава, а изменения структуры в процессе деформации недостаточно учитывались, в особенности при так называемой холодной деформации . Речь идет здесь не об обычном вытягивании и поворотах зерен, а об изменении структуры в связи с физико-химическими превращениями. На необходимость учета структуры при построении теории прочности и пластичности указывалось применительно к неоднородности структуры и ориентации зерен и по отношению к типу кристаллической решетки сплава.  [c.163]

В тесной связи с кристаллизующим действием поверхности находится явление определенной ориентации возникающих зародышей кристаллов. При образовании пленок на поверхности химическое превращение развивается таким образом, чтобы конфигурация атомов исходной твердой базы сохранялась (или почти сохранялась) и в новой твердой фазе. Кристаллическая решетка новой фазы сопрягается с кристаллической решеткой исходной фазы теми кристаллическими плоскостями, параметры которых минимально отличаются друг от друга. При этом- пленки приобретают защитную способность в том случае, когда между металлом и пленкой существует структурное соответствие [24, 25]. Однако при химических реакциях возможны случаи образования промежуточных фаз, вызванные трудностью соблюдения принципа ориентационного и размерного соответствия при непосредственной перестройке решетки исходной фазы сразу в окончательную форму [26]. Между индексами кристаллографических направлений и плоскостей в регулярно соприкасающихся решетках установлена количественная связь, что позволяет производить расчеты кристаллических решеток при образовании защитных пленок и различных фазовых превращениях в металлах и сплавах [27]. Принцип структурного соответствия, т. е. направленная кристаллизация или так называемая эпитаксия [28, 29], при которой структура основного металла воспроизводится в образующейся на нем пленке в результате ориентированного роста кристаллов в системе металл — покрытие, особенно хорошо проявляется для большинства металлов и их окислов, гидроокисей, нитридов, карбидов, оксалатов и других продуктов реакционноспособных систем. В последние годы закономерности эпитаксии были также установлены и для различных фосфатных пленок на черных и цветных металлах (гл. П).  [c.12]


Важнейшая особенность текстур рекристаллизации — та, что они часто кристаллографически связаны с исходными текстурами деформации. Так, в г. ц, к. металлах решетка рекристаллизованных зерен повернута в пространстве по отношению к решетке деформированных зерен вокруг общей оси < 1И> на углы около 30—40°. (В о. ц. к. металлах текстуру первичной рекристаллизации часто можно представить как полученную поворотом решетки на угол около 26—>30° вокруг оси < 110>. (В рекристаллизованных металлах с гексагональной плотноупакованной структурой решетка повернута на 30° вокруг направления <0001 >, общего для деформированного и рекристаллизованного зерен.  [c.72]

Нарушению правильного расположения атомов на границах зерен способствует произвольная ориентировка кристаллографических плоскостей смежных кристаллов. Первоначальные границы зерен в технических металлах часто в дальнейшем изменяются в результате процесса рекристаллизации, механических воздействий при изготовлении деталей и постепенной концентрации чужеродных атомов на границах зерен. Структура металла на границах зерен определяется особенностями образования зерен и, в свою очередь, влияет на механические свойства металла.  [c.175]

Широкое разнообразие свойств рассматриваемого класса материалов определяется рядом особенностей в дисперсной и молекулярной структурах. К их числу следует отнести размеры и конфигурацию частичек, развитие пространственного упорядочения двумерных сеток углеродных атомов, кристаллографическую текстуру, микроструктуру, структуру пор, размеры контактной поверхности, химические связи как в отдельных частичках, так и между компонентами, составляющими материал.  [c.8]

При значительных степенях переохлаждения ниже (но не ниже продолжения линии НЭ на рис. 1, II) избыточная фаза может вслед за выделением в виде сетки или отдельных участков по границам зерен расти в глубь зерен в форме видманштеттовой структуры, имеющей вид пластинок и реек, определенным образом ориентированных по отношению к исходной фазе. Благодаря кристаллографическим особенностям и кинетике образования эти ориентированные структуры относят к мартенситным [1 .  [c.28]

Инжонерио-физические модели рассматривают материал как совокупность зерен с различной ориентированной кристаллической структурой (рис. 1.6, б). Для описания свойств реальных тол учитывается случайный характер размеров зорен и нанравлеиий кристаллографических плоскостей. Подобные модели позволяют объяснить ряд важных особенносте поведения материала, но еще но могут служить основой практической оценки прочности материалов. Основное назначение инженерно-физических моделей — выработать научные основы статистического описания механических и других свойств материала.  [c.13]

Другой интересной особенностью является значительное уши-рение рентгеновских пиков в данных образцах. Значения полуширины рентгеновских пиков для сконсолидированного образца Ni выше, чем для исходного порошка. Это в первую очередь обусловлено увеличением упругих микроискажений кристаллической решетки в процессе консолидации порошка, а не измельчением зерен. Уменьшение полуширины рентгеновских пиков при низкотемпературном отжиге сконсолидированного образца Ni, когда размер зерна все еще остается неизменным, подтвердило этот факт. С другой стороны, наблюдаемое различное уширение рентгеновских пиков может быть связано с развитием различной дефектной структуры в зернах, принадлежаших различным текстурным компонентам, а также формированием кристаллографической текстуры.  [c.57]

Уже в первых работах, вьгаолненных Гляйтером с сотрудниками [1, 106], был установлен ряд особенностей структуры нано-кристаллических материалов, полученных газовой конденсацией атомных кластеров с последующим их компактированием. Это прежде всего пониженная плотность полученных нанокристаллов и присутствие специфической зернограничной фазы , обнаруженное по появлению дополнительных пиков при мессбауэровских исследованиях. На основании проведенных экспериментов, включая компьютерное моделирование, была предложена структурная модель нанокристаллического материала, состоящего из атомов одного сорта (рис. 2.1) [1, 107]. В согласии с этой моделью такой нанокристалл состоит из двух структурных компонент зерен-кристаллитов (атомы представлены светлыми кружками) и зернограничных областей (черные кружки). Атомная структура всех кристаллитов совершенна и определяется только их кристаллографической ориентацией. В то же время зернограничные области, где соединяются соседние кристаллиты, характеризуются пониженной атомной плотностью и измененными межатомными расстояниями.  [c.60]

Известно, что рост зерен в наноструктурных ИПД материалах, как и других наноматериалах, начинается при относительно низких температурах, близких к 0,4Т л и даже ниже [3, 104, 140]. Исследование природы такой низкой термостабильности имеет важное значение для улучшения последней. С другой стороны, изучение эволюции структуры во время отжига позволяет лучше понять природу высоких внутренних упругих напряжений, их связь с решеточными дефектами и наравновесным состоянием границ зерен, закономерности кристаллографической текстуры и другие структурные особенности ИПД материалов. Помимо этого, особый интерес вызывает наблюдаемое во многих сплавах разупорядоче-ние и формирование пересыщенных твердых растворов [71, 101 и др.] (см. также п. 1.2.1). Термически активируемые процессы эволюции микроструктуры в наноматериалах, полученных ИПД, явились объектом исследования в ряде недавних работ [66, 71-73, 105, 229-233]. Структурные исследования с использованием мето-  [c.122]

Недавние исследования показали также новые возможности методов ИПД для получения наноструктурных сплавов с метаста-бильной структурой и фазовым составом (см. гл. 2). Как уже отмечалось, было установлено, например, полное растворение цементита и формирование пересыщенного твердого раствора углерода в армко-Fe в случае высоколегированной стали, подвергнутой ИПД [66], а таже образование пересыщенных твердых растворов в А1 сплавах с исходными взаимно нерастворимыми фазами [67]. Формирование таких метастабильных сотояний позволяет ожидать получения особопрочных материалов после последующих отжигов. Вместе с тем, структура этих образцов характеризуется не только малым размером зерен и большеугловыми разориен-тировками соседних зерен, но также специфической дефектной структурой границ зерен, необычной морфологией вторых фаз, повышенным уровнем внутренних напряжений, кристаллографической текстурой и т. д. В связи с этим, очень важным является изучение комплексного влияния структурных особенностей наноматериалов на их механическое поведение.  [c.183]


Характерной особенностью дефектной структуры облученных кристаллов являются хаотичность в расположении точечных и объемных барьеров и неоднородность создаваемых ими полей напряжений. Но нельзя считать распределение дефектов в кристаллах изотропным. На начальной стадии облучения кристаллов наблюдается сильная анизотропия в распределении радиационных дефектов и анизотропия влияния радиации на механические свойства в )азличных кристаллографических направлениях. О. А. Троицкий 151 на монокристаллах цинка обнаружил в плоскостях базиса более высокую скорость накопления радиационных дефектов и большее влияние радиации на сопротивление движению дислокаций в базисных плоскостях по сравнению с другими кристаллографическими плоскостями. В. К. Крицкая с сотрудниками [16] по изменению интегральных интенсивностей рентгеновских рефлексов обнаружила ориентационную зависимость в распределении радиационных дефектов в облученных электронами монокристаллах молибдена и как следствие — анизотропию величины эффекта повышения сопротивления деформированию в различных кристаллографических направлениях монокристаллов молибдена.  [c.63]

При перестройке высокотемпературной модификации в низкотемпературную в процессе охлаждения возможно размельчение структуры полиморфных металлов за счет того, что в пределах крупных зерен возникает большое число зародышей новой (низкотемпературной) фазы. В частности, у железа при у — а-превра-щении внутри аустенитного зерна образуется много ферритных зерен, при этом увеличение скорости охлаждения, подавляя диффузионный рост зародышей, способствует получению мелкозернистой структуры. У титана в силу рассмотренных особенностей полиморфного превращения рост зародышей а-ф азы происходит с большой скоростью, и даже в случае закалки величина а-зерен во много раз превосходит величину ферритных зерен. При этом из-за достаточно строгого соблюдения кристаллогеометрического соответствия решеток а и р-фаз зерна, различающиеся как самостоятельные при металлографическом анализе, могут иметь близкую или одинаковую кристаллографическую ориентировку. По этому прАзнаку в пределах макроскопического р-зерна обычно могут быть лишь несколько (2—3) различных микрозерен.  [c.12]

На рис. 6.6 полные ПС модельных структур (1) и (2) у-АзОз сопоставлены с ПС а-А120з [19], позволяя выявить ряд тонких особенностей ЭЭС а-иу-фаз. Для последней более сложная, многопиковая структура ПС в области ВЗ связана как с присутствием катионов в двух различных кристаллографических позициях (АР, А , так и с наличием вакансионных состояний, возник-новение которых обусловлено некомплектностью части узлов катионной подрешетки. В целом более сложная структура у-фазы и наличие ряда неэквивалентных А1—0-связей отражается на росте общей  [c.124]

Кристаллическая структура мартенситной фезы. Общие закономерности кристаллографических превращений в связи с эффектом памяти формы в сплавах рассмотрены в первой главе. В этой главе описываются характерные особенности сплавов Т1—N1 с памятью формы.  [c.58]

Расположение атомов и расстояние между ними в разных кристаллографических плоскостях и по разным направлениям меняются, поэтому свойства кристалла в разных плоскостях и направлениях также различны. Эта особенность кристаллических структур определяет анизотропию многих свойств. Некоторые свойства кристалла не зависят от направления (так называемые скалярные свойства) — масса, объем, плотность, температура. Другие свойства (векторные) зависят от направления к ним относится, например, температуропроводность. Для определения скалярного свойства в любой данной точке достаточно одной величины, в то время как векторное свойство определяется тремя числами, отвечающими трем направлениям. Некоторые свойства (тензорныё) описываются более чем тремя числами. Для определения тензора второго ранга в общем случае нужно знать 9 величин для определения симметричного тензора 6, антисимметричного 3. Так, тензор напряжений является симметричным и в общем случае определяется шестью числами-компонентами, а в случае однородного одноосного растяжения (или сжатия) — одним [11].  [c.38]

Характерной особенностью структуры аморфных сплавов является отсутствие кристаллографических плоскостей скольжения. В этой связи для описания механизмов скольжения эффективны модели аморфных сплавов, предполагающие их поликластерное строение. Бакай [419] разработал поликластерную модель аморфных твердых тел, основанную на конструктивном определении класса топологически разупорядоченных структур, сохраняющих достаточно большую общность. Предполагается, что границы кластеров обладают тем же атомным строением, что и слои скольжения. Однако в силу случайной упаковки кластеров и их произвольной формы сквозная трансляционно-инвариантная межкластерная граница отсутствует. С другой стороны, сдвиг по поверхности, отвечающей однородным сдвиговым напряжениям, невозможен без разрывов связей по кластерным границам. Поэтому скольжение путем движения дислокаций происходит вдоль тех участков кластерных границ, где касательные напряжения достигают критического уровня (при этом разрывы происходят в местах концентрации нормальных к границе растя-  [c.259]

Структурное совершенство поверхности раздела соединяемых пластин и прилежащих к ней областей играет очень важную роль, особенно при создании многослойных композиций для силовой электроники. При прямом соединении пластин одинаковой кристаллографической ориентации с разворотом одной поверхности относительно другой в плоскости контакта, не превышающим 0,5°, формируется композиция, которая практически является аналогом многослойной структуры, создаваемой методом эпитаксиального наращивания. Увеличение угла разворота до 45 приводит к формированию на границе соединения супертонкого нарушенного слоя. При соединении поверхности ориентации (111) с поверхностью ориентации (100) на границе раздела возможно образование очень тонкого (2...3нм) аморфного слоя. Таким образом, получение структурно совершенной границы раздела требует строгого контроля взаимной ориентации соединяемых поверхностей.  [c.78]

При исследованиях методом тонких фолы чрезвычайно богатую информацию дает микродифракция. Микродифракционная картина позволяет не только выбирать и правильно интерпретировать дифракционный контраст на соответствующем электронно-микроскопическом изображении, но и проводить фазовый анализ, определять кристаллографические и кристаллогеометрические особенности наблюдаемых структур и т. п. Особенности микродифракци-онных картин (МДК), получаемых в электронном микроскопе при просмотре тонких фолы  [c.53]

Одни авторы [2] связывают появление тетрагональности с особенностями зонной структуры переходных металлов и возможностью образования дырок среди коллективизированных электронов. Зонная модель ферро- и антиферромагнетизма предполагает, что в фермиевском газе свободных электронов в определенных условиях устанавливается обменное взаимодействие, способствующее самопроизвольному намагничиванию. В Зс1-металлах нахождение одной дырки на жу-орбитали приводит к формированию связывающей dxy-зоны, а образующиеся две дырки попадают на dyz и с гж-орбитали, что ведет к кооперативному искажению ГЦК-решетки до тетрагональной симметрии. Одновременно возникает двухподрешеточная структура и появляется антиферромагнитная корреляция. В первом случае, с/а>1 и наблюдается антиферромагнитное взаимодействие в плоскостях (001) во втором случае, ja< и— взаимодействие между плоскостями (001).Спо-нижением температуры испытания и уменьшением содержания железа роль дырочной проводимости увеличивается [30]. Зонная модель со спонтанным моментом коллективизированных электронов наиболее полно объясняет магнитные свойства Зд-металлов с высокой степенью перекрытия недостроенных оболочек (хром, марганец). Однако эта модель не объясняет разделения магнитных и кристаллографических превращений, а также существования анти- ферромагнитного порядка только в ГЦК-кристаллах [2].  [c.77]


Доменные конфигурации в ромбической фазе KNbOs обычно чрезвычайно сложны,особенно если они возникли из сложной доменной структуры в тетрагональной фазе Этот факт объясняется тем, что спонтанная поляризация может быть направлена по нескольким эквивалентным кристаллографическим осям  [c.26]

Свойства ферритов, как и любых других твердофазных материалов, можно разделить на две группы объемные, или структурнонечувствительные, и структурно-чувствительные. Объемные свойства определяются химическим составом и типом кристаллической структуры феррита, а структурно-чувствительные — несовершенством (дефектами) электронной и кристаллической структуры. К первой категории относят константу кристаллографической анизотропии, магнитострикцию, точку Кюри, удельную теплоемкость, диэлектрическую проницаемость, намагниченность насыщения и т. д. В качестве примера структурно-чувствительных свойств рассматривают электропроводность, теплопроводность, форму петли гистерезиса, прочность и др. Однако указанное деление весьма условно, поскольку трудно указать такое свойство, которое бы абсолютно не зависело от степени или несовершенства электронной и кристаллической структур з1 ферритов. Действительно, константа кристаллографической анизотропии Ki постоянна для моноферритов фиксированного состава [1]. Для твердых растворов ферритов величина Ki сильно зависит от несовершенств, какими являются флуктуации химического состава в объеме материала. Эта зависимость должна особенно отчетливо проявиться у кобальтсодержащих ферритов. Теплоемкость при температурах, близких к температуре фазового превращения (точка Кюри — у феррошпинелей, точка компенсации — у ферритов со структурой граната), становится настолько чувствительной к химическим неоднородностям материала, что может служить характеристикой последней [2].  [c.7]

Производство холоднокатаных специальных сталей характеризуется рядом особенностей. Электротехнические стали по способу прокатки, термической обработки, кристаллографической структуре и магнитным свойствам условно разделяют на горячекатаные нетекстурованные, холоднокатаные малотекстурованные и холоднокатаные с ребровой и кубической текстурой. В зависимости от содержания кремния электротехнические стали делят на слаболегированные (0,8—1,8%Si), среднелегированные (1,8— 2,8% Si), повышеннолегированные (2,8—3,8% Si) и высоколегированные 3,8—5% Si). В основном электротехнические стали производят в листах толщиной 0,05—1,0 мм и рулонах.  [c.185]

К особенностям влияния СПД на структуру сплавов следует отнести наблюдавшееся устранение неоднородности микростроения в тех случаях, когда в исходной мелкозернистой микроструктуре имеются отдельно крупные зерна или их скопления. Обработка без деформации не устраняет этой неоднородности. При СПД у сплавов В96Ц и 1420 происходит вызванное деформацией увеличение размеров мелких зерен, составляющих основную часть структуры. В крупных же зернах имеет место фрагментация, и на их границах формируются новые мелкие зерна. В результате этих процессов повышается однородность структуры в целом. СПД по сравнению с ОВД приводит к заметному размытию кристаллографической текстуры.  [c.174]

Таким образом, судя по изменению строения сплавов при СПД —их микроструктуры, кристаллографической текстуры, пористости, а также по изменению физических и химических ствойств — электропроводности, кинетики распада пересыщенного раствора, коррозионной стойкости, вызванных СПД, можно считать, что эффект этой деформации значительный. Вместе с тем при заметных изменениях в структурном состоянии сплавов влияние СПД на механические свойства практически не обнаруживается. Такая особенность — слабое изменение механических свойств при сравнительно значительных изменениях структуры — характерна для алюминиевых сплавов. Например, малая чувствительность механических свойств к структурным изменениям обнаружена при сопоставлении структуры и свойств ряда сплавов после ВТМО и СО [207], в отдельных случаях —при сравнении прочностных характеристик сплавов с рекристаллизованной и нерекристаллизованной структурами [283, 284].  [c.176]

Основываясь на положениях теории обеднения, в ряде работ [42, 121, 147—149] проводились сравнительные исследования по выяснению связи между процессами выделения карбидов в нержавеющих сталях в зависимости от температуры, а также длительности отпуска в опасной зоне и склонностью их к МКК, вАявляемой методом AM. В частности, выяснялась взаимосвязь между количеством выделившихся карбидов, их морфологией (двумерные плоские, дендритные, кристаллографически развитые) и распределением по структуре стали. Установлено, что решающее значение имеет выделение карбидов по, границам зерен в виде цепочек, обеспечивающее создание непрерывной зоны обеднения. Развитие МКК, особенно на начальных стадиях, склонны связывать с появлением сетки двумерных и дендритных карбидов, образование которых наиболее характерно для низких температур опасной зоны и непродолжительных выдержек. Однако во  [c.39]

Послойный рентгенографический анализ скользящим пучком лучей выявил вторую важную особенность формирования структуры поверхностных слоев металла при трении в условиях избирательного переноса. При съемке под малым углом падения первичного пучка рентгеновских лучей к исследуемой поверхности на рентгенограмме выявлены не одна, как обычно для однофазного материала, а две системы линий, соответствующие интерференции от кристаллографических плоскостей двух материалов медной пленки и основного металла. Две системы линий свидетельствуют о существовании дискретной границы между сформировавшейся пленкой и основным материалом образца. Результаты послойного (в анализируемом рентгенографически диапазоне толщин) эмиссионного микроспектрального анализа показали, что межфазная граница представляет собой слой окислов. Трение в условиях избирательного переноса осуществляется в восстано- вительной среде, поэтому поверхностные слои металла не окисляются. Однако не исключена возможность диффузии кислорода в подповерхностные слои (явление внутреннего окисления), где он взаимодействует в первую очередь с более активными атомами примесей и легирующих элементов. Условия формирования устойчивой структуры подповерхностного слоя определяются числом и совокупностью анодных компонентов сплава, формированием общего диффузионного потока его составляющих.  [c.135]

Все изложенное позволяет сделать вывод о том, что усталостному разрушению всегда предшествует локальная пластическая деформация, которая по мере накопления числа циклов приводит к разрыхлению, нарушениям сплошности, затем к возникновению микротрещин и развитию некоторых из них в макроскопические. Траектория микроскопической трещины усталости определяется ходом линий сдвигов и расположением влючений в структуре. Между однократной пластической деформацией и сдвигами при усталости имеется много общего одни и те же кристаллографические системы скольжения, качественно сходная зависимость от температуры, скорости и других факторов. В то же время усталостная деформация и разрушение, несомненно, имеют специфические особенности, которые пока не позволили свести этот вид разрушения к обычным при однократных нагружениях и установить устойчивую связь между механическими характеристиками, такими, как (То,2, Ов, и т. д., и характеристиками усталости. Важным практическим следствием из установленного раннего начала усталостного разрушения для большинства реальных условий нагружения является необходимость оценивать материалы не только по характеристикам полного разрушения, но и по начальному разрушению, обнаруживаемому иногда уже после 5—10% от общего числа циклов [5, 6].  [c.203]

Действие таких пленок заключается в том, что они управляют растворением металла. Так как их толщина на выступающих частях (остриях) поверхности металла меньше, чем в углублениях, то имеет место предпочтительное снятие выступов. При известных условиях можно достичь выравнивания поверхности и получить блестящий внешний вид. Подобным же образом металл можно перевести в раствор без применения электрического тока (химическое полирование). Исследованием электролитического полирования особенно занимался Жакэ (см. стр. 215). В противоположность механическому полированию при электролитическом полировании не нарушается кристаллографическая структура верхнего слоя металла, благодаря чему электролитическое полирование часто используется для выявле-  [c.12]

Суть второго факта понятна еще не полностью. Объяснение неодинаковой скоростью диффузии ионов металла в зависимости от кристаллографического направления в окисле могло бы играть известную роль для окислов, обладающих некубической структурой. Однако, как уже отмечалась [335], подобная зависимость скорости окисления от направления наблюдалась по больщей части для таких окислов с кубической решеткой, как СигО, FeO, Рез04. Несколько выше мы уже говорили, что объяснение разной величиной работы выхода электронов с поверхности представляется невероятным, но представление о числе эквивалентных путей возникновения конкретной ориентационной зависимости может быть увязано с числом межзеренных границ и тем самым со скоростью внутренней ди ффузии. Поэтому оно заслуживает дальнейшего изучения. В этой связи представляется, что поверхностная диффузия важна на стадии образования зародышей роста. Объяснение анизотропии скорости окисления очень тонких пленок, выдвинутое Родиным [164], исходит из модели Франка и ван-дер-Мерве, согласно которой в окисле возникают дислокации, когда несоответствие между пространством для катиона в окисле и в. металле превосходит определенную величину. Нет сомнения, что расширение наших званий о поверхностной энергии на границе между металлами и окислами существенно поможет объяснению некоторых ориентационных эффектов, особенно ориентационной зависимости скорости окисления.  [c.97]


После сделанных замечаний об особенностях термооптических искажений АЭ из наиболее популярных материалов получим общее выражение, приближенно описывающее действие термически возмущенного АЭ на проходящее поле. Для этого запишем падающую па АЭ поляризоваппую волну в виде вектора Ei = Ех, Еу) ъ декартовой системе координат, связанной, в случае, если АЭ имеет кристаллическую структуру, с главными кристаллографическими осями. Воспользуемся методом матриц Джонса. Для этого представим вектор Ei в каждой точке поперечного сечения АЭ в системе координат связанной  [c.194]

Всестороннее изучение влияния легкоплавких металлических расплавов на прочность и деформируемость различных твердых металлов показывает, что это влияние ярко специфично. Эффект резкого понижения прочности и пластичности под действием расплавленного покрытия проявляется далеко не во всех случаях наличие или отсутствие этого эффекта и степень его проявления существенно зависят от ряда физикохимических факторов и, прежде всего, от физических и химических свойств данного металлического покрытия и данного твердого металла (расположения в периодической системе элементов Менделеева, валентности, кристаллографической структуры, способности к пластическому течению или склонности к хрупкому разрушению в отсутствие покрытия и др.). Чрезвычайно важную роль играют также условия деформирования образцов — температура, при которой проводятся испытания, скорость деформирования (в опытах с постоянной скоростью растяжения) или нагрузка (при испытаниях на ползучесть), характер напряженного состояния образцов. В ряде случаев,— например для галлированных образцов цинка и особенно олова,  [c.198]

Первичная рекристаллизация аустенита представляет большой практический интерес, если исходная структура стали кристаллографически упорядочена, как в случае видманштеттовой структуры (см. 24) и особенно мартенсита или бейнита (см. гл. IX). Из-за подкалки на воздухе при литье, сварке и горячей обработке давлением в легированных сталях образуется мартенсит или бейнит. При отжиге в таких случаях можно встретиться со структурной наследственностью аустенит получается ориентаци-онно связанным с исходной структурой и если исходное зерно было крупным, то и вновь образующееся аустенитное зерно также получается крупным. Но из-за фазового наклепа аустенит имеет повышенную плотность дефектов решетки и обладает термодинамическим стимулом к первичной рекристаллизации, которая идет из многих центров, измельчает зерна аустенита и нарушает его ориентационные связи с исходной структурой.  [c.157]


Смотреть страницы где упоминается термин Структура кристаллографические особенности : [c.230]    [c.130]    [c.183]    [c.35]    [c.110]    [c.326]    [c.26]    [c.59]    [c.114]    [c.56]    [c.383]   
Сплавы с эффектом памяти формы (1990) -- [ c.20 , c.21 ]



ПОИСК



Кристаллографические

Особенности структуры



© 2025 Mash-xxl.info Реклама на сайте