Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние повышенных и высоких температур

Общие закономерности, касающиеся влияния повышенных и высоких температур на прочность металлических материалов, были освещены в гл. И.  [c.219]

Влияние повышенных и высоких температур  [c.199]

Эксплуатация машин в летних условиях имеет особенности. С наступлением весны существенно усложняются дорожные условия, а грязь, попадающая в узлы и агрегаты силовой передачи и ходовой части, усиливает их износ и особенно сальниковых уплотнений. В летних условиях на эксплуатацию машин оказывают влияние запыленность и высокая температура воздуха. Следует помнить, что запыленность воздуха, поступающего в цилиндры и картер двигателя, повышает износ деталей поршневой группы. При загрязнении воздухоочистителя в значительной мере увеличивается удельный расход топлива и уменьшается развиваемая двигателем мощность. Поэтому в летних условиях воздухоочиститель следует обслуживать чаще. Эксплуатация автомобилей в летних условиях характеризуется ухудшением условий охлаждения двигателя, повышенным загрязнением агрегатов и износом шин. При эксплуатации машин в жаркое время следует обращать большое внимание на тепловой режим двигателя и чаще контролировать уровень  [c.287]


При относительно низких температурах по отношению к температуре плавления появляется только сдвиговая пластичность, которая также может рассматриваться как ориентированная диффузия, ускоренная под влиянием напряжений. При более высоких температурах начинают проявляться другие механизмы пластичности. Таким образом, всякая пластическая деформация, согласно А. А. Бочвару, может быть сведена к диффузионным явлениям, развивающимся внутри кристалла (сдвиг), по поверхности кристаллов одной фазы или по поверхности раздела двух фаз. С этой точки зрения объясняют явления сверхпластичности гетерогенных сплавов [6]. Растворный механизм диффузии играет при межфазовых перемещениях ту же роль, что и рекристаллизация при межзеренных перемещениях. Отсюда следует, что характер взаимодействия и изменение взаимной растворимости различных фаз гетерогенных сплавов оказывают существенное влияние на пластичность при повышенных и высоких температурах.  [c.119]

Для различных пористых материалов, применяемых в области повышенных и высоких температур (различные теплоизоляционные и огнеупорные материалы), с повышением температуры на коэффициент теплопроводности материала все в большей мере оказывает влияние лучистая теплопроводность (рис. 41). Однако сложный характер влияния температуры на перенос тепла в твердом скелете материала и в порах приводит к различной температурной зависимости коэффициента теплопроводности пористых материалов.  [c.125]

Эффективность влияния разрабатываемых методов повышения усталостной прочности часто проверяется испытаниями при комнатной температуре, вместе с тем приводимое далее описание строения изломов, полученных при комнатной и высоких температурах, показывает, что эти два вида разрушения существенно различаются между собой.  [c.146]

Дефекты, вызванные облучением, оказывают существенное влияние на механизм деформации и разрушения материалов. На рис. 38 [87] представлены кривые напряжение — деформация для материала, облученного и испытанного при низких и высоких температурах. Видно, что в образцах, облученных и испытанных при низких температурах Т < Гпл), наблюдается повышение текучести, предела прочности и снижение удлинения. Высокотемпературный отжиг снимает низкотемпературное радиационное охрупчивание. Облучение и испытание образцов при температурах, когда развивается ВТРО (Т > 0,57 пл), практически не изменяют предел текучести (по сравнению с необлученными) и снижают удлинение (при умеренных дозах облучения).  [c.98]


Такой тип поведения характерен при умеренных и высоких температурах. Коэффициент Ьз увеличивается экспоненциально с увеличением напряжения и температуры, а показатель т уменьшается при увеличении напряжения и увеличивается при повышении температуры. Влияние величины напряжения а на скорость ползучести часто описывается эмпирическим соотношением  [c.442]

Вследствие этого влияние ванадия на прокаливаемость стали определяется содержанием в стали углерода, температурой нагрева под закалку и длительностью выдержки при нагреве. В случае закалки ванадиевых сталей с нормальных температур нерастворенные карбиды ванадия, оказывая зародышевое действие, снижают прокаливаемость [3]. Применяя повышенную или высокую температуру нагрева под закалку, можно повысить прокаливаемость, Зародышевое действие карбидов ванадия проявляется при всех прочих равных условиях тем более заметно, чем больше углерода в стали. Поэтому роль температуры нагрева и выдержки при этой температуре тем значительнее, чем больше в стали углерода и ванадия.  [c.43]

Все сказанное относится к так называемой холодной деформации, проходяшей при низких температурах. Для металлов технической чистоты условная граница между низкими и высокими температурами лежит около 0,4 Гпл. При повышении чистоты эта температура заметно понижается. Для сплавов она доходит до 0,6 7пл. Влияние повышения температуры на пластическую деформацию выражается прежде всего в том, что снижаются критические скалывающие напряжения. Сдвиги и двойникование совершаются при меньших внешних нагрузках. Кроме того, начинают работать дополнительные системы скольжения, и это также облегчает пластическую деформацию металла. Наконец, если температура, при которой осуществляется деформация, достаточно высока, то в результате возросшей диффузионной подвижности атомов все или почти все дефекты, вызываемые пластической деформацией, в виде дислокаций, искажений атомных плоскостей, напряжений между блоками и между зернами, успевают уничтожиться. Это означает, что в ходе такой горячей деформации металл не упрочняется. Таким образом, пластическая деформация при высоких температурах характеризуется существенно меньшими напряжениями сдвига и отсутствием наклепа.  [c.45]

В состав современных титановых сплавов входят легирующие элементы, обеспечивающие получение требуемой структуры и свойств, а также необходимой стабильности сплава при эксплуатации. В сплавы вводят один или несколько элементов, растворяющихся в твердом растворе и повышающих его прочность при обычных и высоких температурах. С повышением прочности сплава понижается его пластичность, особенно в тех случаях, когда вводимый легирующий элемент растворяется в титане неполностью и образует с ним химические соединения. Сильно понижают пластичность титановых сплавов железо и хром. Влияние этих элементов усиливается при их высоком содержании, когда образуются интерметаллиды. Умеренно действуют на интенсивность повышения прочности и понижения пластичности титановых сплавов олово и ванадий. ......  [c.17]

Химико-термическая обработка применяется с целью повышения предела выносливости конструкционной стали при циклических нагрузках повышения износоустойчивости трущихся поверхностей деталей и с целью противодействия влиянию внешних сред при нормальной и высокой температуре (устойчивость против коррозии и жаростойкость).  [c.139]

Целью настоящей работы является анализ и совместный учет влияния эффектов давления и аккомодации на теплопроводность легких газов (гелия и водорода) в области повышенных давлений и высоких температур, в которой влияние давления не чрезмерно велико, а эффект аккомодации существен. Поэтому приобретает значение достаточно точный учет эффекта аккомодации для выявления зависимости теплопроводности от давления.  [c.41]

Повышение температуры травильного раствора в значительной степени интенсифицирует процесс травления, причем при травлении в серной кислоте влияние температуры сказывается сильнее, чем при травлении в соляной кислоте (рис. 65). При повышении температуры сернокислого раствора до 80— 90°С и солянокислого до 40—50°С увеличиваются интенсивность травления и неравномерность растравливания металла. Это ведет к значительным потерям основного металла и кислот, особенно соляной, за счет интенсивного испарения и уноса брызг кислоты с парами. Поэтому на практике травление в серной кислоте ведут либо при низких концентрациях кислоты (4— 16%) и высокой температуре (60—85°), либо при высоких концентрациях кислоты (15—20 /о) и постепенном повышении температуры от 40 до 70°С. В соляной кислоте травление ведут  [c.208]


У лиц, работа которых протекает на фоне шума, в среде с повышенной температурой или при напряженном внимании, чаще наблюдается развитие гипертонической болезни, чем у работающих при таком же шуме без высоких температур и напряженного внимания или без шума, но при наличии этих факторов. Комбинированное воздействие повышенных уровней акустических шумов и высоких температур отрицательно влияет, как показывают эксперименты, на точность работы человека. Известно, что вредное влияние  [c.95]

Влияние различных факторов на механические свойства материалов. Экспериментами установлено, что при повышении скорости нагружения и скорости деформирования повышаются предел текучести и предел прочности. При повышении температуры особенно ощутимой является ползучесть (см. 3.9). При высоких температурах более явственными становятся вязкие (пластические) свойства, тогда как при пониженных температурах наблюдается охрупчивание. Существенно влияние на механические свойства металлов химического состава. Например, малые легирующие добавки (хром, никель, молибден и др.) изменяют механические свойства сталей, дают возможность создавать материалы с высокой проч-  [c.142]

Исследовать влияние коэффициента температуропроводности на уровень и распределение температур в носовом профиле стреловидного крыла сверхзвукового летательного аппарата кратковременного действия, имеющего форму затупленного клина (рис. 17.2). Аэродинамический нагрев тел, обтекаемых потоком воздуха, обусловлен эффектами диссипации энергии, повышением температуры в зонах динамического сжатия потока и высокой интенсивностью теплоотдачи, характер- р с 172 ной для носовых частей затупленных тел. Информация о тепловом режиме элементов конструкции необходима для прочностных расчетов. Температурное поле в носовом профиле помимо условий обтекания, формы и геометрических размеров тела в условиях неустановившегося полета зависит также от физических свойств материала, из которого изготовлен профиль. В частности, неравномерность распределения температур и, следовательно, величины термических деформаций зависят от коэффициента температуропроводности материала а = = Х/(ср).  [c.263]

Как видно из графиков (рис. 7.4), коэффициенты В к С качественно ведут себя одинаково. При низких температурах они отрицательны, затем при повышении температуры они проходят через нуль и максимум и, наконец, медленно уменьшаются при очень высоких температурах. Отрицательная ветвь вириального коэффициента В соответствует доминирующему влиянию сил притяжения, а положительная — сил отталкивания.  [c.67]

Коррозионное действие хлоридов наблюдалось начиная с 400 °С, а резкое повышение их влияния происходило при температуре 550—600 °С. Характерно, что хлориды щелочных металлов более сильно действуют на аустенитные стали с высоким содержанием хрома, чем на перлитные и ферритные стали. При высоких температурах (выше 570—600 °С) скорость коррозии аустенитных сталей под влиянием хлоридов по абсолютной величине не отличается от скорости коррозии перлитных сталей.  [c.73]

Влияние повышенных и высоких температур стоит в зависимости от высоты г и продолжительности нагрева. По данным Чулицкого, производившего нагревание Д. при темп-ре от 40 до 140° в течение 8—16 суток для сосны и дуба, сопротивление сжатию снижалось на 5—10%, а ударному изгибу—на 15—30% (при 1°, равной 80—100°) и на 65—70% (при 1°, равной 140°). При атом Д. ясеня и дуба оказалась чувствительнее, чем Д. сосны, к воздействию повышенных 1°, к-рое сказывалось гл. обр. в течение первых 2—4 суток нагрева.  [c.112]

Эксплуатационные режимы нагружения элементов конструкций имеют, как правило, более сложный характер, чем распространенные в практике экспериментов синусоидальные или треугольные формы циклов нагружения, хотя именно они являются наиболее часто используемыми при получении основных характеристик циклических свойств материалов и закономерностей их изменения в процессе деформирования. Синусоидальный или треугольный законы изменения напряжений и деформаций использовались в качестве основных и при экспериментальном изучении кинетики циклической и односторонне накапливаемой пласти ческих деформаций и их описании соответствующими зависимостями, рассмотренными в предыдущих главах. В ряде случаев условия эксплуатационного нагружения представляется возможным схематизировать такими упрощенными режимами. Однако в большинстве случаев для исследования поведения материала с учетом реальных условий оказывается необходимым рассмотрение и воспроизведение на экспериментальном оборудовании таких более сложных режимов, как двух-и многоступенчатое циклическое нагружение с различным чередованием уровней амплитуд напряжений и деформаций, нагружение трапецеидальными циклами с выдержками различной длительности на экстремумах нагрузки в полуциклах растяжения и (или) сжатия, а также в точках полного снятия нагрузки, двухчастотное и полигармо-ническое нагружение, нагружение со случайным чередованием амплитуд напряжений, соответствующим зарегистрированными в эксплуатации условиями. Особенно необходимым воспроизведение и исследование таких режимов становится в области повышенных и высоких температур, когда на характер и степень проявления температурно-временных эффектов, а следовательно, и на кинетику деформаций, существенное влияние оказывают факторы длительности, формы цикла и уровней напряжений или деформаций в процессе нагружения. Ниже приведены исследования закономерностей развития деформаций для ряда упомянутых режимов нагружения, позволяющие проанализировать применимость тех или иных уравнений кривых малоциклового деформирования и применение параметров этих уравнений при изменении режимов.  [c.64]


Для практических целей, как правило, применение обычной температурной шкалы Цельсия оказывается вполне целесообразным. Хотя и нельзя провести четкой границы между областью температур ниже 0°С (низкие температуры) и областью температур выше 0°С (повышенные и высокие температуры), такре разделение оказывается удобным и в дальнейшем будем им пользоваться. Речь все время идет о среднестатистической температуре деформируемого металла, так как местные температуры могут значительно повышаться при деформации. Фактический материал о влиянии температуры на механические свойства приведен в гл. 19, 22 и в работах [4, 5, 9, 10, 11, 15].  [c.238]

Линзы из полиформальдегида, смолы П-68 и поликапро-лактама показывают очень высокую прочностную стойкость и выдерживают давление рабочей среды до- (400- 500) 10 Н/м непрерывно в течение 100 ч и кратковременное (до 1 ч) давление порядка 800-10 Н/м . При этом линзы никаких существенных дефектов не получили и могут повторно использоваться в соединениях. Повышенные и пониженные температуры на эти линзы отрицательного влияния не оказывают.  [c.88]

При газовой сварке малоуглеродистых и хромомолибденовых сталей специальным вопросом является влияние развитых структур перегрева типа видманштетта на жаропрочность сварных соединений. По данным Р. Е. Мазель, эти структуры обладают повышенной прочностью как при комнатной, так и высоких температурах. Пластические характеристики металла с видманштеттовой структурой можно повысить, проведя высокий отпуск. Следует, однако, полагать, что при наличии в районе стыка резких концентраторов напряжений структуры перегрева обладают пониженной сопротивляемостью развитию трещин. Их появление обусловливает также ускоренное развитие свищей в стыках труб водяных экономайзеров, работающих при сравнительно умеренных температурах [71]. В связи с этим в последнее время принимаются меры к замене газовой сварки дуговой.  [c.184]

Установлено, что в большинстве случаев скорость коррозии сильно уменьшается при добавке сернокислых солей железа, марганца, аммония, натрия, никеля, меди и олова. Добавка этих солей весьма эффективна при комнатных температурах, но с повышением температуры испытаний эффективность уменьшается. Наибольшее влияние на уменьшение скорости коррозии при комнатной и высоких температурах оказывает присадка сернокислой меди, что было установлено Монипени [440].  [c.612]

Высокие характеристики прочности, пластичности при комнатной и высоких температурах, хорошая коррозионная стойкость, малое давление пара и технологичность сплавов системы Си—Ni использованы при разработке припоев для пайки сталей и никелевых сплавов, применяемых, в частности, в вакуумных приборах. Температура пайки этих припоев выше, чем температура пайки меди. Снижение температуры пайки припоями на основе Си—N1, не содержаш,ими цинка, марганца и фосфора (или содержаш,ими их в количествах, не оказываюш,их заметного влияния на упругость пара), может быть достигнуто введением в них кремния и бора. Кремний, введенный в эти сплавы, заметно повышает их коррозионную стойкость, жаростойкость, а также благодаря образованию соединений с никелем — и прочность при дисперсионном твердении (табл, 39). Введение кремния способствует повышению прочности и кислотостойкости припоев в серной кислоте.  [c.131]

Сложность (непосредственного определения модулей растяжения и сдвига при различных температурах и особенно подсчет величины фактора формы и размеров затрудняют широкое использование этих зависимостей для оценки термической стойкости огнеупорных изделий. Упругие свойства многих огнеупорных изделий при обычных и высоких температурах систематически изучались Э. К. Келером в Леиинградском институте огнеупоров. Эти исследования в общем подтвердили правильность указанных зависимостей. В настоящее время мы не располагаем еще достаточным экспериментальным материалом по оценке упругих свойств различных огнеупорных изделий при разных температурах. Нет также систематических данных, устанавливающих зависимость упругих свойств огнеупора какого-нибудь определенного химико-минералогического состава от особенностей его строения. Практика показывает, что укрупнением зернового состава шамота, магнезита, хромита и корунда удается в значительной мере повысить термическую стойкость большинства огнеупорных изделий. Влияние зернового состава на повышение термической стойкости связано, по-видимому, со своеобразным строением крупнозернистого огнеупора. Наличие в нем микротрещин и разрывов около крупных зерен отощителя придает в этих местах строению характер точечного сцепления , что создает возможность локальной разрядки напряжений за счет взаимного смещения отдельных частей огнеупора.  [c.146]

Сплав ВТ9 отличается от сплава ВТ8 дополнительным легированием цирконием. Введение циркония в сплавы системы Ti—Al—Mo приводит к повышению прочности почти без снижения пластичности при сохранении достаточно высокой термической стабильности [196, с. 185]. Ввиду благоприятного влияния циркония и высокого содержания алюминия сплав ВТ9 более жаропрочен, чем другие a-b -титановые сплавы (рис. 72). Так, например, при 500° С длительная прочность за 100 ч сплава ВТ9 составляет 60 кгс/мм , а сплавов ВТЗ-1 и ВТ8 40 и 50 кгс/мм соответственно. Сплав ВТ9 удовлетворительно деформируется при высоких температурах (1100—850° С) и из него изготавливают поковки, штамповки и пруткп. Сплав может работать до 500—550° С.  [c.131]

Особенностью кристаллизации хромовых чугунов является образование твердых растворов и цементита, а при содержании Сг свыше 3% — специальных карбидов и твердого, немагнитного и хрупкого интерметаллида Ре—Сг, содержащего 42—48% Сг и известного как ст-фаза. Хромовые чугуны применяются главным образом как жаростойкие, коррозионностойкие и износостойкие материалы (табл. 1.39). Жаростойкость чугуна, естественно, возрастает с повышением в нем содержания Сг (рис. 1.58) [39]. Вместе с тем благоприятное влияние оказьшает и повышение содержания С до 2,5— 3,5% [1], особенно в сплавах, работающих одновременно в условиях истирания и высоких температур. Кремний повышает сопротивление чугуна окалинообразованию, однако он снижает Ов при повышенных температурах, а также пластичность и термическую стойкость чугуна поэтому его содержание в высокохромовых чугунах обычно не превышает 4% (табл. 1.39).  [c.100]

Известно, что отрицательная температура окружающего воздуха влияет на скорость охлаждения сварочной ванны и металла зоны термического влияния (ЗТВ). С понижением температуры скорость охлаждения увеличивается, что приводит к ухудшению надежности монтажных стыков. Прежде всего, увеличение скорости кристаллизации сварочной ванны уменьшает ее объем. Так, уменьшение температуры от +20 до -50 °С сокращает длительность пребывания сварочной ванны в жидком состоянии примерно на 10 %. Это сказывается на процессе кристаллизации металла, так как отставание диффузионных процессов от кристаллизационных приводит к перавпо-веспому структурному состоянию металла нри этом усиливаются процессы ликвации и сегрегации химических элементов, возрастает вероятность засорения сварного шва неметаллическими и шлаковыми включениями, не успевающими полностью выделиться в шлак, и образования нор, вызванных газами, в частности водородом. Увеличение скорости охлаждения сварного соединения может привести к образованию закалочных структур в ЗТВ, резко снижающих пластичность металла и повышающих склонность к хрупкому разрушению. Это особенно может проявляться при сварке низколегированных сталей повышенной и высокой прочности, а также среднелегпровап-ных сталей. Прп этом вероятность хрупкого разрушения тем больше, чем ниже температура окружающего воздуха. В этих условиях незначительный концентратор напряжений в шве пли на ЛИНИН сплавления имеет большую тенденцию к развитию, которое может привести к зарождению трещины и ее распространению вплоть до разрушения трубопровода.  [c.44]


Из перечисленных выше способов наиболее эффективно азотирование, которое практически полностью устраняет влияние концентраторов напряжений. Для азотированных деталей коэффициент д чувствительности к концентрации напряжений близок к нулю (т. е. эффективный коэффициент концентрации напряжений к йй 1). Азотирование почти не вызывает изменения формы и размеров деталей. Это позволяет во многих случаях устранить заключительное шлифование и бв,кгс1ммг сопутствующие ему дефекты, снижающие прочность. Кроме того, азотированный слой обладает повышенной коррозие- и термостойкостью. Твердость и упрочняющий эффект в противоположность обычной термообработке сохраняются до высоких температур (500—60б°С). Сочетание этих качеств делает азотирование ценным способом обработки деталей, работающих при повышенных температурах и подвергающихся высоким циклическим нагрузкам и  [c.317]

Никель является сильным аутенитообразующим элементом. Железо и никель при затвердевании образуют у-твердый раствор в широком интервале концентраций. Влияние никеля на повышение жаростойкости хромоникелевой стали проявляется в повышении механических свойств при высоких температурах в результате наличия аустенитной структуры, в увеличении плотности оксидной пленки, усилении ее сцепления с основным металлом. Степень влияния никеля на жаростойкость непрерывно увеличивается с ростом температуры.  [c.49]

На долговечность подшипников влияют условия их нагружения и работы. Радиальные и радиально-упорные подгпнпники весьма часто подвергаются одновременному действию радиальных Р,- и осевых Ра нагрузок (см. рис. 3.133), которые на долговечность подшипников оказывают неравномерное влияние. Подшипники, у которых наружное кольцо неподвижно, а внутреннее — вращается, имеют более высокую долговечность, так как уменьшается число циклов нагружения неподвижного кольца. Долговечность под-1в ипников снижается при действии переменных и ударных нагругюк, а также с повышение.м рабочей температуры в подшипниковых узлах от 100° С и более.  [c.528]

При высоких температурах, когда энергия теплового движения во много раз больше энергии кулоновского взаимодействия частиц плаз.мы, последняя близка по своим свойствам к идеальному газу (газоподобная плазма). С уменьшением температуры влияние кулоновского взаимодействия возрастает и свойства плазмы отклоняются от свойств идеального газа, приближаясь к жидкости (жидкоподобная плазма). К тому же эффекту приводит повышение давления, так как при этом уменьшается среднее расстояние между частицами.  [c.639]

При высоких температурах влияние величины зерна на пластичность и сопротивление деформации изучено недостаточно. Однако установлено, что и при высоких температурах отмеченная выше тенденция сохраняется, т. е. сопротивление деформации и пластичность уменьшаются с ростом величины зерна, причем с повышением температуры пластичность сталей 000X28 (0,02% С) и Х28 (0,1% С) повышается независимо от величины зерна (рис. 271,а). Наоборот, для кремнистой стали существенное различие в пластичности установлено для 800 °С (рис. 271,6), которое нивелируется при более высоких температурах, причем с повышением температуры пластичность более мелкозернистой стали уменьшается, что можно объяснить ростом размера зерен при нагреве однофазной кремнистой стали в диапазоне температур 800—1000 °С. Рост зерен с повышением температуры для двухфазных сталей затруднен и поэтому в них наблюдается увеличение пластичности с ростом температуры за счет развития диффузионных процессов, увеличения числа систем скольжения и механизмов пластической деформации. Однако для хромистых сталей наряду с ростом пластичности при уменьшении величины зерна наблюдается аналогичное уменьшение сопротивления деформации, что связано с проявлением эффекта сверхпластичности, так как при повышенной температуре эти стали (000X28 и Х28) являются по существу двухфазными с наличием устойчивой твердой ст-фазой. Поэтому не случайно, что влияние величины зерна на пластичность  [c.509]

В ВРД применяется топливо для реактивных двигателей. Теплотворная способность и плотность топлива оказывают непосредственное влияние на такие важные параметры летательного аппарата, как дальность полета, воз-растаюшая пропорционально повышению теплоты сгорания 0 . В ряде случаев оказывается целесообразным применять топлива с меньшей теплотой сгорания, которые требуют для сгорания меньше воздуха и поэтому дают более высокую температуру продуктов сгорания. Например, для сжигания бериллия требуется почти вдвое меньшее количество воздуха 0, теоретически необходимого для полного сгорания 1 кг жидкогсс топлива (7,7 вместо 14,8 кг). Температура горения при этом увеличивается до 4200 К (вместо 2520 К). Такие топлива обеспечивают большую реактивную тягу, скорость полета и могут применяться для форсажных камер ТРД.  [c.270]

Влияние повышенных температур. В современных условиях работа конструкций часто бывает сопряжена с высокими температурами. Элементы конструкций сверхзвуковых самолетов па1реваются н полете до 200°С и выше, детали газовых турбин авиациоипых двигателей работают при температуре ООО—1000 С. С действием высоких температур приходится считаться в энергетическом и химическом машиностроении и т. д.  [c.87]

Повышение скорости деформации благоприятно влияет на пластичность при высоких температурах, особенно нераскисленной меди. Отно-ТАБЛИЦА 8. ВЛИЯНИЕ ДОБАВОК И ТЕМПЕРАТУРЫ НА СВОЙСТВА ЛИТОЙ МЕДИ  [c.35]

Характер кривой распределения температуры стенки трубы при различных значениях недогрева жидкости на входе Д/нед связан также с процессом формирования профилей скорости и температуры на входном участке трубы, т. е. на участке гпдродпнамиче-ской и тепловой стабилизации лотока. При уменьшении А/нед сечение, в котором устанавливается развитое поверхностное кипение при неизменных значениях q и Шо, оме-щается в направлении входа в трубу. Если при этом развитое поверхностное кипение устанавливается в области стабилизированного течения [величина (//й()н.к больше относительной длины участка стабилизации], то значение н. не зависит от недогрева жидкости, На участке стабилиза-потока развитое поверхностное кипение устанавливается при более высокой (по сравнению со стабилизированным течением) срёднемассовой температуре жидкости. В этом случае чем меньше недогрев на входе в трубу, тем при большей температуре н.к устанавливается развитое поверхностное кипение. Данное явление объясняется тем, что на входном участке трубы локальное значение коэффициента теплоотдачи в однофазном потоке увеличивается по мере приближения к входному сечению. Так как интенсификация конвективного теплообмена в однофазном потоке всегда приводит к снижению относительного влияния механизма переноса теплоты, обусловленного процессом парообразования, то при данных значениях q и Шр влияние последнего механизма переноса проявляется только при более высокой температуре жидкости. В условиях повышенной интенсивности теплообмена в однофазной среде возрастает и длина зоны перехода к развитому поверхностному кипению.  [c.265]


Смотреть страницы где упоминается термин Влияние повышенных и высоких температур : [c.283]    [c.2]    [c.384]    [c.86]    [c.165]    [c.131]    [c.36]    [c.456]    [c.46]    [c.197]   
Смотреть главы в:

Справочник литейщика  -> Влияние повышенных и высоких температур



ПОИСК



Влияние Влияние температуры

Влияние Повышение

Влияние повышенных температур

Температура высокая

Температура повышенная

Температуры высокие — Влияние

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте