Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дислокации виды

Линейные дислокации — вид нарушения регулярности струк-  [c.132]

Линейные несовершенства кристаллического строения. Что такое дислокация Виды дислокаций и их влияние на механические свойства металла.  [c.148]

Дислокации виды 24 Диффузии коэффициент 238  [c.364]

Другим важнейшим видом несовершенства кристаллического строения являются так называемые дислокации. Представим себе, что в кристаллической решетке по каким-либо причинам появилась лишняя полуплоскость атомов, так называемая экстраплоскость (рис. 8). Край 3—3 такой плоскости образует линейный дефект (несовершенство) решетки, который называется краевой дислокацией. Краевая дислокация может распространяться на многие тысячи параметров решетки, для нее вектор Бюргерса (см. с. ООО) перпендикулярен экстраплоскости. В реальных металлах дислокации смешанные на некоторых участках — краевые, на других — винтовые.  [c.28]


Вследствие искажения решетки в районе дислокаций (рис. 9,а) последняя легко смещается от нейтрального положения, а соседняя плоскость, перейдя в промежуточное положение (рис. 9,6), превратиться в экстраплоскость (рис. 9,в), образуя дислокацию вдоль краевых атомов. Мы видим, таким образом, что дислокация может перемещаться (вернее, передаваться, как эстафета) вдоль некоторой плоскости (плоскости скольжения), расположенной перпендикулярно к экстраплоскости.  [c.30]

На рис. 10 представлены микрофотографии шлифов металла, на которых специальными методами выявлены дислокации в виде отдельных точек (концы одиночных дислокаций). В одних случаях они обнаруживаются как следы выхода их на поверхность.  [c.30]

Таким образом, правильность кристаллического строения нарушается двумя видами дефектов — точечными (вакансии) и линейными (дислокациями).  [c.30]

На рис. 1.13 представлены микрофотографии следов точечных дислокаций (отдельные точки), линейных дислокаций (сплошные прямые линии, а также спирали или полуокружности). В этом случае зерна дислокаций могут располагаться в виде сфокусированных пучков выгнутых линий или в виде сетки пересекающихся дислокаций.  [c.20]

При массовой пластической деформации дислокации, движущиеся в кристаллической решетке по пересекающимся плоскостям, образуют неподвижные пороги, поэтому перемещение дислокаций тормозится. Суммарно это проявляется в виде упрочнения металла после определенной пластической деформации.  [c.107]

Кроме того, на поверхности реальных тел, имеющих кристаллическое строение, на гранях растущего кристалла непрерывно возникают различные дефекты поверхности (ступени, выступы) в виде винтовых дислокаций или недостроенных атомных поверхно-  [c.441]

Сопряжение узлов решетки между дислокациями сопровождается ее деформацией. Накопленная деформация на ряде решеток компенсируется появлением нарушений кристаллического строения в виде дислокаций.  [c.502]

Важное значение имеют виды обработки, которые материал претерпел. Литые изделия и металл сварного шва, как правило, имеют крупное зерно, малую плотность дислокаций, что приводит к излучению импульсов АЭ большой амплитуды при нагружении материала. В табл. 4.8 представлены факторы, влияющие на амплитуду АЭ.  [c.257]

Слово дислокация означает смещение в связи с тем, что вблизи дефекта атомы, лежащие ниже края неполной плоскости, смещены. Отсюда возник и СИМВОЛ краевой дислокации в виде 1 в нем вертикальный отрезок означает направление сдвига, который всегда (в случае краевой дислокации) перпендикулярен направлению неполной плоскости. Такие дефекты возникают не только при кристаллизации, но и при пластической деформации в результате неполно-  [c.49]


К основным видам дислокаций относятся краевые и винтовые (рис  [c.47]

Рис. 29. Виды дислокаций краевая (а) и винтовая (б) Рис. 29. Виды дислокаций краевая (а) и винтовая (б)
Различают два вида движений дислокаций скольжение, или консервативное движение, и переползание, или неконсервативное движение. При консервативном движении перемещение дислокации происходит в плоскости, в которой находится сама дислокация и ее вектор Бюргерса, который характеризует энергию искажения кристаллической решетки. Эту плоскость называют плоскостью скольжения. В случае скольжения экстраплоскость посредством незначительного смещения перейдет в полную плоскость кристалла, а Б соседнем месте возникнет новая экстраплоскость (рис. 34). Дислокации одинакового знака отталкиваются, а разного знака взаимно притягиваются. Сближение дислокаций разного знака приводит к их взаимному уничтожению.  [c.52]

Использование количественного анализа магнитных эффектов позволило найти количество углерода в этих состояниях. В частности, на ранних стадиях термообработки отпуском большая часть углерода стали (не менее 60% от общего количества) находится в свободном состоянии в виде сегрегаций в местах наибольшей концентрации дислокаций.  [c.68]

До определенного момента дисклинации имеют возможность перемещаться лишь параллельно самим себе (трансляционный характер перемещения). Это обусловлено относительно низкой плотностью дислокаций, которая недостаточна, чтобы обеспечить возможность какого-либо еще вида движения внутри металла, ведь дислокации делают структуру металла более разряженной и внутренне напряженной. Металл становится более текучим и по ряду свойств приближается к жидкому состоянию. Некоторые авторы предлагают рассматривать пластически деформированное состояние металла как особое сильно возбужденное состояние кристалла, к которому принципиально неприменима теория возмущений идеального кристалла.  [c.109]

Линейные дефекты малы в двух измерениях, в третьем они могут достигать длины кристалла (зерна). К линейным дефектам относятся цепочки вакансий, межузельных атомов и дислокации. Дислокации являются особым видом несовершенств в кристаллической решетке. С позиции теории дислокаций рассматриваются прочность, фазовые и структурное превращения.  [c.265]

К основным видам дислокаций относятся краевые и винтовые (рис. 6.2). Краевая дислокация образуется, если внутри кристалла появляется лишняя полуплоскость атомов, которая называется экстраплоскостью (рис. 6.3). Ее край 1-1 создает линейный дефект решетки, который называется краевой дислокацией.  [c.265]

Упругие деформации в кристалле могут быть связаны не только с воздействием на него внешних сил, но и с наличием в нем внутренних дефектов структуры. Основным видом таких дефектов, существенных для механических свойств кристаллов, являются так называемые дислокации. Изучение свойств дислокаций с атомарной, микроскопической точки эре-. ния не входит, разумеется, в план  [c.149]

Wmh В виде производных (27,2) теряет смысл ). В этих точках величины надо определить с помощью соответствующей б-функции так, чтобы интеграл (27,5) приобрел требуемое значение —Пусть I — двухмерный радиус-вектор, отсчитываемый от оси дислокации в данной ее точке в плоскости, перпендикулярной вектору т. Элемент площади этой плоскости выражается через элемент df поверхности как т di. По определению двумерной б-функции б (I) имеем  [c.152]

Поле смещений и (г) вокруг дислокации может быть выражено в общем виде, если известен тензор Грина уравнений равновесия данной анизотропной среды, т. е. функция, определяющая смещение Нц созданное в неограниченной среде сосредоточенной в начале координат единичной силой, направленной вдоль оси (см. 8). Это легко сделать с помощью следующего формального приема.  [c.152]


С изменением площади поверхности 5д при смещении дислокации связано изменение сингулярной деформации (27,8), сосредоточенное на линии D. Его можно представить в виде  [c.160]

Поскольку в написанном виде формула (28,4) относится только к перемещению в плоскости скольжения, имеет смысл сразу же написать проекцию силы f на эту плоскость. Пусть х — единичный вектор нормали к линии дислокации в плоскости скольжения. Тогда  [c.161]

Зависимость второй степени следует из плотности дислокаций, а зависимость первой степенд — из скорости переползания. Физика степенного закона ползучести заключена в геометрическом соотношении (4.25), зависимости поля напряжений дислокации вида 1 г и линеаризованной зависимости скорости переползания от напряжения.  [c.126]

В металлах положительные ионы расположены практически равноправно по отношению друг к дру17 а свободные злектроны в виде "электронного г за , являясь общими для всего куска металла или металлической детали(рис.4,а)> не препятствуют перемещению ионов металла по отношению друг к другу. Ионы металла способны сравнительно легко перемещаться под действием незначительных нагрузок в любом направлении, образуя при этом широкие дислокации.  [c.10]

Кроме краевых различают еще винтовые дислокации. На рис. 10 показана пространственная модель винтовой дислокации — это прямая линия EF (рис. 10), вокруг которой aroMinje п.юскости изогнуты гю винтовой поверхности. Обойдя верхнюю изогнутую атомную плоскость по часовой стрелке, приходим к краю второй атомной плоскости и т. д. В этом случае кристалл можно представить как состоящий из одной атомной плоскости, закрученной в виде винтовой поверхности (рис. 10). Винтовая дислокация так же, как и краевая, образована неполным сдвигом кристалла но плоскости Q. В отличие от краевой дислокации винтовая дислокация и вектор сдвига параллельны.  [c.22]

Рост кристалла значительно облегчается тем, что грани его не представляют идеально ровных плоскостей. На гранях растущего кристалла всегда имеются различные дефекты поверхности в виде ступенек и выступов, на которых легко удерживаются новые атомы, поступающие из жидкости. В этом случае рост кристалла может протекать даже без образования двумерного зародыша. В растущем кристалле всегда имеются дислокации. В месте выхода на поверхность винтовой дислокации имеется ступенька, к которой легко присоединяются атомы, поступающие из жидкости (рис. 21, б). Винтовые дислокации ведут к образованию на поверхности кристалла спиралей роста высогой от одного до нескольких тысяч атомов. Спиральный рост экспериментально обнаружен при изучении роста монокристаллов магния, кадмия, серебра и других металлов.  [c.34]

Большая часть работы (до 95 %), затрачиваемой на деформацию металла, превращается в теплоту (металл нагревается), остальная часть энергии аккумулируется в металле в виде повышенной плотности несовершенств строения (вакансий и, главным образом, дислокаций). О накоплении энергии свидетельствует также рост остаточных напряжений в результате деформации. В связи с этим состояние наклепанного металла термодинамически неустойчиво. При нагреве такого металла в нем протекают процессы возврата, нолигонизации и рекристаллизации, обусловливающие возвращение всех свойств к свойствам металла до деформации.  [c.53]

Феррит (Ф) — твердый раствор углерода и других примесей в а-железе. Различают низкотемпературный а-феррит с растворимостью углерода до 0,02 % и высокотемпературный S феррит с предельной растворимостью углерода 0,1 %. Атом углерода располагается в решетке феррита в центре грани куба, где помещается сфера радиусом 0,29 атомного радиуса железа, а также в вакансиях, на дислокациях и т. д. Под микроскопом феррнт выявляется в виде однородных полиэдрических зерен (рис. 74, а).  [c.118]

Основные ВИДЫ искажений линейные д и ел о к аци и — вклинивание лишних кристаллических плоскостей (экстраплоскостей) (рис. 82, а) винтовые дислокации — спиральный сдвиг кристаллических плоскостей друг отноептелыю друга (рис. 82,6) в а к а н с и и — отсутствие атомов в узлах кристаллических решеток (рис. 82, в) включения примесных атомов в междуузлия решетки (рис. 82, г).  [c.172]

Повышение усталостной прочности при кратковременных перегрузках объясняется деформационным упрочнением, происходящим, при пластических деформациях микрообъемов материала, сходным с ущючнением, при наклепе. Установлено, что под действием пластических деформаций происходят упрочняющие Процессы разупорядочение кристаллических решеток увеличение плотности дислокаций измельчение кристаллических блоков и увеличение степени их разориентировки зубчатая деформация поверхностей спайности в результате выхода пластических сдвигов на поверхность зерна и, как следствие, увеличение связи между зернами. Уменьшается растворимость С, О п N в а-железе эти элементы выпадают из твердых растворов, образуя высокодисперсные карбиды, QK a№ .iL нитриды в виде Облаков, блокирующих распространение дислокащ1Й.  [c.309]

Отметим, что реальные кристаллы либо с самого своего возник-иовения содержат дислокации, либо имеют какие-то иные несовершенства и в них дислокации образуются уже при низких напряжениях сдвига. Поэтому-то при низких напряжениях дислокации движутся через кристаллическую решетку, отчего и происходит пластическая деформация кристалла. После того как дислокация выйдет наружу кристалла, форма его изменится, но структура останется прежней (рис. 117, б). Возникают новые дислокации и движутся через кристалл. Суммарно результат этих скольжений в зернах проявляется в виде пластической деформации образца.  [c.107]

Значение 6 можно представить в виде суммы пластического и деструкционного (разрушающего) удлинения. Пластическая деформация обусловлена дислокациями и сдвигом. Деструкция означает возникновение в материале несплошно-стей. Отношение напряжений деструкции ад и для многих пластичных сталей близко к единице Кд = ад/Ов 1,0. Чем больше Кд, тем качественнее сталь.  [c.283]


Авторы [83] рассматривают явление пластической деформации как волновой процесс. Феноменологически он аналогичен распространению электромагнитных волн, когда электрическая составляющая поля порождает магнитную. Магнитная, в свою очередь, - электрическую и т.д. Так же, как существует две составляющие электромагнитного поля, взаимообусловли-вающие друг друга, существует две взаимообусловливающие составляющие движения дислокаций при пластической деформации. Выше (см. раздел 4.2) мы говорили о двух возможных видах движения дислокационных структур с целью диссипации вносимой в материал энергии - трансляционного и ротационного. Трансляционный сдвиг - это перемещение дислокаций параллельно самим себе в каком-либо направлении. Ротационный поворот - это поворот дислокаций как единого целого вокруг какой-либо точки.  [c.140]


Смотреть страницы где упоминается термин Дислокации виды : [c.21]    [c.45]    [c.75]    [c.303]    [c.67]    [c.143]    [c.243]    [c.266]    [c.353]    [c.357]    [c.150]   
Теория сплавов внедрения (1979) -- [ c.24 ]



ПОИСК



Дислокации 1. 290 - Виды 1. 172 - Понятие

Дислокации 1. 290 - Виды 1. 172 - Понятие винтовые

Дислокации 1. 290 - Виды 1. 172 - Понятие линейные

Дислокация



© 2025 Mash-xxl.info Реклама на сайте