Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диффузия механизмы

Судя по количеству водорода, накапливающегося в котлах в зависимости от времени, а также по данным лабораторных измерений скорости коррозии, скорость роста оксида подчиняется параболическому закону 123], а следовательно, контролируется диффузией. Механизм этого процесса, как это описано в гл. 10, связан с миграцией ионов и электронов через слой твердых продуктов реакции.  [c.283]

Закон Фурье справедлив для жидкости с однородным полем концентрации. Для определения теплового потока в пограничном слое, в котором наряду с градиентом температуры имеются градиенты концентрации, формулу закона Фурье (1.3) следует дополнить членами, учитывающими дополнительный перенос теплоты в наших дальнейших исследованиях мы ограничимся только одним членом, который будет учитывать перенос теплоты диффузией механизмы такого переноса были описаны выше.  [c.229]


Обобщен большой экспериментальный материал по воздействию водорода на стали при повышенных температурах и давлениях. Рассмотрены закономерности взаимодействия водорода с металлами растворимость, проницаемость и диффузия, механизм обезуглероживания, влияние различных внешних (давление водорода, температура и др.) и внутренних (растворимость, диффузия, фазовый состав) факторов на водородную коррозию. Указаны методы заш,и-ты стали от воздействия водорода при повышенных температурах и давлениях.  [c.24]

Законы диффузии Методы измерения коэффициента диффузии Механизмы процесса диффузии Термодинамика и диффузия Расчет коэффициента диффузии Диффузия в разбавленных твердых растворах Гетеродиффузия Дефекты структуры и диффузия Исследование топографии диффузионных потоков в металлах методом электронномикроскопической авторадиографии  [c.86]

Диффузия (механизм диффузии)  [c.277]

Измерения количества водорода, образовавшегося в котлах в зависимости от времени, а также определения скорости коррозии, проведенные в лаборатории, указывают, что рост окисла подчиняется параболическому уравнению [17], следовательно, скорость контролируется процессом диффузии. Механизм этого процесса связан с перемещением ионов и электронов через твердые продукты коррозии, как это описано в гл. X.  [c.231]

Выведем уравнение диффузии. Диффузия — механизм выравнивания концентрации вследствие молекулярного переноса веще-  [c.88]

Коэффициенты диффузии. Механизм диффузии атомов в твердом теле тесно связан с наличием вакансий (дырок) — узлов кристаллической решетки, незаполненных атомами. Если вакансий нет, то процесс диффузии в твердом теле не имеет места.  [c.94]

ДИФФУЗИЯ Механизм диффузии  [c.108]

Сопротивление диффузии частиц и сопротивление миграции частиц в электрическом поле имеют одну и ту же природу, что указывает на общность механизма диффузии и электропроводности и позволяет использовать данные об электропроводности при изучении и объяснении явлений диффузии.  [c.34]

Рассмотрение механизма диффузии и электропроводности в полупроводниковых кристаллах позволило Вагнеру сформулировать ионно-электронную теорию высокотемпературного параболического окисления металлов с образованием достаточно толстых окисных пленок и дать количественный расчет этого процесса. Ниже приводится в простейшем виде вывод уравнения Вагнера.  [c.59]

Мокрая атмосферная коррозия металлов по своему механизму приближается к электрохимической коррозии при полном погружении металла в электролит, отличаясь от нее меньшей затрудненностью диффузии кислорода тонкими слоями электролита и на-  [c.373]


Для исследования скорости и механизма диффузии в пленках (выяснения природы диффундирующих ионов, скорости диффузии и др.) применяют метод инертных индикаторов и метод радиоактивных изотопов (меченых атомов).  [c.437]

Рис. 104. Механизм диффузии серебра и иода через Ад4 (по Г. В. Акимову) Рис. 104. Механизм диффузии серебра и иода через Ад4 (по Г. В. Акимову)
Дальнейшее обсуждение механизмов термоэлектричества выходит за рамки настоящей книги, основная цель которой — показать, каким образом можно измерять температуру термопарами. Основная цель краткого знакомства с теорией — выяснить, почему термо-э.д.с. сильно зависит от состава, однородности и отжига материала. Отметим, что во всяком хорошем устройстве для измерения температуры термопарой, где соединение двух электродов находится в области постоянной температуры, роль спая состоит лишь в создании электрического контакта. Каким образом он выполнен и имеется ли диффузия одного сплава в другой в области спая, не имеет значения для величины термо-э. д. с., развивающейся в области температурного градиента.  [c.273]

При диффузии п металле элементов с малым атомным радиусом (С, N, Н) происходит диффузия по межузельному механизму (рис. 15, г).  [c.27]

Перенос тепла и вещества с поверхности материала в окружающую среду происходит в основном молекулярным путем (теплопроводность и диффузия). Но наличие интенсивного эффузионного переноса пара в зоне испарения, усиливающегося явлением теплового скольжения, создает градиент давления в зоне. Это изменяет механизм переноса пара в пограничном слое. Пар, выходя с боль-  [c.515]

Из соотношений (3. 3. 43), (3. 3. 44), т. е. в тех случаях, когда поверхностной диффузией можно пренебречь, следует, что величина коэффициента запаздывания у уменьшается с ростом радпуса пузырьков. В случае если поверхностная диффузия ПАВ преобладает над остальными механизмами переноса ПАВ, рост радпуса пузырьков Д влечет за собой рост у (см. (3. 3. 45)). В пределе Д —> со, у —> со уменьшаются циркуляции внутри газовых пузырьков и их совокупность ведет себя как совокупность твердых частиц. На рис. 35 показана зависимость средней скорости движения пузырьков от газосодержания для различных значений параметра к (3. 3. 32). Средняя скорость свободного подъема пузырьков для данного значения к уменьшается с ростом ос, поскольку с ростом газосодержания увеличивается взаимное влияние пузырьков (см. разд. 3.1). Очевидно, что это уравнение (3. 3. 36) справедливо лишь для с. <Л V 2/6, поскольку это значение соответствует системе плотноупакованных сферических частиц.  [c.110]

В соответствии с предположением Ре -> оэ можно утверждать, что вдоль линий тока целевой компонент переносится в основном за счет конвективного механизма, а в направлении, перпендикулярном линиям тока, перенос целевого компонента осуществляется за счет молекулярной диффузии. Следовательно, выравнивание концентрации целевого компонента вдоль линий тока происходит  [c.239]

Видно, что плотность потока целевого компонента j не зависит от уг.ла 9, т. е. одинакова во всех точках поверхности пузырька. Кроме того, выражение (6. 3. 41) не содержит зависимости от скорости набегающего потока жидкости и. Эти факты свидетельствуют о том, что в начальные моменты времени массоперенос в диффузионном пограничном слое в основном осуществляется за счет механизма молекулярной диффузии. Величина полного потока вещества J при малых временах определяется при помощи следующей формулы  [c.253]

Определим длину диффузионного следа Ь за газовым пузырьком как расстояние вдоль оси симметрии, на котором за счет диффузионного механизма происходит существенное изменение концентрации в следе. С этой целью использует уравнение стационарной диффузии (6. 2. 12)  [c.261]

Будем считать, что как характер протекания химической реакции, так и конвективно-диффузионный механизм переноса целевого компонента оказывают существенное влияние на скорость массообмена. Будем также предполагать, что основное сопротивление массопереносу сосредоточено в дисперсной фазе. Уравнение конвективной диффузии целевого компонента внутри газового пузырька имеет в этом случае вид (1. 4. 2). Если необратимая химическая реакция является реакцией первого порядка, то удельная обведшая мощность стока целевого компонента определяется при помощи следующей форму.лы  [c.263]


Соотношение (6. 8. 72) определяет значение критерия Шервуда в случае, когда перенос целевого компонента осугцествляется за счет механизма молекулярной диффузии (Ре=0) в отсутствие электрического поля. Тривиальные значения критерия в более высоком порядке по 8 и л (6. 8. 73), (6. 8. 74) иллюстрируют тот факт, что периодическое движение жидкости не вносит вклада в осредненный по времени массоперенос.  [c.287]

Диаграмма деформации композита 53 Ди борид тнтана, волокно 28 Диюконтинуум хим ический 46—48 Диффузии механизмы, экспериментальное нсследование 29 Диффузионная сварка 32 —34 Диффузия, замедление при обменной реакции 97  [c.430]

При достаточно быстром (сотни градусов в секунду) нагреве закаленной и неотпущенной стали реализуется особый кристаллографически упорядоченный механизм об разования аустенита, сходный с обратным мартенситным превращением в высоколегированных сплавах, в резуль тате чего происходит восстановление зерна исходной струк туры По мере уменьшения скорости нагрева все в боль шей степени получают развитие процессы отпуска и нор мальный, контролируемый диффузией механизм образо вания аустенита, сопровождающийся измельчением зерна При достаточно медленном (1—2 град/мин) нагреве мно гих сталей аустенит образуется также кристаллографичес ки упорядоченным механизмом, в результате чего и при таком нагреве наблюдается восстановление зерна исход ной структуры, т е резко выраженная структурная наслед ственностп Увеличение скорости нагрева ведет к наруше кию упорядоченности в процессе формирования (роста)  [c.77]

Механизм данного явления, очевидно, заключается в диффузии кислорода в сплав, где он вступает во взаимодействие с легирующими компонентами, имеющими большее, чем основной металл, сродство к кислороду окисление происходит, по-видимому, прежде, чем эти компоненты успеют продиффундировать к поверхности металла. Обнаруженный Ринсом и др. [24] параболический рост подслойной окалины находится в соответствии с контролируемым диффузией механизмом процесса.  [c.159]

Кроме дырочного механизма возможны и другие диффузионные про-неееы перемещение дислоцированного атома из одного междоузлия в другие (пока он не попадет в дырку и успокоится ) или обмен местами двух соседних атомов. Дырочный механизм осуществим наи(5олее легко. Расчеты относительно самодиффузии меди дают следующие значения энергии активации процессов для дырочного механизма — 64 ккал/г-атом, перемещение дислоцированного атома 230 ккал/г-атом и при обменном механизме 400 ккал/г-атом. Столь большая разница в энергии активации приводит к тому, что диффузия реально протекает лишь путем дырочного механизма удельное значение других способов перемещения ничтожно мало.  [c.321]

Современные представления о механизме старения, подтверждаемые особым методом рсптгепоструктурного анализа, таковы в процессе естественного старения происходят подготовительные процессы к выделению, само же выделение может произойти лишь при высоких температурах, обеспечивающих достаточную скорость атомным перемегцсниям (диффузии).  [c.573]

Механизм, который предложили Кабрера и Мотт (J949 г.), исходит и из существования на металле образовавшейся в процессе хемосорбции кислорода пленки, в которой ионы и электроны движутся независимо друг от друга. При низких температурах диффузия ионов через пленку затруднена, в то время как электроны могут проходить через тонкий еще слой окисла либо благодаря термоионной эмиссии, либо, что более вероятно, вследствие туннельного эффекта (квантово-механического процесса, при котором для электронов с максимальной энергией, меньшей, чем это требуется для преодоления барьера, все же характерна конечная вероятность того, что они преодолеют этот барьер, т. е. пленку), обусловливающего высокую проводимость окисной пленки при низких температурах. При этом на поверхности раздела металл— окисел образуются катионы, и на поверхности раздела окисел— газ—анионы кислорода (или другого окислителя). Таким образом, внутри окисной пленки создается сильное электрическое поле, благодаря которому главным образом ионы и проникают через пленку, скорость роста которой определяется более медленным, т. е. более заторможенным, процессом.  [c.48]

Диффузия металла (по данным Вагнера, катионов Me +) н кислорода (по Вагнеру, анионов 0 ) в слое твердого защитного окисла Mejdmnn может осуществляться по одному из двух возможных механизмов (рис. 35) 1) движение ионов в междо-узельном пространстве кристаллической решетки 2) движение ионов по пустым узлам решетки.  [c.60]

Перемещение зжтроноб Рис. 35, Схема механизма диффузии в защитных окислах  [c.60]

Эти механизмы диффузии имеют место при росте защитных пленок первый — при образовании пленок ZnO, dO, BeO, AI2O3 и др. (рис. 35, а), второй — при образовании пленок с пустыми катионными или анионными узлами в кристаллической решетке, например Си О, FeO, NiO, СоО (рис. 35, б), a-FeaOg, Т1О2 (рис. 35, в) и др. Диффузия катионов в защитной пленке для соблюдения электронейтральности сопровождается одновременным перемещением в том же направлении эквивалентного числа электронов в междоузлиях при первом механизме и по электронным дыркам (катионам с более высокой валентностью) при втором механизме.  [c.60]

Существует ряд теорий, объясняющих появление в этих сталях склонности к межкристаллитной коррозии. Наиболее общепринятой и достаточно хорошо обоснованной теорией, объясняющей механизм межкристаллитной коррозии, является теория обеднения твердого раствора по границам зерен хромом из-за тлдслеиия в этой зоне карбидов хрома. Хром — элемент, более склонный к карбидообразованию, чем железо, а никель не обладает способностью образовывать карбиды. Однако сам факт выделения карбидов хрома по границам зерен не мог бы вызвать обедненне сплава хромом, если бы скорости диффузии углерода н хрома б лли одинаковы. Причиной обеднения границ зерен хромом является высокая скорость диффузии углерода и низкая скорость диффузии хрома, вследствие чего в образовании карбидов участвует почти весь углерод сплава, а хром — только пограничной зоны, где и идет образование карбидов.  [c.163]


Процесс коррозионного разрушения поверхности мета 1ла в этом случае аналогичен химическому процессу роста пленок окисла на иоверхности металла. Механизм такой коррозии и общем случае мо.л<ет быть объяснен рассмотренным в гл. IX процессом диффузии ионов металла и электронов сквозь илепку и атомов или ионов кислорода с поверхности пленки в металл.  [c.176]

Механизм пассивности объясняется в настоящее время при помощи двух теорий - пленочной и адсорбционной, в соответствии с пленочной теорией пассивности на поверхности металлов предполагается оОразование слоев продуктов реакции, окислов металлов или других соединений, которые отделяет металл от коррозионной среды, препятствуя диффузии реагентов и тем самым С1шхая скорость растворения металлов.  [c.38]

Рис. 37. Рост зерни при собирательной рекристпллизацпи а — диффузия через границы зереп 6 — механизм роста зерна Рис. 37. <a href="/info/291093">Рост зерни</a> при собирательной рекристпллизацпи а — диффузия через границы зереп 6 — <a href="/info/415549">механизм роста</a> зерна
Механизм образования и строение цементованного слоя. Диффузия уик рода в сталь возможна тольк( в том случае, если углерод нахол1Г1чя в агома[)ном состоягпш, получаемом, наиример, диссоциацией газов, содержащих углерод (СО СН, и др.). Атомарный углерод адсорбируется поверхностью стали и диффундирует в глубь мета, п л а.  [c.231]

Легирующие элементы, присутствующие в стали, оказывают влияние на структуру цементуемого слоя, механизм его образования и скорость диффузии. В случае цементации сталей, легированных карбидообразующими элементами, при температуре диффузии возможно образование двухфазного слоя из аустенита и карбидов глобулярной формы. При этом аустенит обедняется углеродом и карбидообразующнми элементами (Сг, Мп, Ti) и на поверхности после закалки образуются пемартенситные структуры, способствующие снижению твердости и особенно предела выносливости. Суммарная концентрация углерода на поверхности цементированного слоя сталей, легированных карбидообразующими элементами, может достигать 1,5—2,0 % и более. Карбидообразующие элементы (Сг, Мп, Мо, W и др.) увеличивают энергию активации Q, уменьшают коэффициент диффузии углерода в аустените. Никель и кобальт повышают коэффициент диффузии углерода в аустените. Однако на толщину слоя, легирующие элементы в том количестве, в котором они присутствуют в цементуемых сталях, практически не влияют.  [c.233]


Смотреть страницы где упоминается термин Диффузия механизмы : [c.189]    [c.344]    [c.110]    [c.164]    [c.6]    [c.129]    [c.137]    [c.9]    [c.26]    [c.26]    [c.105]    [c.23]   
Основы материаловедения и технологии полупроводников (2002) -- [ c.286 ]



ПОИСК



ВЛИЯНИЕ ВНУТРЕННИХ И ВНЕШНИХ ПОЛЕЙ НА ДИФФУЗИЮ ПРИ ВАКАНСИОИНОМ МЕХАНИЗМЕ Феноменологические уравнения

Возможные механизмы диффузии в твердых телах

Диффузии коэффициент электронов при прыжковом механизме переноса

Диффузии механизмы, экспериментальное исследование

Диффузионные процессы механизм диффузии

Диффузия

Диффузия Си в Ge. Диссоциативный механизм диффузии

Диффузия в матрице механизм и следствия

Диффузия вакансионный механизм

Диффузия механизм для чистых металло

Диффузия реакционная, механизм

Механизм диффузии и коррозия в газах

Механизм объемной диффузии

Механизмы диффузии в кремнии

Механизмы диффузии в кристаллах

Механизмы процесса диффузии

Подвижность меченых атомов при дивакансиониом механизме диффузии



© 2025 Mash-xxl.info Реклама на сайте