Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегралы движения. Законы сохранения

ОБЩИЕ ПРИНЦИПЫ РЕЛЯТИВИСТСКОЙ КИНЕМАТИКИ 1. Интегралы движения. Законы сохранения  [c.9]

Для дальнейшего обсуждения первых интегралов уравнений движения (законов сохранения) требуется использовать аппарат вариационного исчисления, который нужен нам также и для иных целей, связанных с изучением движений в потенциальных полях. Поэтому в следующем параграфе будут кратко изложены элементы вариационного исчисления, а затем, применяя соответствующий аппарат к теории движения в потенциальных полях, мы вернемся, в частности, к вопросу об общей теории первых интегралов уравнений движения.  [c.271]


Из теоремы об изменении количества движения для точки и системы при некоторых условиях для внешних сил можно получить так называемые первые интегралы системы дифференциальных уравнений точки и системы. Эти первые интегралы называют законами сохранения количества движения или проекции количества движения на ось. Рассмотрим эти законы сохранения для точки и системы одновременно, считая материальную точку механической системой, состоящей из одной точки.  [c.261]

Из теоремы об изменении количества движения для точки и системы при некоторых условиях для внешних сил можно получить так называемые первые интегралы системы дифференциальных уравнений точки и системы. Эти первые интегралы называют законами сохранения  [c.287]

Интегралы количества движения. Закон сохранения движения центра масс. Когда каждый из векторов и R обращается в нуль или, вообще, когда их сумма равна нулю, тогда равенство (31.6) даёт  [c.305]

В заключение этого параграфа сделаем следующее общее замечание о законах сохранения. Формулировка каждого из этих законов имеет следующий вид некоторое выражение, зависящее от координат точек и их скоростей, при движении системы не меняется . Эти выражения не зависят от ускорений точек и в этом смысле являются первыми интегралами уравнений движения. В дальнейшем (см. гл. VII) мы вернемся к понятию первый интеграл и дадим его точное определение. Там же будет показано, что найденные выше первые интегралы — законы сохранения — являются следствиями основного предположения классической механики об однородности и изотропности пространства и об однородности времени (см. гл. VII). Отложив поэтому уточнение этого понятия до гл. VII, мы в 7 настоящей главы на важном примере продемонстрируем, как классическая механика использует законы сохранения для того, чтобы упростить (а в некоторых случаях и решить) дифференциальные уравнения, описывающие движение.  [c.77]

В тех случаях, когда система не консервативна, но имеет место равенство (24) i), формула (25) устанавливает интеграл уравнений движения, подобный интегралу энергии в натуральных консервативных системах. Поэтому при выполнении условия (24) гамильтониан называется обобщенной энергией, а утверждение (25) — обобщенным законом сохранения энергии. Системы, удовлетворяющие условию (24), далее называются обобщенно консервативными системами.  [c.265]


В предыдущих главах мы уже встречались с понятием первого интеграла уравнений движения. Роль таких первых интегралов играли различные функции, которые во время движения не изменяются в силу законов сохранения — закона сохранения количества движения (импульса), закона сохранения момента количества движения (кинетического момента системы), закона сохранения механической энергии и т. д. Формулы, выражающие  [c.265]

В этом параграфе вариационный подход к задаче механики и, в частности, полученная в 4 общая формула для вариации функционала будут использованы для того, чтобы установить связь между законами сохранения, которые были получены в предыдущих главах, и общими свойствами пространства и времени, которые находят свое выражение в инвариантности законов механики относительно преобразований систем отсчета. Установление этой связи позволит понять внутреннюю природу законов сохранения и причины, по которым эти законы существуют. Такое понимание особенно важно, ибо оно иногда позволяет предвидеть первые интегралы и тем самым облегчить исследование уравнений, описывающих движение.  [c.286]

Соотношения (25 ) являются первыми интегралами дифференциальных уравнений движения системы (3). Закон сохранения кинетического момента системы показывает, что одни внутренние силы не могут изменить кинетический момент системы так же, как они не изменяют ее количество движения.  [c.272]

С математической точки зрения закон сохранения энергии дает один из первых интегралов уравнений движения, так как уравнение, представляющее закон сохранения энергии, содержит только координаты и скорости, т. е. первые производные от координат по времени, и не содержит ускорений (вторых производных от координат по времени) поэтому иногда выражение закона сохранения энергии называют интегралом энергии или интегралом живых сил.  [c.233]

Леонардом Эйлером были выведены уравнения равновесия и движения жидкостей и газов, указаны некоторые интегралы этих уравнений и сформулирован закон сохранения массы применительно к жидкости. Эйлер исследовал также некоторые вопросы движения к практическим задачам судостроения и конструирования гидравлических машин.  [c.7]

Посмотрим теперь, являются ли ядерные силы центральными. Центральными называются силы, действующие вдоль линии, соединяющей частицы. Центральные силы могут зависеть от относительной ориентации спинов частиц, но не могут зависеть от ориентации этих спинов относительно радиуса-вектора между частицами. Для центральных сил орбитальный и спиновый моменты количества движения сохраняются в отдельности. Поэтому в низшем энергетическом состоянии орбитальный момент / стремится принять наименьшее возможное значение / = О, при котором равна нулю центробежная энергия. Тем самым при центральных силах основным состоянием дейтрона было бы чистое S-состояние, в котором I = 0. Поскольку спин дейтрона равен единице, то спины протона и нейтрона параллельны. Следовательно, магнитный момент дейтрона при центральных силах должен равняться алгебраической сумме магнитных моментов протона и нейтрона. Отмеченное в 1 отклонение р,р -1- jXn от jid свидетельствует о том, что ядерные силы в какой-то мере нецентральны. Действительно, если предположить, что силы нецентральны, то орбитальный момент не будет точным интегралом движения. Им будет только полный момент. Согласно квантовому принципу суперпозиции состояний состояние дейтрона будет суммой состояний с различными значениями орбитального момента. Число возможных смешиваемых состояний сильно ограничивается законами сохранения полного момента и четности. Из закона сохранения полного момента следует, что если спин дейтрона равен еди  [c.175]


Введение изотопического пространства само по себе не содержит физических гипотез, а является лишь методом описания. Ничто не мешает нам ввести другое формальное пространство, в котором разными состояниями одной и той же частицы были бы, скажем, нейтрон и электрон. Однако такое пространство никто не вводит из-за его бесполезности для физики. Изотопическое пространство полезно тем, что по отношению к нему можно сформулировать имеющее физический смысл утверждение, состоящее в том, что ядерные взаимодействия (и вообще все сильные взаимодействия, см. гл. VII, 2) инвариантны относительно поворотов в изотопическом пространстве. Это утверждение эквивалентно тому, что изотопический спин является интегралом движения, правда, только по отношению к сильным внутриядерным взаимодействиям. В электромагнитных взаимодействиях закон сохранения изотопического спина нарушается. Таким образом, изотопическая инвариантность может быть выражена в форме частичного (т. е. справедливого не для всех видов взаимодействий) закона сохранения изотопического спина. Посмотрим теперь, как работает этот закон сохранения, т. е. каким образом из него можно извлекать экспериментально проверяемые следствия.  [c.192]

Среди приближенных интегралов движения следует указать зарядовую четность, соответствующую симметрии законов природы относительно операции С зарядового сопряжения, при котором изменяются знаки всех зарядов. Зарядовое сопряжение сохраняется в сильных и электромагнитных взаимодействиях, но нарушается слабыми. Кроме зарядовой четности существуют еще другие приближенные законы сохранения, соответствующие симметриям относительно операций типа отражений. Однако эти законы не независимы, а получаются комбинированием уже перечисленных. Сюда относятся, например, четность Р и G-четность.  [c.284]

В табл. 7.2 перечислены интегралы движения с указанием физического смысла и взаимодействий, для которых справедлив соответствующий закон сохранения. О спонтанно нарушенных симмет-. риях см. п. 10.  [c.284]

Сумма кинетической и потенциальной энергии остается при движении постоянной. Эта фундаментальная теорема называется законом сохранения энергии . Мы получили скалярное уравнение, являющееся лишь одним из интегралов уравнений движения. Хотя его одного и недостаточно для полного решения задачи о движении системы (исключая случай одной степени свободы), это тем не менее один из наиболее фундаментальных и универсальных законов природы, который при соответствуюш,их модификациях выполняется не только в механических, но и во всех физических процессах. Постоянная Е называется постоянной энергии .  [c.119]

Самый распространенный прием получения первых интегралов уравнений (1) основан на изучении поведения основных динамических величин системы количества движения, кинетического момента, кинетической энергии. Изменение этих величин во времени описывается основными теоремами динамики, являющимися непосредственными следствиями уравнений (1). Утверждения, описывающие условия, при которых некоторые из основных динамических величин остаются постоянными, называются законами сохранения.  [c.156]

Названные исследователи сначала применили принцип наименьшего действия лишь к механике весомых тел и представляли при помощи этого принципа либо движение системы совершенно свободных материальных точек, либо системы материальных точек, подчиненных жестким связям. Физические предположения, из которых они исходили, в основном заключались в законах движения Ньютона и том способе, каким обычно в механике в соответствии с опытом определяли действие неизменяемых связей, наложенных на материальные точки. Однако позже, когда научились правильно обращаться с интегралом Мопертюи, выяснилось, что нужна также предпосылка о справедливости закона сохранения энергии ). Сначала это казалось существенным ограничением области пригодности принципа наименьшего действия, пока новейшие физические исследования не показали, что закон сохранения энергии имеет всеобщую значимость, так что упомянутое кажущееся ограничение на деле ничего не ограничивает. Нужно только для исследуемого явления знать полностью все формы, в которых проявляются эквиваленты энергии, чтобы включить их в расчеты. С другой стороны, казалось спорным, могут ли быть подведены под принцип наименьшего действия другие физические процессы, которые не сводятся непосредственно к движению весомых масс и ньютоновым законам, процессы, в которых, однако, фигурируют известные количества энергии.  [c.430]

Пример 136. Уравнением (43.52) можно пользоваться не только в том случае, когда между переменными существуют зависимости, но и тогда, когда известны некоторые интегралы уравнений движения и желательно, пользуясь имя, уменьшить число переменных. Покажем, например, как воспользоваться законом сохранения движения центра масс для уменьшения числа переменных. В рассматриваемом случае известными интегралами будут  [c.474]

Гидравлические потери [24, 75, 76]. При гидравлических расчетах используются законы сохранения массы, количества движения и энергии в интеграль-[гой (балансовой) форме.  [c.114]

Полученный результат является следствием того, что при изоэнтропийном течении интегралы уравнений количества движения и энергии совпадают и для изучения таких течений из трех законов сохранения необходимы только два (массы и количества движения). Необходимо, однако, подчеркнуть справедливость уравнений (2.37) и (2.58) не только для изоэнтропийного течения, но и для течения с трением, так как в последнем случае вся работа трения переходит в тепловую энергию и эти две составляющие общего уравнения энергии взаимно компенсируются. В результате полная энергия частиц, движущихся при установившемся течении вдоль своей линии тока, остается неизменной.  [c.50]


Мы завершаем этот пункт замечанием, что из всего кажущегося разнообразия не зависящих от пути интегралов и сопутствующих им законов сохранения, связанных с динамическим развитием трещин в нелинейных (или линейных) упругих материалах, только лишь ] из (2.28) н (2.49) и его эквивалент /в из (2.58) имеют следующие свойства характеризуют удельную высвобожденную энергию, обусловленную движением трещины, измеримы и являются мерой динамических полей, характерных для окрестности вершины трещины.  [c.156]

Если движение системы материальных точек происходит под действие г,- внутренних и внешних сил, которые являются потенциальными, то сумма кинетической и потенциальной энергий системы сохраняет постоянную величину. Это — закон сохранения механической энергии. С математической точки зрения закон сохранения механической энергии является одним из первых интегралов уравнений движения, так как уравнение, характеризующее закон сохранения механической энергии  [c.377]

Так как преобразования евклидовой] симметрии , образующие подгруппу группы точечных преобразований, могут рассматриваться и как преобразования, образующие подгруппу группы канонических преобразований, то шести бесконечно малым преобразованиям этой группы должны, в согласии с лиевским вариантом взаимосвязи, отвечать шесть интегралов движения — законов сохранения количества движения и момента количества движения. Конкретный вид генераторов евклидовой группы позволяет благодаря соотношениям (15) вычислить соответствующие производящие функции, отождествляемые с шестью упомянутыми первыми интегралами.  [c.234]

Структура стационарных волн детонации. Рассмотрим плоское одномерное стационарное движение монодиспсрсной горючей аэровзвеси в системе координат, связанной с детонационным фронтом. При высоких скоростях движения, характерных для детонационных волн, влияние излучения и процессов переноса ( диффузии, теплопроводности) пренебрежимо мало. Уравнения (5.1.1) в стационарном случае имеют интегралы, представляющие собой законы сохранения массы, импульса и энергии (см. (4.4.5))  [c.425]

В работах [306, 307] были введены Г-иптегралы, по. зволяющие изучать многие физические и меха71ические явления в сплошных средах, содержащих особые точки, линии или поверхности. Эти интегралы строятся на основе общих физических законов сохранения с привлечением уравнений электромагнитного поля Максвелла, уравнений движения Ньютона, кинематических условий для малых деформаций с возмоягным обобщением на конечные деформации. Функции, входящие в этн уравнения, предполагаются непрерывно дифференцируемыми необходимое число раз всюду, за исключением особых точек, особых лиггай п особых поверхностей, где они утрачивают физический смысл.  [c.66]

Падающий канат. Канат длиной I соскальзывает с неподвижной горизонтальной подставки, с которой к началу движения свешивался отрезок каната длиной жо ж — длина вертикально висящей части каната в момент времени t. Канат не должен оказывать сопротивления изгибу. Показать, что закон сохранения энергии в форме Т - -V = onst является интегралом уравнения движения.  [c.316]

Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]

Построим для какого-нибудь полюса, например начала О координат, годограф переменного с течением времени вектора К. Если сумма / ( ) внешних активных сил и реакций перпендикулярна оси Ох и, следовательно, справедлив первый из интегралов (31.12), то рассматриваемый годограф будет плоской кривой, и плоскость её будет перпендикулярна оси Ох. Когда сумма векторов R параллельна оси Oz и, следовательно, выполняются два первые равенства (31.12), годограф вектора К будет отрезком прямой, параллельной оси Oz. Наконец, когда и, следовательно, ймеют место все три интеграла (31.12), или, иначе говоря, соблюдается закон сохранения движения центра масс, рассматриваемый годограф вырождается в точку.  [c.306]

Предварительные замечания, В обшем курсе динамики системы изложены так называемые законы динамики, т. е. некоторые об-и1ие теоремы, указывающие, как изменяются скорости частиц системы в зависимости от данных активных сил и от реакций связей. Это были закон изменения количества движения, закон изменения кинетического момента и закон изменения кинетической энеогии. Каждая такая теорема в частном предположении об активных силах и реакциях системы может непосредственно привести к интегралам уравнений движения к закону сохранения количества движения (или сохранения движения центра масс), к закону сохранения кинетического момента, к закону сохранения энергии. Но зато, вообще говоря, ни один из названных законов не в состоянии заменить собой всей совокупности уравнений движения системы. Другими словчми, движение системы в общем случае не может быть, вполне охарактеризовано одним каким-либо из упомянутых законов.  [c.347]

Метод интегральных соотношений позволяет исходные уравнения записызать в дивергентной форме. Именно в дивергентной форме могут быть представлены дифференциальные уравнения механики и термодинамики, выражающие законы сохранения массы, количества движения, энергии. При этом можно аппроксимировать не сами неизвестные функции, а некоторые комплексы от них, стоящие иод интегралом и обычно имеющие определенный физический смысл, например количества подведенного Q или аккумулированного тепла 2. Широкий выбор интерполяционных выражений и проекционных функций j( ), учитывающих характер решения, позволяет получить достаточно точные результаты уже при сравнительно небольшом числе приближений.  [c.96]


При разработке конкретного М. д. м. необходимо обратить внимание на то, как алгоритм передаёт нек-рые важные свойства имитируемой динамич. системы, напр. сохранение интегралов движения. Полная энергия консервативной динамич. системы полн должна сохраняться. Легко построить М. д. м., в к-рых < папн сохраняется автоматически. Однако обычные алгоритмы интегрирования дифференц. ур-ний приводят к зависимости полн( Д<), к-рая служит для грубого контроля за правильностью вычислении. Несохраневие полн свидетельствует либо об ошибке в выборе Д , либо о непригодности численной схе.мы. В нестационарных задачах М. д. м. этот критерий вообще бесполезен. Если в рассматриваемой системе интегралом движения является импульс, то М. д. м. обычно автоматически сохраняет эту величину, т. к. при вычислении межмолекулярных сил явно используется третий закон Ньютона.  [c.197]

В частности, топологич. интегралом движения является число частиц N в классич, динамике, где исключены процессы рождения и уничтожения частиц. Действительно, если конфигурац. пространство N частиц обозначить через Су, то для конфигурац. пространства произвольного числа частиц справедливо представление = lJ iv, N—Q, I, 2..... Это означает, что каждая связная /-тая компонента в указанном разбиении для С характеризуется собств. числом частиц iVj и в классич. динамике отсутствуют непрерывные траектории, связывающие компоненты конфигурац. пространства с различными Nj. Наличие подобного разбиения является необходимым критерием для введения нетривиальных Т. 3. Т. о., закон сохранения числа частиц в классич. динамике есть следствие непрерывности траекторий частиц, и динамич. система с числом частиц Af,, принадлежащая в нач. момент времени компоненте Сц,, во все последующие моменты будет находиться в той же компоненте. Аналогичное утверждение верно и для квантово-механич. систем, получающихся при первичном квантовании классич. системы.  [c.132]

Для замкнутых, или изолированных систем (такие системы не взаимодействуют с внешними телами и не обмениваются энергией ни в какой форме с внешней средой) сущ,ествуют функции переменных Лагранжа, называемые интегралами движения. Интеграл движения системы называется аддитивным (от латинского addi-iio — прибавление), если он равен сумме интегралов движения составляющих систему частиц. Аддитивных интегралов движения четыре — масса, импульс, момент импульса и энергия. Как показывает опыт, эти четыре величины, характеризующие состояние замкнутой системы, не меняются со временем. Это позволило сформулировать в ньютоновской механике законы сохранения массы, импульса момента импульса и энергии, которые обусловлены основными свойствами материи и движения, а также пространства и времени, как основных форм существования материи.  [c.134]

Рассмотренным выше (см. пункты 2—4) принципам соответствуют законы сохранения классической механики — это, так сказать, физическая точка зрения. С аналитической же точки зрения они дают зависимости, которые при соблюдении определенных условий приводят к интегралам дифференциальных уравнений движения. Разработка этих принципов в течение первой половины XVIII в. облегчала установление такой их связи с дифференциальными уравнениями движения. Но для того чтобы их объединить в общей аналитической трактовке (а это, как мы увидим, стало делом Лагранжа), понадобилось установление принципов другого рода, что также стало делом XVIII в. Почему это понадобилось тогда же Ответ таков. В работах, на которые мы ссылались в этой главе, вполне очевидны две тенденции. Их авторы рады любой возможности показать значение своих результатов для познания закономерностей системы мира , т. е. Солнечной системы, а движение небесных тел — движение свободное, на него не наложены никакие связи. Одновременно в этих работах отмечается польза вводимых или обобщаемых принципов при рассмотрении системы со связями— в первую очередь то, что при соблюдении известных условий можно избежать явного введения трудно определяемого воздействия различных препятствий . Ведь задачи со свтзями земной механики еще не имели сколько-нибудь общей теории  [c.130]


Смотреть страницы где упоминается термин Интегралы движения. Законы сохранения : [c.85]    [c.341]    [c.71]    [c.100]    [c.252]    [c.140]    [c.108]    [c.168]    [c.309]    [c.132]    [c.186]    [c.112]   
Смотреть главы в:

Кинематика ядерных реакций  -> Интегралы движения. Законы сохранения



ПОИСК



ЗАКОНЫ СОХРАНЕНИЯ И ОСНОВНЫЕ ТЕОРЕМЫ ДИНАМИКИ Первые интегралы уравнений движения и законы сохранения

Закон движения

Закон сохранения

Закон сохранения движения

Закон сохранения кинетического момента. Первые интегралы дифференциальных уравнений движения системы

Интеграл движения

Интегралы количества движения. Закон сохранения движения центра масс

Сохранение



© 2025 Mash-xxl.info Реклама на сайте