Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы сохранения в природе

Законы сохранения в природе  [c.148]

Спонтанные превращения ядер, естественная и искусственная радиоактивность. Исследуются различные виды радиоактивных превращений атомных ядер. Устанавливаются законы этих превращений, а также исследуется значение общих законов сохранения в процессах радиоактивного распада. Изучается роль радиоактивных процессов в природе.  [c.8]

Преобразования различных форм движения в количественных отношениях строго следуют закону сохранения энергии. Этот закон выполняет в природе роль своеобразного главного бухгалтера Вселенной. Он в каждом явлении строго учитывает приход энергии и следит за тем, чтобы расход точно соответствовал приходу. Если баланс не сходится, то он сразу подает тревожный сигнал. Такой сигнал физики воспринимают как признак того, что обнаружилось какое-то новое, неизвестное ранее явление. Так было, например, с открытием ряда новых элементарных частиц в ядерной физике  [c.248]


Сделаем теперь краткий обзор формулировок II начала, предшествовавших данной Клаузиусом в 1865 г. и ставших в некотором смысле историческими . Их словесная форма и откровенная наглядность подкупают, но эта литературная форма требует определенных пояснений и математической конкретизации, без которых их просто невозможно привести к рабочей форме (II). Заметим, что если при формулировке основ целого научного раздела необходимо принять некоторое число исходных (что значит недоказуемых в рамках данного подхода) положений (которые можно назвать аксиомами, началами, законами и т. п.), то с точки зрения дела безразлично, в какой форме это будет сделано, в категорической (как это любят делать математики) или в завуалированной и требующей дополнительных разъяснений. Ведь помимо всем нам известных законов сохранения в физике есть еще и общий исходящий из требований логики (если конечно, она не женская ) закон сохранения идей исходных положений, и если какое-нибудь научное направление, отображающее определенный круг явлений природы, основывается на конкретных вложенных в него исходных положениях, то незаметно протащить хотя бы часть из них просто нельзя можно обмануть людей, но не природу. Предпринималось много попыток вывести II начало из более общих представлений. Еще в прошлом веке упоминавшийся нами Ренкин потратил много сил, чтобы из I начала и своих представлений о природе теплового движения получить (II).  [c.67]

Закон сохранения и превращения энергии является фундаментальным законом природы, который получен на основе обобщения огромного количества экспериментальных данных и применим ко всем явлениям природы. Он утверждает, что энергия не исчезает и не возникает вновь, она лишь переходит из одной формы в другую, причем убыль энергии одного вида дает эквивалентное количество энергии другого вида.  [c.14]

В этом параграфе вариационный подход к задаче механики и, в частности, полученная в 4 общая формула для вариации функционала будут использованы для того, чтобы установить связь между законами сохранения, которые были получены в предыдущих главах, и общими свойствами пространства и времени, которые находят свое выражение в инвариантности законов механики относительно преобразований систем отсчета. Установление этой связи позволит понять внутреннюю природу законов сохранения и причины, по которым эти законы существуют. Такое понимание особенно важно, ибо оно иногда позволяет предвидеть первые интегралы и тем самым облегчить исследование уравнений, описывающих движение.  [c.286]


Этим открытием Гюйгенса и утверждением Паскаля, что одно и то же — поднять сто фунтов воды на один дюйм или один фунт на сто дюймов, воспользовался Лейбниц, написав, что декартова мера ЯШ противоречит декартову закону сохранения движения. Лейбниц доказывал, что сохраняется mv" , а не mv. Тот факт, что не сохраняется при ударе неупругих тел (см. 48), Лейбниц объяснил поглощением движения частицами ударяющихся тел. Это не противоречит,— писал он,—нерушимой истине сохранения силы в природе. То, что поглощается частицами, не потеряно для общей силы участвующих в движении тел Лейбниц назвал (1695 г.) эту меру /пи живой силой .  [c.257]

Свои соображения высказал и Д Аламбер (1743 г.), после чего этот великий спор затих, но не потому, что Д Аламбер убедил споривших, а потому, что спор утомил противников и не видно было ему конца. Ведь спорили о том, чем измеряется механическое движение, что сохраняется в природе—mv или mv. Вот почему Ньютон, вообще отрицавший закон сохранения движения, вовсе не принял участия в споре. Но во времена Декарта и Лейбница еще не знали, что механическое движение может переходить в другие виды движения, хотя, как видно и из приведенной нами цитаты Лейбница, эти мысли уже начали зарождаться. Более определенно о немеханических формах движения высказывался. М. В. Ломоносов (1744, 1745).  [c.258]

Законы сохранения энергии, импульса и момента импульса относятся к числу тех фундаментальных принципов физики, значение которых трудно переоценить. Роль этих законов особенно возросла после того, как выяснилось, что они далеко выходят за рамки механики и представляют собой универсальные законы природы. Во всяком случае, до сих пор не обнаружено ни одного явления, где бы эти законы нарушались. Они безошибочно действуют и в области элементарных частиц, и в области космических объектов, в физике атома и физике твердого тела и являются одними из тех немногих наиболее общих законов, которые лежат в основе современной физики.  [c.64]

Таким образом, опыт показывает, что закон сохранения импульса, надлежащим образом обобщенный, представляет собой фундаментальный закон природы, не знающий никаких исключений. Но в таком широком понимании он уже не является следствием законов Ньютона, а должен рассматриваться как самостоятельный общий принцип, являющийся обобщением опытных фактов.  [c.71]

Более глубокое осмысливание этого вопроса привело к фундаментальному выводу о существовании в природе универсального закона сохранения энер-г и и  [c.110]

Среди физических законов, согласующихся с принципом относительности Галилея, особенное значение имеют законы сохранения импульса, массы и энергии. Эти законы уже знакомы вам по школьному курсу физики, где они формулировались без какой-либо связи с принципом относительности. Согласно закону сохранения энергии, полная энергия Вселенной постоянна, независимо от времени ). Рассматривая эти законы с точки зрения принципа относительности, мы не откроем ничего сверх того, что мы уже знаем. Однако мы выиграем в отношении понимания явлений, и это поможет нам обобщить закон сохранения импульса на релятивистские условия, для которых соотношение F = Afa уже не является точным законом природы. Нашей конечной целью будет нахождение эквивалентов законов сохранения массы, энергии и импульса в условиях движения с релятивистскими скоростями, т. е. со скоростями, сравнимыми со скоростью света с.  [c.88]

В природе существует несколько законов сохранения некоторые из них следует считать точными, другие — приближенными. Обычно законы сохранения являются следствием свойств симметрии во Вселенной. Существуют законы сохранения энер ГИИ, импульса, момента импульса, заряда, числа барионов (протонов, нейтронов, и тяжелых элементарных частиц), странности и различных других величин.  [c.148]

Сохранение четности позволяет установить правила отбора по четности, т. е. указать, какие процессы возможны, а какие невозможны. Например, процессы, для которых соотношение (111.42) не выполняется, невозможны (запрещены). Обширный опытный материал показывает, что закон сохранения четности является одним из наиболее общих законов природы и он строго выполняется при электромагнитных и ядерных взаимодействиях. Однако в 1956—1957 гг. было установлено, что закон сохранения четности нарушается при участии так называемых слабых взаимодействий, вызывающих распад элементарных частиц и -распад.  [c.105]


Закон сохранения электрического заряда — один из фундаментальных законов природы, утверждающий, что алгебраическая сумма электрических зарядов любой замкнутой системы остается неизменной, т. е. совершенно строго в каждой реакции с участием элементарных частиц суммарный электрический заряд частиц, вступающих в реакцию, всегда равняется суммарному заряду частиц-продуктов реакции. Некоторые примеры приведены в таблице 21.  [c.353]

Очевидно, что закон сохранения числа нуклонов свидетельствует об отсутствии в природе процессов типа  [c.259]

Оказывается, если сопоставить между собой все известные лептонные процессы, а также процессы лептонного типа, не встречающиеся в природе (например, распад с испусканием одного лептона или двойной р-распад без участия нейтрино), то можно установить новый закон сохранения — закон сохранения лептонного заряда. Все лептонные процессы происходят таким образом, что сохраняется суммарная величина лептонного заряда, который равен -f 1 для всех лептонов (е , и v), —1 для анти-  [c.640]

Приведем несколько примеров. Разрешены законом сохранения лептонного заряда и действительно встречаются в природе следующие процессы  [c.640]

Законы сохранения являются следствием симметрии законов природы относительно некоторых преобразований. Так, например, закон сохранения энергии и импульса выражает независимость результатов эксперимента от времени и места его выполнения (симметрия перемещения в пространстве и времени) закон сохранения момента количества движения — независимость результатов эксперимента от поворота в пространстве  [c.56]

Затишье перед бурей. XIX столетие ознаменовалось целым рядом достижений в физике. К ним относятся достижения в области электричества и магнетизма, которые привели к теории электромагнитного поля Максвелла и позволили включить оптику в рамки электромагнитных явлений значительный прогресс в развитии классической механики, которая достигла особой стройности и законченности благодаря блестящим математическим исследованиям разработка универсальных физических принципов, среди которых на первое место следует поставить закон сохранения и превращения энергии. Неудивительно, что к концу века стало складываться убеждение в том, будто физическое описание законов природы близко к окончательному завершению.  [c.34]

Все взаимные переходы из одной формы движения материи в другую подчиняются основному закону природы — закону сохранения и превращения материи и энергии в самом общем его смысле. Этот закон, имеющий принципиальное значение для физики, утверждает, что материя может бесконечно переходить из одной формы в другую и эти превращения обязательно сопровождаются энергетическими изменениями.  [c.5]

Согласно закону сохранения и превращения энергии, являющемуся наиболее общим, универсальным законом природы, применимым ко всем явлениям и процессам, энергия изолированной системы равная сумме всех видов энергии, имеющихся в системе) при любых происходящих в системе процессах не меняется энергия не уничтожается и не создается.  [c.26]

Значение второго начала. Если исходить из одного лишь первого начала термодинамики, то правомерно считать, что любой мыслимый процесс, который не противоречит закону сохранения энергии, принципиально возможен и мог бы иметь место в природе.  [c.43]

Границы применимости второго начала. Второе начало термодинамики по современным представлениям не является точным законом природы, подобным законам сохранения количества движения или сохранения энергии, которые справедливы для любых макроскопических и микроскопических процессов. Второе начало термодинамики имеет (см. об этом в 2.13) статистический характер и поэтому, строго говоря, выполняется лишь в среднем . Однако вследствие того что в макроскопических процессах принимает участие огромное количество частиц, из которых построены материальные тела, отклонения от второго начала термодинамики в макроскопических явлениях столь маловероятны, что никогда не встречаются на практике.  [c.156]

Термодинамика — это наука о закономерностях превращения энергии в различных физических, химических и других процессах, рассматриваемых на макроуровне. Термодинамика основывается на двух фундаментальных законах природы первом и втором началах термодинамики. Эти законы были сформулированы в XIX в. и явились развитием основ механической теории теплоты и закона сохранения и превращения энергии, сформулированных великим русским ученым М. В. Ломоносовым (1711—1765).  [c.5]

Примеры выполнении закона сохранения количества движения механической системы или его проекции часто встречаются в природе и технике. Так, если человек переходит с кормы на нос первоначально неподвижной лодки, то между ним и лодкой возникают внутренние силы вза-  [c.176]

Закон сохранения кинетического момента часто встречается в природе и используется в технических приложениях. Так, выполнение одного из элементов фигурного катания на коньках, вращения на месте с переменной угловой скоростью, основано на этом законе. Действительно, сумма моментов действующих на фигуриста  [c.198]

Возникает естественный вопрос как же закон сохранения импульса может представлять какую-либо ценность, если импульс определяют именно так, чтобы он сохранялся Для ответа па этот вопрос представим себе частицу, которая при своем движении сталкивается с другими частицами. Рассмотрев перйое столкновение, определим импульс так, чтобы выполнялся его закон сохранения в данном столкновении. Но при последующих столкновениях положение изменится мы уже будем знать импульсы частиц, участвующих в этих столкновениях, и теперь закон сохранения импульса (если он действительно есть) будет выполняться уже не по определению, а в силу глубинных законов природы.  [c.210]

Теоремы Э. Нетер также связаны с упомянутыми работами по ОТО. Работы Клейна и Э. Нетер были опубликованы почти одновременно и создавались в тесном творческом контакте их авторов. Таким образом, теоремы Нетер явились, с одной стороны, результатом многочисленных попыток решения проблемы сохранения в ОТО, а с другой — завершением более чем полуторавекового развития концепции взаимосвязи в классической механике и СТО. Главная заслуга Э. Нетер заключалась в синтезе этих направлений. Весьма значителен также вклад Гильберта и, особенно, Клейна. Работа первого послужила исходным пунктом в разработке общерелятивистского варианта взаимосвязи и содержала по существу формулировку второй теоремы Нетер для -группы. Клейн же своими работами способствовал не только разъяснению проблемы сохранения в ОТО, но и оформлению единого теоретико-группового взгляда на природу законов сохранения в ОТО и теориях спецрелятивист-ского типа..  [c.249]


Сделаем теперь краткий обзор формулировок II начала, предшествовавших данной Клаузиусом в 1865 г. и ставших в некотором смысле историческими . Их словесная форма и откровенная наглядность подкупают, но эта литературная форма требует определенных пояснений и математической конкретизации, без которых их просто невозможно привести к рабочей форме (II). Заметим, что если при формулировке основ целого научного раздела необходимо принять некоторое число исходных (что значит недоказуемых в рамках данного подхода) положений (которые можно назвать аксиомами, началами, законами и т. п.), то с точки зрения дела безразлично, в какой форме это будет сделано, в категорической (как это любят делать математики) или в завуалированной и требующей дополнительных разъяснений. Ведь помимо всем нам известных законов сохранения в физике есть еще и общий исходящий из требований логики (если, конечно, она не женская ) закон сохранения идей исходных положений, и если какое-нибудь научное направление, отображающее определенный круг явлений природы, основывается на конкретных вложенных в него исходных положениях, то незаметно протащить хотя бы часть из них просто нельзя можно обмануть людей, но не природу. Предпринималось много попыток вывести II начало из более общих представлений. Еще в прошлом веке упоминавшийся нами Ренкин потратул много сил, чтобы из I начала и своих представлений о природе теплового движения получить (II). В дальнейшем предпринимались попытки микроскопического подхода к этому вопросу (речь идет пока о равновесной теории и квазистатических переходах), но их действительная стоимость, пожалуй, эквивалентна стоимости попыток микроскопического объяснения, что такое температура. И не случайно поэтому в 1 в качестве одного из основных признаков термодинамических систем мы поставили их свойство удовлетворять всем трем началам термодинамики.  [c.53]

Таким образом, для случая движения в потенциальных полях мы получили из теоремы Нётер все законы сохранения, которые были рассмотрены выше. Теорема Нётер вскрыла природу их возникновения, связанную с инвариантностью уравнений движения при различных преобразованиях координат и времени. Закон сохранения энергии является следствием инвариантности уравнений консервативной системы при сдвиге вдоль оси времени, закон сохранения количества движения — результат инвариантности уравнений замкнутой системы по отношению к сдвигам вдоль осей координат, а закон сохранения кинетического момента — результат инвариантности уравнений замкнутой системы по отношению к поворотам вокруг осей координат.  [c.293]

Н.Н, Моисеевым [19] с учетом механизма развития живой природы сформулирова г принцип минимума диссипации энергии в живой материи. Он гласит если множество устойчивых движений, или состояний, удовлетворяющих законам сохранения и другим ограничениям физического характера, состоит бо.чее чем из одного элемента, т.е. они не выде.пяют единственного движения или состояния, то заключительный этап отбора реализуемых движений или состояний определяется минимумом диссипации энергии (или минимума роста энтропии).  [c.28]

Вы, наверное, слышали о законе всемирного тяготения, законе сохранения массы и энергии и других законах. Как говорилось в курсах школьной физики, это - объективные законы природы, существующие независимо от нас и от наших знаний о них. Чтобы получить их, лзд1шие люди прошлого потратили на это большую часть своей жизни. Что толкало их на это  [c.6]

Процессы, запрещенные законом сохранения лептонного заряда, в природе не встречаются. Это безнейтринный двойной 3-ра-спад 2п -f 2р + 2е (0 0 + 2), захват антинейтрино нейтроном  [c.641]

Для Босстановления право-левой симметрии пустого пространства Ландау предложил вложить право-левую асимметрию в заряд частицы. Согласно Ландау, в слабых взаимодействиях нарушается не только закон сохранения четности, но и принцип зарядового сопряжения. Это легко понять на том же примере с продольно-поляризованными нейтрино и антинейтрино. Дей-ствцтельно, если к левовинтовому нейтрино (правовинтовому антинейтрино) применить операцию зарядового сопряжения, то получится левовинтовое антинейтрино (правовинтовое нейтрино), которого, согласно теории продольных нейтрино, в природе не существует. В соответствии с этим теория оказывается несимметричной относительно замены всех частиц на все античастицы. Инвариантной является комбинированная операция, состоящая из инверсии координат Р и замены частицы на античастицу С. В этом случае говорят о сохранении комбинированной четности СР в слабых взаимодействиях . Введение понятия комбини ровацной четности позволяет рассматривать явления, связанные с несохранением четности, сохраняя право-левую симметрию пустого пространства (так как вращение связано с зарядом, т. е. с частицей).  [c.646]

В дальнейшем мы познакомимся с многими новыми лептон-нымп процессами, существующими в природе, и всякий раз будем убеждаться в том, что они подчиняются законам сохранения лептонных зарядов. И наоборот, процессы, запрещенные законами сохранения лептонных зарядов, в природе не встречаются. В качестве примеров можно привести отсутствие в природе двойного безнейтринного р-распада  [c.115]

Для восстановления право-левой симметрии пустого пространства Ландау предложил вложить право-левую асимметрию в заряд частицы. Согласно Ландау, в слабых взаимодействиях нарушается не только закон сохранени-я четности, но и зарядовая (С)-инвариантность. Это легко понять на том же примере с продольно поляризованными нейтрино и антинейтрино. Действительно, если к левовинтовому нейтрино (правовинтовому антинейтрино) применить операцию зарядового сопряжения, то получится левовинтовое антинейтрино (правовинтовое нейтрино), которого, согласно теории продольных нейтрино, в природе не существует. В соответствии с этим теория оказывается несимметричной относительной замены всех частиц их античастицами. Инвариантной является комбинированная операция, состоящая из инверсии координат Р и замены частицы ее античастицей С.  [c.247]

После крушения теории теплорода теплота окончательно рассматривается как энергия движения составляющих тело материальных частиц (атомов, молекул). Но между теплотой и механической энергией вскоре обнаружились принципиальные отличия. Например, при торможении автомобиля его тормозные колодки нагреваются, но обратный процесс абсолютно невозможен — сколько бы мы ни нагревали колодки, автомобиль все равно останется на месте. Закон сохранения и превращения энергии, раскрывая количественную сторону превращений энергии, ничего не говорит о принцигшальных качественных отличиях между ее различными формами. Можно указать на другие принципиальные особенности тепловых явлений. Одним из самых очевидных наблюдений является то, что при различных видах работы часть энергии выделяется в виде теплоты. В природе существует тенденция к необратимому превращению различных видов энергии в теплоту, поскольку обратное превращение тепла в работу, за исключением изотермических процессов, невозможно. Другой, не менее очевидной особенностью тепловых явлений является то, что нагретые тела всегда стремятся прийти в равновесие с окружающей средой. Но и в этих процессах передачи теплоты существует односторонность, которую Р. Клаузиус сформулировал в качестве тепловой аксиомы Теплота не может сама собой переходить от тела холодного к телу горячему . Значение этого положения оказалось настолько важным, что его стали рассматривать как одну из формулировок второго начала термодинамики. Л. Больцман писал Наряду с общим принципом (законом сохранения и превра]цения энергии. — О. С.) механическая теория тепла установила второй, малоутешительным образом ограничивающий первый, так называемый второй закон механической теории тепла. Это положение формулируется следующим образом работа может без всяких ограничений превращаться в теплоту обратное превращение тепла в работу или совсем невозможно, или возможно лишь отчасти. Если и в этой формулировке второй принцип является неприятным дополнением к первому, то благодаря своим последствиям он становится гораздо фатальнее .  [c.79]


Вторым удивительным свойством этих частиц оказалось их большое по ядерным масштабам время жлзыи 10 с для каонов и 10 с для гиперонов. И эта подсказка природы была замечена. Американский физик М. Гелл-Ман и японский К. Ни-шиджима предположили, что парное рождение каонов и гиперонов и их долгоживучесть связаны с сохранением некоторой новой характеристики элементарных частиц, которую они назвали странностью S. (Это далеко не последний пример экзотических названий.) Был установлен новый закон сохранения — суммарная странность мезоиов и барионов, участвующих в сильных и электромагнитные взаимодействиях, сохраняется. В табл. 6 приводятся значени. странности некоторых элементарных частиц и античастиц [95].  [c.188]

М. В. Ломоносов был первым ученым-материалистом, к(зторый четко и ясно сформулировал закон сохранения материи и энергии, как единый фундаментальный закон природы.  [c.7]

Будучи феноменологической теорией, термодинамика исходит из понятий, данных опытом, и базируется на нескольких экспериментально установленных законах. К числу ее основных законов относятся первое начало термодинамики, представляющее собой частную форму всеобщего закона природы — закона сохранения и превращения энергии — применительно к теплорым явлениям, и второе начало термодинамики, характеризующее направление протекающих в природе макроскопических процессов.  [c.7]

Но у сильных взаимодействий есть и слабые стороны, позволяющие в ряде ситуаций выдвигаться на первый план другим взаимодействиям. Во-первых, сильные взаимодействия — самые короткодействующие в природе. Их роль быстро становится ничтожной при переходе к расстояниям, превышающим 10" см. Поэтому, например, обеспечивая стабильность ядер, эти силы практически не влияют на атомные явления (см. гл. И, 1). Другим слабым местом сильных взаимодействий является их неуниверсальнрсть. Существуют частицы (фотон, электрон, мюон, нейтрино), которые не подвержены действию сил, обусловленных сильными взаимодействиями, и не могут рождаться за счет сильных взаимодействий при столкновениях. Частицы, подверженные сильным взаимодействиям, называются адронами (термин Л. Б. Окуня). К адронам принадлежит большинство известных элементарных частиц. Наконец, третьим ограничительным свойством сильных взаимодействий является то, что для них существует ряд законов сохранения, не выполняющихся по отношению к другим взаимодействиям. Ограничения такого рода мы подробно рассмотрим в последующих трех параграфах, а в 7 поясним, как это связано с симметриями различных взаимодействий.  [c.279]

Понимание физического смысла законов сохранения началось несколько десятков лет назад. Сейчас можно считать установленным, что каждый закон сохранения связан с какой-либо симметрией законов природы. Например, из однородности пространства, т. е. из того, что результат любого опыта не зависит от места его проведения, следует закон сохранения импульса. Наиболее прямо это утверждение (как и связь любой симметрии с соответствующим ей законом сохранения) выводится в квантовой теории ). Интуи-  [c.282]


Смотреть страницы где упоминается термин Законы сохранения в природе : [c.239]    [c.198]    [c.95]    [c.10]   
Смотреть главы в:

Механика  -> Законы сохранения в природе



ПОИСК



Закон сохранения

Природа

Сохранение



© 2025 Mash-xxl.info Реклама на сайте