Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

см также Зависимость от температур термической обработки

Диаграмма состояния разделена линиями на области. Отдельные области могут состоять только из одной фазы, а некоторые — из двух, имеющих разные составы, строение и свойства. Анализируя диаграмму состояния, можно составить представление о специфике свойств сплавов данной системы компонентов и характере их изменения в зависимости от состава, а также о возможности термической обработки сплавов и температуре нагрева для ее проведения.  [c.61]


Механические свойства сортового металла из перлитных сталей, предусмотренные ГОСТ или существующими ТУ, а также рекомендуемые режимы термической обработки приведены в табл. 12.1. Механические свойства при повышенных температурах, определяемые кратковременным испытанием на растяжение, как правило, не регламентируются. Решающее значение имеют нормы длительной прочности и ползучести при рабочих температурах в зависимости от длительности службы за время 10 000-100 ООО ч (табл. 12.2). Сведения о примерном назначении сталей перлитного класса и их рабочие температуры приведены в табл. 12.3.  [c.545]

Приведенные соображения позволяют осмыслить физическую сущность ряда явлений, связанных с действием термической обработки образцов на их люминесцентные свойства. К ним относятся отмечавшаяся выше зависимость так называемого насыщения от размеров образцов, от температуры, при которой производится обработка, зависимость эффекта термической обработки от ско рости охлаждения кристалла и от температуры, а также зависимость яркости свечения от глубины залегания слоя внутри кристалла, когда состояние насыщения еще не достигнуто.  [c.113]

На рис. 7 показана критическая температура в функции сос- тава для сплавов системы N5 — Т1, как медленно отожженных (/), так и закаленных (2). При низком содержании ниобия обнаружена резкая разница в критических температурах для сплавов одного и того же состава в зависимости от термической обработки. Большое различие в Гк связано с образованием в сплавах различных фаз. При высоком содержании ниобия также наблюдается различие в критических температурах, связанное, по-видимому, с ростом совершенства решетки и однородности, приобретаемым во время медленного охлаждения. Как отмечают  [c.17]

Теплоемкости других трех редкоземельных элементов обнаруживают аномальный ход. Теплоемкость неодима и церия имеет максимумы, а теплоемкость празеодима, хотя и растет монотонно, выше 11° К становится значительно больше теплоемкостей остальных трех элементов. Интерпретация этих результатов сильно затрудняется тем, что теплоемкость может меняться в зависимости от типа кристаллической решетки (кубическая или гексагональная с плотной упаковкой). Кроме того, у церия, например, величина максимума зависит от скорости охлаждения образца. У церия же были замечены аномалии при температурах от 90 до 170° К. У двух образцов в этой области температур наблюдался разброс результатов в сочетании с явлениями гистерезисного типа у одного образца был обнаружен значительный максимум теплоемкости, величина которого также зависела от скорости охлаждения и термической обработки.  [c.342]


Это уравнение получено на основе обработки большого количества экспериментальных данных методами теории подобия. Все физические параметры в формулах (2,80) и (2 81) отнесены к сред ней массовой температуре среды. С помощью температурного фактора Т /Тх в зависимости (2.80) и отношения (рж/Рст) в формуле (2 81) приближенно учтено влияние изменения физических свойств газа и жидкости с температурой на интенсивность теплоотдачи. Уравнения (2 80), (2.81) предназначены для расчета теплоотдачи при нагревании газов и жидкостей. Они справедливы для среднего коэффициента теплоотдачи, и в них учитывается также влияние длины термического начального участка.  [c.105]

У металлов модуль Юнга практически не зависит от структуры и термической обработки и определяется только прочностью межатомных. связей. Легирование и пластическая деформация также не оказывают заметного влияния на модуль упругости. При нагреве материалов отмечается падение величины Е, причем между температурным коэффициентом модуля Юнга и термическим коэффициентом линейного расширения наблюдается прямая зависимость. Это связано с увеличением расстояния между атомами в кристаллической решетке из-за роста температуры, а следовательно, и уменьшением сил межатомного взаимодействия.  [c.52]

Диффузионное хромирование позволяет получать покрытие, которое может содержать до 30% хрома. Толщина слоя в зависимости от способа получения и вида применяемой стали составляет 60—120 мкм. Для того чтобы предотвратить образование карбида хрома, рекомендуется применять стали с максимальным количеством углерода 0,08 7о или сталь, стабилизированную титаном. Диффузионное хромирование находит широкое применение для крепежных деталей благодаря исключительной коррозионной стойкости и легкому демонтажу болтовых соединений. Срок службы таких деталей в 5 раз больше срока службы оцинкованных деталей. Температура диффузионного процесса составляет 1200— 1300° С, и дополнительная термическая обработка целесообразна только для болтов, рассчитанных на высокие нагрузки. Предельная температура применения их составляет 800° С. Кратковременно болты могут работать при температуре до 1100°С (резкие изменения температуры не являются препятствием). Диффузионное хромирование используют также для повышения срока службы измерительного инструмента, форм для прессования стекла, для литья под давлением легких сплавов и т. д.  [c.83]

Преобладание каждой из этих реакций в зависимости от времени, температуры, состава сплава и дефектов структуры наиболее хорошо представить в форме диаграмм образования зародышей. Такие диаграммы имеются в литературе для сплавов бинарной системы А1—Си [119]. Диаграммы образования зародышей для промышленных сплавов отсутствуют, хотя они были бы очень полезны при анализе процессов термической обработки, структуры и сопротивления коррозии. Для установления количественных связей между термической обработкой, микроструктурой и сопротивлением КР высокопрочных алюминиевых сплавов необходимо знать о характере их взаимоотношения. Должны быть проанализированы метастабильные и стабильные диаграммы, а также диаграммы образования зародышей и кривые V—К для каждого сплава в условиях различной термообработки. Из следующих разделов будет ясно, что наши знания в настоящее время об этих взаимоотношениях являются в лучшем случае отрывочными.  [c.236]

Термическая обработка применяется в тех случаях, когда необходимо изменить твёрдость отливки, а также удалить искривление. Например, брак чугуна по признаку пониженной твёрдости исправляют иногда способом закалки. Для этого чугунные отливки нагревают до 840° в печи с выкатной тележкой и выдерживают при этой температуре 40— 80 мин. в зависимости от толщины детали. После этого отливки быстро удаляют из печи и прямо на тележке подвергают водяному душу. В результате такой закалки твёрдость увеличивается на 10—15 единиц по Бринелю за счёт перехода перлита из крупно-и мелкопластинчатого в сорбитообразный.  [c.260]


Одним из основных методов исследований процесса термического разложения полимерных материалов является термогравиметрический анализ, который начал использоваться еще в начале XX в. Суть анализа состоит в регистрации изменения массы определенной порции материала, подвергающейся нагреву в заданных условиях. Получаемая в термогравиметрическом эксперименте кривая изменения массы образца в зависимости от температуры и (или) времени дает возможность не только оценить термостойкость материала и установить температуру окончания процесса термического разложения, но и определить интенсивность разложения в различных температурных интервалах, а также путем соответствующей математической обработки вычислить эффективные значения кинетических параметров процесса разложения материала теплозащитного покрытия.  [c.346]

Паспортные данные по паропроводам, паросборникам и коллекторам должны включать сведения о способах выплавки стали, нормах ее раскисления и режимах термической обработки труб и готовых изделий, В паспорте указывают режим термической обработки сварных соединений паропроводов, а также результаты внешнего осмотра, стилоскопирования металла шва и механических испытаний. Сварные стыки должны быть подвергнуты ультразвуковому контролю, металлографическим и гидравлическим испытаниям. Процент контролируемых сварных стыков устанавливают в зависимости от температуры пара. Результаты всех видов контроля и испытаний заносят в паспорт паропровода.  [c.271]

Марочник построен по принципу применения и содержит сведения о химическом составе, механических свойствах и твердости в зависимости от размера поковки (отливки или детали) и режимов термической обработки параметры ковочных, литейных свойств и обрабатываемости резанием характеристики свариваемости, флокеночувствительности, склонности к отпускной хрупкости, а также некоторые справочные данные по механическим свойствам в зависимости от температур отпуска, испытания и ковки, по пределу выносливости при отрицательных температурах, релаксационной стойкости, длительной прочности, ползучести, жаростойкости, коррозионной стойкости даются сведения о зарубежных материалах, близких по химическому составу к отечественным.  [c.13]

Характер работы нагревательных устройств необычайно разнороден, принимая во внимание вид выполняемой операции, а также массу деталей, подвергаемых термической обработке. В условиях массового или крупносерийного производства применяют, как правило, непрерывную термическую обработку в определенных группах печей. При штучном производстве используют печи для термической обработки при высоких, средних и низких температурах. В зависимости от массы деталей, их жесткости, а также химического состава, определяющего скорость теплопередачи, скорость нагрева до высоких температур неодинакова.  [c.64]

Двухфазные титановые сплавы в зависимости от концентрации р-стабилизаторов и температуры закалки могут иметь метастабильные а -, а"- и р-фазы, распад которых при последующем старении вызывает нужное сочетание механических свойств, В частности, изотермическое превращение было использовано при термической обработке сплава ВТЗ-1. Изотермический отжиг используется также и для повышения пластических свойств сплавов ВТ8 и ВТ9.  [c.201]

Построенные на основании нескольких кривых охлаждения диаграммы состояния сплавов в сжатой и наглядной форме дают картину изменения строения, а следовательно, и свойств сплава при изменениях его концентрации и температуры. Такие диаграммы позволяют без проведения опытов определить температуры, при которых происходят плавление и затвердевание сплавов, а также аллотропические превращения в них. Пользуясь диаграммами, можно установить режимы термической обработки сплавов, а также режимы их горячей обработки давлением. Существует определенная зависимость между типом диаграмм состояния сплавов и некоторыми свойствами сплавов (электросопротивлением, твердостью и др.).  [c.56]

Цианирование — процесс химико-термической обработки, заключающийся в диффузионном насыщении поверхностного слоя стали углеродом и азотом в расплавленных цианистых солях. Результаты цианирования определяются глубиной слоя, а также концентрацией углерода и азота в поверхностном слое и зависят от температуры и продолжительности процесса. Повышение температуры приводит к увеличению содержания углерода в слое, снижение — к росту содержания азота. Глубина цианированного слоя с повышением температуры возрастает. В зависимости от температуры различают три вида цианирования низко-, средне- и высокотемпературное.  [c.227]

В действующих стандартах (TGL) приведены гарантированные минимальные значения механических свойств (при комнатной температуре) в зависимости от режима термической обработки, а также значения Os при температурах от 20 до 500°С (для жаропрочных пружинных сталей после улучшения).  [c.230]

Разные виды деформационно-термической обработки разделяются в зависимости от характера фазовых превращений н способа деформации, причем существенное значение имеет, до или после деформации происходит превращение (ТЛЮ и МТО соответственно), а также выше или ниже температуры рекристаллизации производилась деформация (ВТМО и НТМО соответственно).  [c.40]

При методе ИМЕТ-1 тонкие или стержневые образцы нагревают в специальной машине током и охлаждают в соответствии с заданным термическими циклами. В процессе нагрева или охлаждения образцы подвергают либо деформации, либо разрыву при заданной мгновенной температуре или в заданном интервале температур (в зависимости от скорости деформации). Их также можно резко охлаждать в воде, что л было зафиксировано структурное состояние. Этим методом можно определить и конечные изменения структуры и механических свойств после полного охлаждения образцов до комнатной температуры. Кроме того, это позволяет исследовать кинетику изменения механических свойств и структуры металла в различных участках зоны термического влияния в процессе сварки и термической обработки.  [c.45]


Химический состав и механические свойства стали и сплавов в зависимости от сечения и различных режимов термической обработки взяты из ГОСТ, ТУ, заводских нормалей и марочников. Механические свойства при повышенных и отрицательных температурах и в зависимости от температуры отпуска, а также физические свойства и предел усталости взяты из различных справочников и данных заводов и институтов.  [c.7]

Исследовано [51] также влияние режима нагрева под закалку хромистых сталей 40Х и 7X2 промышленных плавок на трещиностойкость в зависимости от температуры отпуска. Для этого цилиндрические образцы указанных сталей подвергали следующей термической обработке 1) печной нагрев под закалку со скоростью нагрева = 1 град сек до температуры 860° С при выдержке  [c.153]

Диаграмму рекристаллизации строят в координатах F (или D) — бф — t, где F — средняя или максимальная площадь зерна (D — диаметр зерна) в зависимости от фактической степени деформации бф и температуры t (отжига 01 ш или деформирования д). Диаграммы рекристаллизации нужны для выбора температуры промежуточных отжигов (при холодной штамповке), допустимых температур деформации (при ковке или горячей объемной штамповке), а также режима термической обработки.  [c.144]

В 1952 г. Ко и Коттрелл во время образования бейнита наблюдали появление рельефа, аналогичного рельефу при образовании мартенсита. Они пришли к заключению, что бейнитные пластины образуются путем превращения, представляющего медленный сдвиг. Кроме того, они обнаружили, что частичное превращение в бейнитной области понижает температуру мартенсит-иого превращения Мц остаточного аустенита. Такая стабилизация наступает также, если аустенит выдерживать при температуре бейнитного превращения, даже если время выдержки меньше, чем инкубационный период. Однако инкубационный период образования бейнита уменьшается на одну треть при наличии мартенсита. Эти факты дают возможность предположить, что аустенит содержит пересыщеппые зародыши феррита, которые превращаются в бейнит или мартенсит в зависимости от термической обработки.  [c.79]

Ковким чугуном является белый чугун, графитизирован-ный термической обработкой (отжигом, томлением). Для получения ковкого чугуна необходимо белый чугун нагреть до 950—1000°С и затем после длительной выдержки охладить с малой скоростью до обычной температуры. Структура ковкого чугуна характеризуется графитом в виде хлопьевидных включений. Такая форма включений графита (по сравнению в чешуйчатыми включениями, характерными для серого чугуна) в меньшей степени снижает механические свойства ковкого чугуна. Поэтому механические свойства его выше. Ковкий чугун обладает большей прочностью и повышенной пластичностью (хотя и не поддается ковке). В зависимости от степени графитизации ковкий чугун может быть ферритным или перлитным, а также фер-рито-перлитяым. Разная степень графитизации достигается изменением условий отжига. На рис, 6.4. приведен график ступенчатого отжига ковкого чугуна.  [c.78]

Отпуск стали - необходимая и заключительная операция термической обработки, в результате которой формируются окончательная структура и свойства стали. При отпуске снижаются и устраняются внутренние закалочные напряжения, повышаются вязкость и пластичность, несколько понижается твердость. В зависимости от температуры наг рева различают отпуск низкотемпературный, среднетемпературный и высокотемпературный. Для деталей узлов трения применяют низкотемпературный отпуск с нагревом до 150-200°С. При этом нескол1>ко снижаются нну1ренние напряжения, но твердость остается высокой (58-62 HR ). Структура стали после отпуска состоит из мартенсита отпуска. Этот вид отпуска применяется также для режущих и измерительных инструментов и для изделий, подвергающихся цементации и нитроцементации.  [c.237]

Термическая обработка, не сопровождающаяся фазовыми превращениями, встречается при обработке чистых металлов или однофазных сплавов, наблюдающихся в системах с неограниченной растворимостью компонентов в твердом состоянии (см. рис. 70), в системах сплавов с ограниченной растворимостью компонентов при концентрациях последних, определяемых отрезками А—F и Б—G (см. рис. 72), а также в системах сплавов, имеющих ЭБтектондную структуру (см. рис. 77). Термическая обработка при нагреве последних ниже критической точки Асх для всех указанных случаев, состоящая из нагрева сплавов, исключающих фазовые превращения, с последующим медленным охлаждением (обычно с печью) называется отжигом первого рода. Отжиг первого рода применяют для устранения наклепа и волокнистой структуры металлов и сплавов ранее прошедщих холодную пластическую деформацию. Таким образом, при отжиге первого рода в зависимости от температуры нагрева могут происходить процессы возврата и рекристаллизации, ведущие к снятию напряжений и к разупрочнению.  [c.106]

С целью изучения кинетики разупрочнения, вызванного взаимодействием между составляющими, образцы композиционного материала отжигали на воздухе при различных температурах и времени. Кинетические кривые разупрочнения колшозиции приведены на рис. 34. Как видно из графика, некоторые кривые зависимости относительной прочности от времени отжига имеют максимум. Отжиг при 300 и 400° С вызывает незначительное упрочнение композиции (порядка 10—15%), максимум которого достигается после 100-часовой выдержки. Термическая обработка при 500° С вначале также повышает прочность, но но мере повышения времени отжига наступает разупрочнение. Например, после 500-  [c.80]

Экспериментальные данные [Л. 5, 16] показывают, что средняя молекулярная масса ВК продуктов и вязкость облученного МИПД, содержащего равные количества ВК продуктов, тем меньше, чем выше температура, при которой они образовались. Таким образом температура радиол иза влияет на состав ВК продуктов. Это подтверждается также экспериментальными данными Л. 5, 16] по пиролизу облученного МИПД. Уменьшение вязкости, вызываемое термической обработкой, может объяснить температурную зависимость состава ВК продуктов радиолиза. Зависимость изменения вязкости МИПД от концентрацин ВК продуктов при низких температурах радиолиза (50—150°С) отчетливо коррелирует с зависи-228  [c.228]

В 1868 г. выдаюш ийся русский металлург Д. К. Чернов установил зависимость структуры и свойств стали от ее горячей механической (ковка) и термической обработки. Чернов открыл критические температуры, при которых в стали в результате ее нагревания или охлаждения в твердом состоянии происходят фазовые превращения, существенно изменяющие структуру и свойства металла. Эти критические температуры, определенные по цветам каления металла, получили название точек Чернова. Русский ученый графически изобразил влияние углерода на положение критических точек, создав первый набросок очертания важнейших линий классической диаграммы состояния железо—углерод. Исследования полиморфизма железа, завершенные Д. К. Черновым в 1868 г., принято считать началом нового периода в развитии науки о металле, возникновением современного металловедения, изучающего взаимосвязь состава, структуры и свойств металлов и сплавов, а также их изменения при различных видах теплового, химического и механического воздействий.  [c.136]


Механические свойства листов установлены в зависимости от их толщины. Чем толще лист, тем медленнее происходит FO охлаждение после прокатки и при термической обработке и тем труднее поэтому при одном и том же химическом составе обеспечить высокий предел текучести. Требования по относительному удлинению листов установлены в зависимости от временного сопротивления чем оно меньше, тем выше должна быть их пластичность. По требованию заказчика может быть ограничен верхний предел временного сопротивления для стали 15К — не более 50 кГ мм и для стали 20К — не более 55 кГ мм . Заказчик может потребовать также, чтобы ударная вязкость после механического старения была не менее 50%) величин, указанных в табл. 4-1. В листах из сталей 09Г2С и 10Г2С1 гарантируется предел текучести при растяжении по результатам испытания при 320° С. Эта температура приблизительно соответствует температуре воды и насыщенного пара в барабане котла высокого давления (допускаемое напряжение в барабане определяется величиной предела текучести при рабочей температуре).  [c.107]

Другим ограничением при использовании аустенитно-ферритных швов является необходимость выдерживания содержания феррита в весьма узких пределах (около 2—5%). В металле шва с содержанием феррита меньше 2% возможно появление горячих треш.ин содержание феррита более 5% приводит к охрупчиванию металла шва в процессе термической обработки или эксплуатации при высоких температурах вследствие образования хрупкой <т-фазы. Поэтому аустенитно-ферритные электроды имеют, как правило, переменный состав покрытия, меняющ,ийся в зависимости от содержания легирующих элементов в сварочной проволоке данной партии [30]. Необходимость выдерживания содержания феррита в таких узких пределах ограничивает также возможность применения автоматической сварки под флюсом или сварки в защитных газах, так как для указанных методов сварки дополнительное легирование металла шва для обеспечения заданного уровня феррита затруднительно.  [c.36]

Равновесное состояние железоуглеродистых сплавов в зависимости от содержания углерода и температуры описывает диаграмма состояния железо — угяерод . На диафамме состояния железоуглеродистых сплавов (рис. 50) по оси ординат отложена температура, по оси абсцисс — содержание в сплавах углерода до 6,67%, т.е. до такого количества, при котором образуется цементит F g . По этой диаграмме судят о структуре медленно охлажденных сплавов, а также о возможности изменения их микроструктуры в результате термической обработки, определяющей эксплуатационные свойства.  [c.146]

О/ижиг является весьма распространенной операцией термической обработки сталей и чугунов. В зависимости от назначения отжига режимы его могут быть различными. При отжиге сталь нагревают ниже или выше температур критических точек, выдерживают при этой температуре и затем медленно охлаждают (обычно вместе с печью). В результате получается стабильная структура. Отжиг применяют для устранения неоднородности микроструктуры литых деталей, для снятия наклепа в материале после прокатки, ковки и других видов обработки, а также для подготовки детали к последующей технологической операции (резанию, закалке и т. д.). Температурные области нагрева  [c.47]

Одним из основных параметров при разработке технологий термической обработки, обеспечивающих требуемые свойства готовой продукции, является состав атмосферы, в которой обрабатываются детали. Использование контролируемых атмос р позволяет сохранять требуемый состав поверхности сплава после его нагрева, выдержки и охлаждения или насыщать ее углеродом, азотом, кислородом, водородом, металлами совместно или раздельно в зависимости от поставленных задач. В связи с этим атмосферы подразделяют на насыщающие и защитные. Первые обычно используют при цементации, нитроцементации, карбонитрировании, азотировании, вторые — при спекании, улучшении, нормализации, отжиге, пайке. В обоих случаях атмосферы включают газ-носитель (N2, СОа, Hj) и активный газ ( gHg, QHe, NH3). Наиболее распространенные в автостроении наполнители атмосферы, их основной состав и назначение представлены в табл. 1, Активные газы при нагреве под закалку и отжиг обычно добавляют в пределах 0,2—15% для температур до 900—925 С их содержание не превышает 10%, а для процессов, происходящих при температурах 1000— 1100 С, нижний предел их содержания не менее 1%. В последнее время начали использовать атмосферы, получаемые непосредственно в рабочем пространстве печи за счет введения в нее некоторых органических соединений. В этом случае специальными приборами необходимо контролировать не только основной состав атмосферы по заданному углеродному потенциалу, но и влажность и давление в печи. В США также отмечается тенденция замены атмосфер, приготовляемых методом сжигания природного газа, азотными атмосферами [8].  [c.526]

При полном отжиге образуется зерно аустенита, размер которого зависит от температуры и продолжительности нагрева. Наименьший размер зерна можно создать при температуре, немн го большей температуры Аз. Поэтому температура полного отжига составляет Лз+(30—50)°С. При полном отжиге в зависимости от состава образуется феррито-перлитная, чисто перлитная или перли-то-цементитная структура. В соответствии с этим в зависимости от размеров детали скорость охлаждения необходимо выбирать на основании диаграмм непрерывных превращений. Время охлаждения от температуры аустенитизации до 500° С должно быть больше, чем критическое время tn. Так как при этом протекает также процесс перекристаллизации и вследствие этого измельчение зерна, то отжиг успешно применяют для термической обработки высоколегированных инструментальных сталей с высоким содержанием углерода даже тогда, когда очень медленное охлаждение требует продолжительного времени.  [c.139]

Теплостойкость стали марки W3, которая в результате термической обработки обладает высоким временным сопротивлением на разрыв, в определенном интервале температур существенно больше, чем у сталей с меньшим значением временного сопротивления. На рис. 214, кроме предела текучести при растяжении стали марки W3, изображены еще пределы текучести при нагреве в зависимости от температуры испытания двух марок обработанных термическим путем на различные пределы прочности при растяжении вольфрамовых штамповых сталей для горячего деформирования, а также стали К12 и мартенситно-стареющей стали. Однако относительное сужение площади поперечного сечения образца в случае инструментальных сталей с 5— 10% W и стали W3, имеющей предел прочности при растяжении более 1200 Н/мм в интервале температур, превышающих 500° С, резко уменьшается, возникает охрупчивание при нагреве. Довольно часто можно наблюдать межкристаллитное разрушение вследствие образования вдоль границ зерен интерметаллидов, нитридов и других выделений. В сталях, полученных переплавом, этот вид охрупчивания встречается реже. Величина охрупчивания при нагреве тем больше, чем выше прочность стали и чем большей температурой закалки эта прочность была достигнута (рис. 215). Вязкость при нагреве вольфрамовых сталей в большей степени зависит от скорости охлаждения. Чем меньше скорость охлаждения или чем больше можно обнаружить в структуре стали бейнита, возникающего при температуре выше 400—420° С, тем меньше вязкость стали при нагреве. Если переохлажденный аустенит превращается при температуре ниже 360—380° С, то опасность возникновения охрупчивания при нагреве также меньше. Повышение температуры испытания (а следовательно, и инструмента) до 500° С значительно увеличивает сопротивление хрупкому разрушению и энергию распространения трещин в сталях (рис. 216), закаленных в основгюм при пониженных температурах, а также полученных электрошлако -вым переплавом. Однако при температуре нагрева, превышающей  [c.270]

Показатели коррозионной стойкости сталей определяют в заданных условиях, учитывая их зависимость от состава, структуры, режима термической обработки, а также состава среды, температуры, тидро- и аэродинамических условий, вида и величины напряжений, назначения и режима работы изделия.  [c.370]

Альфа + бета-сплавы подвергают упрочняющей термической обработке, состоящей из закалки и старения. Закалка состоит в нагреве до температур, несколько ниже полного превращения а + р->р(вр - состоянии происходит интенсивный рост зерна), вьщержке и последующем быстром охлаждении. В зависимости от содержания Р-стабилизаторов в закаленном сплаве возможно образование мартенситных фаз а и а", а также метастабильной фазы Р. При высоком содержании Р-стабилизаторов и при малых и средних скоростях охлаждения может образоваться фаза со, сильно охрупчивающая сплав. Появления этой фазы стремятся не допускать. При старении (искусственном) происходит распад закалочных структур (а, а", Р ). Конечные продукты - дисперсные а и Р-фазы, близкие к равновесному состоянию, образование которых вызывает дисперсионное упрочнение (твердение) сплава.  [c.110]


При рассмотрении сталей перлитного класса наиболее удобна классификация, разделяющая их в зависимости от содержания углерода, поскольку этим определяются такие особенности, как деформируемость и свариваемость, твердость мартенсита после закалки, а также уровень магнитных свойств. Содержание углерода определяет и режимы термической обработки, используемые для придания неаустенитным сталям оптимальных свойств для малоуглеродистых сталей это преимущественно нормализация для среднеуглеродистых, как правило, улучшение [закалка с высоким (600—700 °С) отпуском] для высокоуглеродистых (за исключением быстрорежущих) — закалка с низким (150—200 °С) отпуском. Отпуск штамповых сталей с 0,45 — 0,7 мае. % С и быстрорежущих сталей проводится при средних температурах (450—580 °С). Легирование сталей позволяет изменять ряд свойств прокаливаемость, механические и другие характеристики, термопрочность и термостойкость и, следовательно, диапазон температур возможного применения сталей.  [c.41]


Смотреть страницы где упоминается термин см также Зависимость от температур термической обработки : [c.165]    [c.135]    [c.148]    [c.204]    [c.165]    [c.265]    [c.80]    [c.7]    [c.223]    [c.50]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.334 , c.336 , c.348 , c.349 , c.352 , c.361 , c.376 , c.381 , c.382 , c.401 , c.402 ]



ПОИСК



Зависимость Термическая обработка

Зависимость от температуры

ТЕРМИЧЕСКАЯ Температуры



© 2025 Mash-xxl.info Реклама на сайте