Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свариваемость характеристики

Отдельные марки сталей Эквивалент углерода Сз, % Степень свариваемости Характеристика свариваемости сталей  [c.97]

Поскольку жаропрочность различных сплавов в определенной области температур может быть почти одинаковой, при выборе того или другого сплава для работы при высоких температурах часто руководствуются другими характеристиками. Наиболее хрупким, трудным в технологическом отношении является вольфрам, поэтому сплавы на его основе применяют обычно при рабочих температурах, превышающих 2000°С в условиях сильного эрозионного износа. Сплавы на основе тантала являются наиболее дорогими и поэтому в интервале температур 1000—1500°С используют преимущественно сплавы на основе ниобия и молибдена. Наиболее жаропрочны сплавы молибдена. Их применяют при температурах выше 1200°С и иногда до 2000 С. Выбор молибденового или ниобиевого сплава определяется требованиями пластичности, свариваемости, коррозионной стойкости и т. д.  [c.530]


Пластические деформации зависят главным образом от тепловых характеристик процесса сварки, свойств металла и в значительно меньшей степени — от жесткости свариваемых элементов. Это обстоятельство позволяет разделить задачу определения сварочных напряжений и деформаций на две части. В первой части с помощью решения термодеформационной задачи МКЭ определяются пластические деформации, обусловливающие перераспределение объема металла в зоне упругопластического-деформирования при сварке (термодеформационная задача). Во второй части на основе решения задачи в рамках теории упругости определяются напряжения в сварном узле в целом (деформационная задача). Исходной информацией для решения деформационной задачи являются начальные деформации  [c.298]

Свариваемость стали и сплавов является комплексной характеристикой стали, определяющейся технологическими трудностями, возникающими при сварке, и эксплуатационной надежностью сварных соединений.  [c.9]

Технологическая свариваемость — технологическая характеристика металла, определяющая его реакцию на воздействие сварки и способность при этом образовывать сварное соединение с заданными эксплуатационными свойствами.  [c.39]

В зависимости от свариваемых материалов и применяемых электродов для ручной дуговой сварки применяют источники переменного или постоянного тока с крутопадающей характеристикой.  [c.66]

Скорость соударения свариваемых элементов зависит от характеристик ВВ, конструкции и материала соединения. Эта скорость может быть рассчитана по формулам гидрогазодинамики и составляет для стальных пластин около 1500 м/с. Давление, возникающее при этом между элементами, достигает 10 ... 10= МПа.  [c.138]

Для расчета компонентов напряжений в пластической области необходимо задать деформационные характеристики в зависимости от температуры. В первом приближении можно пользоваться идеализированными свойствами материала в виде модели идеального упругопластического материала (см. рис. 11.4). Предел текучести, модуль упругости и коэффициент Пуассона свариваемого материала задают зависимыми от температуры ат = ат(Т), Е = Е Т), v = v(T). В пределах интервала деформирования [(k—1)...(й)] свойства материала принимают постоянными, равными значению в точке k.  [c.422]


Способность соединяемых металлов образовывать при сварке качественное сварное соединение оценивают их свариваемостью. Свариваемость — комплексная характеристика металла, характеризующая его реакцию на физико-химическое воздействие процесса сварки и способность образовывать сварное соединение, отвечающее заданным эксплуатационным требованиям. Основные критерии свариваемости следующие окисляемость металла при сварке, зависящая от его химической активности  [c.434]

Формирование сварного соединения при сварке плавлением сопровождается сложными диффузионными процессами в жидкой и твердой фазах, которые приводят к изменению химического состава в различных зонах, выделению или перераспределению примесей и легирующих элементов. При рассмотрении явления концентрационного переохлаждения уже указывалось на то, что состав кристаллизующейся твердой фазы будет отличен от состава исходного расплава. Вследствие этого по мере увеличения количества затвердевшего металла состав остающегося расплава, так же как и состав образующейся твердой фазы, будет постоянно изменяться. Поэтому при неизменности общего количества примесей в кристаллизующемся объеме сварочной ванны содержание их в различных участках шва неодинаково, что может приводить как к изменению прочностных характеристик, так и к снижению показателей свариваемости.  [c.455]

К разрушающим методам относят прямые методы оценки свариваемости. Напомним, что свариваемость — это комплексная характеристика металла, отражающая его относительную пригодность для изготовления сварных соединений, удовлетворяющих условиям последующей эксплуатации. Косвенными метами оценки является подсчет  [c.211]

Для расчета скорости сварки необходимо установить, имеют ли свариваемые стали ограничения по скоростям охлаждения в зоне термического влияния. Если сталь склонна к закалке и к перегреву в зоне термического влияния, то для данной стали определены нижний и верхний диапазоны скоростей охлаждения (табл. 1.5). Эти диапазоны являются характеристиками сталей. По допустимому диапазону скоростей охлаждения по одной из трех формул (1.1), (1.2) или (1 4) в зависимости от толщины соединяемых листов рассчитывается оптимальный диапазон погонных энергий. При этом нижним значениям скоростей охлаждения соответствует максимальное значение погонной энергии, а верхним — минимальное. Температуру подогрева Тд в формулах (1.1)—  [c.36]

Совокупность технологических характеристик основного металла, обеспечивающая возможность при принятом технологическом процессе создавать надежное в эксплуатации и экономичное сварное соединение, называют свариваемостью. Свариваемость не является неотъемлемым свойством металла, т. к. определяется также способом и режимом сварки. Практически под хорошей свариваемостью понимается возможность при обычной технологии получить сварное соединение, равнопрочное с основным металлом, без трещин и без снижения пластичности в околошовной зоне.  [c.159]

У канальных реакторов прочный корпус отсутствует, и их активная зона с отражателем нейтронов заключается в тонкостенный кожух, свариваемый на монтажной площадке, что позволяет доводить мощность до нескольких тысяч мегаватт. Кроме того эта конструкция позволяет перегружать ядерное горючее и заменять дефектные каналы без остановки реактора, поддерживать высокие параметры пара, применяя ядерный перегрев, имеет лучшие маневренные характеристики.  [c.162]

Другим очень распространенным типом контакторов являются контакторы с вращающимся якорем, иначе известные как контакторы языкового типа . Они аналогичны реле, но имеют другие номинальные характеристики. Диапазон их номинальных характеристик широк ток от 25 до 2500 А и напряжение до 600 В. Для увеличения сопротивления свариваемости, большой долговечности  [c.430]

С точки зрения требований к оборудованию, эксплуатируемому при низких температурах, где необходимы высокие вязкость и прочность, сплав 7005, по-видимому, обеспечивает наилучшее сочетание указанных свойств не только при 4 К, но и во всем интервале температур испытания [7, 8]. Этот сплав имеет более высокую прочность, чем обычно используемые при низких температурах алюминиевые сплавы 5083 и 5456 при более низкой чувствительности к надрезу, чем сплавы 2014, 2219 и 7039. Учитывая сказанное, а также свариваемость и технологичность сплава 7005, целесообразно более подробное рассмотрение других его характеристик.  [c.172]


Свариваемость сталей — ОсноБНые характеристики 23 Сварка алюминия и его сплавов 27  [c.555]

Примеры условных обозначений швов представлены на рис. 16.37 Так как условное обозначение стандартного шва дает его полную характеристику, то на поперечных сечениях швов подготовку кромок, зазор между кромками и контур сечения шва не указывают. При этом смежные сечения свариваемых детален штрихуют в разных направлениях (см, рис. 16.37).  [c.420]

Полученные при испытаниях количественные характеристики пластичности сварных швов не дают непосредственно оценки надежности сварных конструкций в эксплуатации, а являются только сравнительными для оценки свариваемости.  [c.570]

В соответствии с Правилами Г9] материалы, применяемые для изготовления корпусных деталей арматуры (подлежащих соединению с трубопроводами), должны обладать хорошей свариваемостью, а также иметь характеристики прочности и пластичности, обеспечивающие падежную п долговечную работу оборудования в заданных условиях с учетом изменения свойств металла под действием радиоактивного облучения и рабочей среды.  [c.21]

Свариваемость является сложной комплексной характеристикой стали, под которой следует понимать способность материала образовывать при рациональном технологическом процессе сварки прочное соединение, без существенного снижения свойств в эксплуатационных условиях.  [c.137]

ХАРАКТЕРИСТИКИ СВАРИВАЕМОСТИ СТАЛИ  [c.138]

Горячая сварка чугуна позволяет получать сварные соединения, равиоп,ениые свариваемому металлу (но механическим характеристикам, плотности, обрабатываемости и др.), однако это трудоемкий и дорогостоящий процесс. Вместе с этим в ряде случаев п])актпчески к сварным соединениям чугуна не предъявляется таких требований. Часто, нанример, достаточно обеспечить только равиопрочность или только хорошую обрабатываемость или плотность сварных швов. С помощью различных металлургических и технологических средств можно получить сварные соединения чугуна с темн или иными свойствами при сварке с невысоким подогревом или вовсе без предварительного подогрева (т. е, с помощью полугорячей или холодной сварки).  [c.330]

При соблюдении стандартных требований производства сварки, надлежащего подбора электродов и флюса добиваются, чтобы прочность навя-.енного металла шва была не ниже прочности основного материала свариваемых деталей. Однако в околошовной зоне термического влияния (3...6 мм), где металл свариваемых изделий претерпевает структурные изменения, не всегда удается сохранить начальные характеристики исходного материала, особенно при ручной сварке. Это изменение качеств материала определяется коэффициентом прочности шва ф.  [c.31]

Следует подчеркнуть, что выбор материала зависит не только от его прочиостпо-массовых характеристик, но и назначения и условий работы детали. При выборе материала учитывают присущие ему жесткость, твердость, вязкость, пластичность, технологические характеристики (обрабатываемость, штампуемость, свариваемость), износостойкость, коррозионнобтойкость, жаростойкость и жаропрочность (для деталей, работающих при повышенных температурах). Важную роль играет стои.мосгь материала, отсутствие в нем дорогих и дефицитных компонентов.  [c.199]

В марочнике даны характеристики так называемой технологической свариваемости. В зависимости от сложности технологических приемов, устраняющих возможность образования трещин при сварке и обеспечивающих получение сварного соединения требуемого качества, стали условно разделяют на четыре группы по свариваемости 1) стали, свариваемые без ограничения (сварка производится без подогрева и без последующей термообработки) 2) ограниченно свариваемые стали (сварка возможна при подогреве до 100—120°С и последугощей термообработке) 3) трудно-свариваемые стали (для получения качественных сварных соединений требуются дополнительные операции подогрев до 200— 300 С при сварке, термообработка после сварки — отжиг) 4) стали, не применяемые для сварных конструкций.  [c.9]

По своим физико-химическим свойствам многие цветные металлы резко отличаются от стали, что необходимо учитывать при швборе вида и технологии сварки. По химической активности, температурам плавления и кипения, теплопроводности, плотности, мехавиче-ским характеристикам, от которых зависит свариваемость, цветные металлы можно условно разделить на такие группы легкие (алюминий, магний, бериллий)  [c.131]

В первом случае автономная система стремится сохранить свое первоначальное состояние за счет направленного изменения физических параметров процесса без учета электрических н мехапических характеристик. сварочных машин. Так при точечной сварке самопроизвольное увеличение сварочного тока, связанное с гойышением напряжения питающей сети, вызывает uepei рев свариваемого металла, что приводит к росту температуры в зоне сварки, снижению сопро-тивлеиия пластической деформации, увеличению размеров контактов, снижепиго плотности тока я соответственно температуры и размеров соединений (диаметра ядра) до значений, близким к первоначальным по следующей схеме  [c.112]

Су1цествующие представления о влиянии на несущую способность сварных соединений такого дефекта как смещение свариваемых кромок базируются на том, что данный дефект вызывает повышенную концентрацию напряжений из-за появления изгибающего момента в упругой стадии работы и потерю прочностных и пластических характеристик за пред ел ом упругости /19, 20, 21 и др./. Кроме того необходимо иметь В виду, что радиус перехода шва к основному ме таллу может быть весьма малым, в пределе стремящимся к нулю. В данном случае оценку напряженного состояния  [c.32]


Хромоникелевые стали аустенитного класса обладают наиболее высокой коррозионной стойкостью среди нержавеющих сталей и отличаются хорошими технологическими свойствами — хорошо обрабатываются давлением и обладают хорошей свариваемостью. В закаленном состоянии эти стали имеют низкое отношение предела текучести к пределу прочности. Прочностные характеристики этих сталей могут быть повышены в результате наклепа. Так, при пластической деформации на 40 % стали марки Х18Н10Т в холодном состоянии предел прочности повышается вдвое (ав = 1200 МПа), а предел текучести в 4 раза (сГт = = 1000 МПа). При этом сохраняется достаточно высокая пластичность, позволяющая производить различные технологические операции.  [c.32]

Большинство создающихся материалов получают широкое освещение в технической печати и на профессиональных конференциях, но, по крайней мере, лишь через десять лет после разработки они становятся общедоступными. Не удивительно, что созданные материалы находят применение в тех случаях, о которых разработчики не могли даже предположить в течение первых лет после появления таких материалов. Примером монсет служить титан, который начал применяться благодаря своим высокотемпературным свойствам, а в настоящее время находит применение в сверхзвуковых самолетах благодаря хорошей свариваемости, хорошим усталостным характеристикам и меньшим размерам деталей, изготовляемых из него, по сравнению с алюминием. Важными характеристиками некоторых композиционных материалов является возможность их свободного конструирования, их высокие усталостные характеристики, позволяющие создать более простые и прочные композиции, сния ающие затраты, идущие на сборку изделия, сокращающие энергетические затраты при механической обработке и т. д. Эти вопросы обсуждались в главах 2, 3 и 13.  [c.492]

Нержавеющие стали можно различать в зависимости от их структуры, например ферриткые, аустенитные и феррито-аустенитные стали. Структурные различия влекут за собой и разницу в коррозионных характеристиках, а также в свариваемости, способности к закалке и магнитных свойствах. Ферритные и феррито-аустенитные стали в отличие от аустенитных обладают магнитными свойствами. В табл. 6 имеется перечень некоторых нержавеющих алей, интересных с коррозионной точки зрения, а также их коррозионные характеристики.  [c.109]

Оснопяыки характеристиками свариваемости сталей является их склонность к образоиапию трещин и механические свойства сварного шва.  [c.23]

Для оценки прочности материалов используется целый комплекс механических характеристик. При выборе стали и других конструкционных материалов должны также учитываться их технологические свойства литейные качества, свариваемость, обрабатываемость резанием, возможность применения ковки и горячей штамповки, возможность применения термического и химико-термического упрочнения поверхности детали (закалки, цементацип, азотирования и пр.), притираемость. При оценке эксплуатационно-физических характеристик учитываются следующие свойства материалов коррозионная стойкость, износостойкость, кавитационно-эрозионная стойкость, отсутствие схватываемости (холодной сваркп) и задиров между сопрягаемыми поверхностями в рабочей среде, а в некоторых случаях учитывается присутствие (или отсутствие) легирующих элементов или компонентов сплава с интенсивной степенью радиоактивности и большим временем полураспада изотопов.  [c.21]


Смотреть страницы где упоминается термин Свариваемость характеристики : [c.375]    [c.202]    [c.238]    [c.378]    [c.116]    [c.268]    [c.269]    [c.161]    [c.298]    [c.187]    [c.160]    [c.46]    [c.49]    [c.32]    [c.263]   
Справочник по специальным работам (1962) -- [ c.104 ]



ПОИСК



81 - Факторы склонности к ГТ 81, 82 Характеристика 79 - Химический состав титана 124 - Критерии свариваемости

Диаграммы с характеристиками свариваемости сплавов титана

Свариваемость определение служебных характеристик металла

Свариваемость сталей — Основные характеристики

Свариваемость стали 137 — Характеристики

Состав, свойства и характеристики свариваемости сплавов титана

Сплавы Характеристики свариваемостя

Стали аустенитные 47 - Механические свойства 52 - Образование горячих трещин 52 55 - Свариваемость 54 - Свойства 50 Структурная диаграмма Шеффлера 50 Теплофизические свойства 52 - Характеристика 47 - Химический состав

Характеристика свариваемости металлов и сплавов

Характеристики свариваемости альфа и альфабета-сплавов титана мартенситного класса

Характеристики свариваемости жаропрочных сталей с 12 хрома

Характеристики свариваемости низколегированных сталей повышенной прочности

Характеристики свариваемости сплавов титана с альфабета-структурой

Характеристики свариваемости теплоустойчивых и высокопрочных сталей с 0,5—3,5 хрома

Характеристики свариваемости технического титана

см Свариваемость



© 2025 Mash-xxl.info Реклама на сайте