Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Возврата процессы

Возврата процессы 108, 112, 253 Время 37, 39, 121  [c.279]

Если естественно состаренный дуралюмин подвергнуть кратковременному нагреву при 230—270°, то он возвращается к свежезакаленному состоянию. Это явление носит название возврата. Процесс возврата наиболее полно изучен советскими исследователями Д. А. Петровым, Г. Я- Сергеевым, И. 3. Могилевским и другими.  [c.387]

Если после закалки и естественного старения дюралюминий подвергнуть кратковременному нагреву (20— 40 с) при 200—250 С, то он разупрочняется и приобретает свойства, соответствующие свежезакаленному состоянию. Это явление называется возвратом. Процесс  [c.201]


При неполной холодной деформации рекристаллизация не происходит, но весь объем металла подвергается возврату. Процесс протекает при температуре выше температуры возврата. Металл приобретает волокнистую структуру и в нем возникают значительные остаточные напряжения. Такой металл имеет большую прочность и меньшую пластичность, чем металл, подвергнутый неполной горячей обработке давлением.  [c.29]

В соответствии с описанными выше процессами изменения строения наклепанного металла при его нагреве следует ожидать и соответствующего изменения свойств. По мере повышения температуры твердость сначала слегка снижается вследствие явлений возврата. После отжига при температуре, несколько превышающей температуру рекристаллизации, твердость резко падает и достигает исходного значения (значения твердости до наклепа). Эта температура и есть минимальная температура рекристаллизации, или порог рекристаллизации (рис. 69). Аналогично изменению твердости изменяются и другие показатели прочности (предел прочности, предел текучести). На рис. 69 показаны также изменения пластичности (б). Низкая температура нагрева и происходящий при ней возврат несколько повышают пластичность, но лишь рекристаллизация восстанавливает исходную (до наклепа) пластичность металла.  [c.88]

Первичная рекристаллизация заключается в образовании новых зерен. Это обычно мелкие, можно даже сказать очень мелкие зерна, возникающие на поверхностях раздела крупных деформированных зерен. Хотя в процессе нагрева и происходили внутризеренные процессы устранения дефектов (возврат, отдых), все же они, как правило, полностью не заканчиваются, с другой, стороны, вновь образовавшееся зерно уже свободно от дефектов.  [c.90]

В алюминии, молибдене и вольфраме полигонизация протекает с большой скоростью, и субзерна достигают значительных размеров, что вызывает сильное разупрочнение. Некоторые физические свойства (например, электросопротивление) в процессе возврата восстанавливаются практически полностью. Это связано с уменьшением концентрации вакансий и с перераспределением дислокаций.  [c.55]

Следовательно, для повторного получения работы необходимо в процессе сжатия возвратить рабочее тело в первоначальное состояние. Из рис. 8-1 следует, что если рабочее тело расширяется по кривой 1-3-2, то оно производит работу, изображаемую на ро-диа-  [c.109]

Сущность получения лазерного луча заключается в следующем. За счет накачки внешней энергии (электрической, световой, тепловой, химической) атомы активного вещества излучателя переходят в возбужденное состояние. Через некоторый промежуток времени возбужденный атом может излучить полученную энергию в виде фотона и возвратиться в исходное состояние. Фотон представляет собой элементарную частицу, порцию света, обладающую нулевой массой покоя и движущуюся со скоростью, равной скорости света, в вакууме. Фотоны возникают (излучаются) в процессах перехода атомов, молекул, ионов и атомных ядер из возбужденных состояний в более стабильные состояния с меньшей энергией. При определенной степени возбуждения происходит лавинообразный переход возбужденных атомов активного вещества-излучателя в более стабильное состояние. Это создает когерентное, связанное с возбужде-  [c.16]


При нагреве до Гтах ниже неравновесной Ас фазовые и структурные превращения происходят в том случае, если сталь перед сваркой находилась в метастабильном состоянии для этого диапазона температур. Метастабильны исходные состояния стали после холодной пластической деформации, закалки и низкого отпуска, закалки и старения. В холоднодеформированной стали развиваются процессы возврата и рекристаллизации обработки. Последний процесс приводит к разупрочнению соответствующей зоны сварного соединения. В низкоуглеродистой стали при нагреве свыше 470 К возможно деформационное старение, приводящее к снижению пластичности стали. В закаленных и низко-отпущенных сталях происходят процессы высокого отпуска, в результате чего сталь в этой зоне разупрочняется. В мартенсит-но-стареющих сталях при T zk выше их температур старения протекает процесс перестаривания, заключающийся в коагуляции интерметаллидов и приводящий к разупрочнению соответствующей зоны соединения.  [c.517]

Если в процессе такого движения будет нарушено какое-либо из вспомогательных ограничений, то производится возврат в предьщущую точку и рабочий шаг уменьшается вдвое. Названные действия повторяются, пока не будет выполнено нарушенное вспомогательное ограничение или условие  [c.207]

Для тоГо чтобы характеризовать различные виды поляризации, необходимо знать не только природу частиц, обусловливающих поляризацию, но и особенности межатомных и межмолекулярных взаимодействий. Если силы, стремящиеся возвратить в исходное положение смещенные электрическим полем частицы носят квази-упругий характер, то говорят об упругой поляризации. Если же электроны, ионы или диполи при смещении в поле за счет тепловой энергии преодолевают потенциальные барьеры, то поляризацию называют тепловой. Рассмотрим эти процессы более подробно.  [c.277]

В процессе своего перемещения по кристаллу электрон проводимости может быть захвачен на уровень , (переход 6 на рис. 8.2). На этом уровне он может находиться достаточно долго, а затем может возвратиться (за счет, например, теплового возбуждения) обратно в зону проводимости — переход 7. Наличие в кристаллофосфоре подобных ловушек электронов, естественно, существенно увеличивает длительность люминесцентного свечения. Заметим, что длительность люминесценции связана не только с ловушками , но и с рядом других факторов. Например, она связана с временем жизни экситонов. Напомним, что непрямой экситон живет значительно дольше, чем прямой (см. 6.4).  [c.190]

Необратимый процесс — термодинамический процесс, после которого система и взаимодействующие с ней системы (окружающая среда) не могут возвратиться в начальное состояние без возникновения остаточных изменений в системе или окружающей среде.  [c.85]

Обратимый процесс, в частности, характеризуется тем, что произведенной в течение этого процесса работы достаточно для того, чтобы возвратить систему при тех же самых внешних условиях в исходное состояние.  [c.24]

Действительно, если бы разность Q — L не равнялась нулю, а была, например, меньше нуля, это означало бы, что в результате кругового процесса система, возвратившись в исходное состояние, произвела большую работу, чем полученная системой теплота. Если теперь некоторую часть произведенной системой работы, численно равную Q, превратить снова в теплоту и передать окружающим телам, то последние тем самым будут возвращены в исходное состояние следовательно, система и окружающие тела после рассмотренного кругового процесса не будут иметь каких-либо остаточных изменений и будут находиться в том же состоянии, что вначале, и, несмотря на это, будет произведена некоторая положительная работа. Заставив систему совершать подобный круговой процесс много раз, можно было, бы получить любое количество положительной работы без затраты вообще какого-либо количества теплоты, т. е. из ничего , что находится в противоречии с законом сохранения энергии. Поэтому сделанное вначале предположение о том, что при круговом процессе разность между полученной теплотой и совершенной системой работой не равна нулю, должно быть отброшено как неправильное.  [c.28]


Из этого утверждения следует, что никакими способами невозможно осуществить переход теплоты от менее нагретого тела к более нагретому так, чтобы другие участвующие в процессе тела по окончании процесса возвратились к своему первоначальному состоянию, т. е. без возникновения у окружающих тел каких-то остаточных или компенсационных изменений (например, без затраты работы или осуществления какого-либо другого, эквивалентного по возможности произвести полезную внешнюю работу, процесса).  [c.44]

Наоборот, от более нагретого тела к менее нагретому теплота может переходить сама собой, т. е. если даже в этом процессе и участвуют какие-либо другие тела, то по окончании процесса они могут возвратиться в свое исходное состояние. Все сказанное означает, в частности, что процесс теплообмена при конечной разности температур представляет собой строго односторонний необратимый процесс.  [c.45]

В изолированной системе внутренняя энергия и и общий ее объем V имеют неизменные значения. Будучи выведенной из состояния устойчивого равновесия, система через некоторое время возвратится в это состояние, причем вследствие необратимости релаксационных процессов полезной внешней работы не производится, а энтропия системы, как это следует из выражения (3.31), но мере приближения к состоянию равновесия будет возрастать до тех пор, пока не достигнет максимума. Из этого вытекает следующее условие термодинамического равновесия изолированной системы в состоянии термодинамического равновесия, энтропия изолированной системы имеет максимальное значение, т. е.  [c.109]

Локальные флуктуации приводят к нарушению термического механического, диффузионного (химического) равновесия. Нарушение термического равновесия связано с локальными флуктуациями температуры, нарушение механического равновесия — с флуктуациями давления. Диффузионное равновесие нарушается вследствие флуктуаций химического потенциала, которые для термически и механически однородной системы обусловлены локальными флуктуациями концентраций компонентов. Если система находится в состоянии устойчивого равновесия, то последующая временная эволюция возникшей флуктуации приводит к возврату системы в равновесное состояние. Согласно гипотезе Онзагера,. пространственно-временная эволюция флуктуаций в среднем описывается законами неравновесной термодинамики ( 7.7). Таким образом, флуктуации позволяют охарактеризовать устойчивость состояния равновесия по отношению к непрерывным изменениям состояния системы и, кроме того, получить информацию о некоторых свойствах динамических характеристик неравновесных процессов.  [c.150]

Следует подчеркнуть, что подавляющее большинство летательных аппаратов вследствие наличия специальных устройств обладает статической устойчивостью, т. е. способностью реагировать на возмущения так, чтобы в начальный момент уменьшить их величину. Это свойство имеет большое практическое значение независимо от того, как будет вести себя аппарат в процессе возмущенного движения. При этом свободное развитие возмущений обычно сопровождается отклонением рулей, чтобы возвратить летательный аппарат к заданному режиму полета. Использование таких рулей является обязательным условием обеспечения заданного движения статически неустойчивого (при неподвижных органах управления) летательного аппарата. Понятие устойчивости предполагает существование раздельно не  [c.44]

Обратимым принято называть такой процесс, который в условиях изолированной системы, т. е. без внешнего воздействия, допускает возврат системы в исходное состояние. Естественно, что в обратимом процессе исключены все виды необратимых явлений (трение, диффузия и т. п.), поэтому он наиболее идеализирован. Обратимые процессы значительно облегчают анализ термодинамической системы при ее изменении, а переход к реальным процессам осуществляется введением в расчеты коэффициентов, характеризующих необратимые явления.  [c.9]

В заключение следует подчеркнуть существенную разницу с г. ц. к. кристаллами, деформированными при комнатной температуре, заключающуюся в том, что в цинке уже при комнатной температуре протекают процессы возврата, которые сильно влияют на упрочнение. Это влияние выражается прежде всего в перестройке дислокационной структуры, возникающей во время деформации.  [c.210]

Рекристаллизация является самопроизвольным процессом, она начинается на плоскостях скольжения и по границам зерен. После рекристаллизации микроструктура металла состоит из равноосных новых недеформированкых зерен (фиг. 76), и он приобретает свойства недеформированного металла, В отличие от возврата процесс рекристаллизации происходит при более высоких температурах и связан с перемещением атомов с одного зерна на другое. Минимальная температура рекристаллизации сильно деформированных металлов, по А, А, Бочвару, приближенно равна 0,4 абсолютной температуры плавления, т. е.  [c.99]

В низкотемпературных процессах используются обычно вода и водяной пар. Эти теплоносители позволяют получать высокие коэффициенты теплоотдачи в теплообменных аппарата с, они дешевы и могут транспортироваться на значительные расстояния, теряя пэ пути относительно мало теплоты. Для экономичной работы всей системы теплэснаб-жения, объединяющей источник и потребитель теплоты, желателен сбор и возврат образующегося из пара конд нсата. Чистоту этого конденсата трудно сбеспе-чить. Так, конденсат, образующийся в подогревателях нефтепрогуктов и растворов красителей, часто в источник теплоты не возвращается, поскольку при выходе из строя нагревательных трубок теплообменника-подогревателя конденсат загрязняется и становится непригодным для питания котлов.  [c.191]

Молекулярно-кинетический подход к исследованию опирается на изучение молекулярного (микродискретно-го) строения газа и поэтому лучше соответствует реальным условиям. Однако использование дифференциальных уравнений в частных производных требует возврата к гипотезе о квазисплошности среды и квазинепрерывности полей ее характеристик. Возникающее противоречие снимается с помощью перехода к макроскопическому описанию свойств и процессов через микроскопические свойства отдельных молекул среды, структура и элементарные процессы в которой дискретны. Этот переход осуществляется с помощью функций распределения Максвелла или Больцмана. При этом свойства среды выступают как осредненные по всем молекулам и как непрерывные функции координат и времени.  [c.26]


К самопроизвольным процессам, которые приводят пластически деформированный металл к более устойчивому состоянию, относятся снятие искажения кристаллической решетки и другие В1нутризеренные процессы и рост зерен. Первое е требует высокой температуры, так как при этом происходит незначительное перемещение атомов. Ул<е небольшой нагрев (для железа 300— —400°С) снимает искажения решетки (как результат многочисленных субмн кролроцессов — уменьшение плотности дислокаций в результате их взаимного уничтожения, так называемая аннигиляция, слияния блоков, уменьшение внутренних напряжений, уменьшение количества вакансий и т. д.). Линии на рентгенограммах деформированного металла, размытые вследствие искажений решетки и нарушений се правильности, вновь становятся четкими. Снятие искажений решетки в процессе нагрева деформированного металла называется возвратом, или отдыхом. В результате этого процесса твердость и прочность несколько понижаются (па 20— 30% по сравнению с исходными), а пластичность возрастает.  [c.86]

Наряду с этим, т. е. с отдыхом (возвратом), может происходить еще так называемый процесс аолигонизации, заключающийся в том, что беспорядочно расположенные внутри зерна дислокации собираются, образуя сетку и создавая ячеистую структуру (рис. 67), которая может быть устойчивой и может затруднить процессы, развивающиеся при более высокой температуре. Рекристаллизация, т. е. образование новых зерен, протекает при более высоких температурах, чем возврат и полигоиизация, может начаться с заметной скоростью после нагрева выше опреде-леп иой температуры. Сопоставление температур рекристаллизации различных металлов показывает, что мел<ду минимальной температурой рекристаллизации и температурой плавления существует простая зависимость 7 ре, = а7 л (Гре, — абсолютная температура рекристаллизации Тал — абсолютная температура плавления а — коэффициент, зависящий от чистоты металла). Чем выше чистота металла, тем ииже температура рекристаллизации. У металлов обычной техиической чистоты а = 0,34-0,4. Температура рекристаллизации сплавов, как правило, выше температуры рекристаллизации чистых металлов и в некоторых случаях достигает 0,8 Тпл- Наоборот, очень чистые металлы имеют очень низкую температуру рекристаллизации 0,2 Т п и даже 0,1 ГпоТ-  [c.86]

Технологические особенности ковки высоколегированных сталей и цветных металлов обусловлены их технологическими свойствами. Высоколегированные стали склонны к интенсивному упрочнению, поэтому для их ковки целесообразнее использовать пресс, а не молот. Ввиду малой скорости деформирования на прессах разупроч-няюш,ие процессы, возврат и рекристаллизация, успевают произойти полнее, и упрочнение снижается.  [c.77]

После реконструкции, проведенной с целью устранения недостатков, выявившихся при эксплуатации, завод-автомат выполняет автоматически в определенной последовательности следующие стадии производственного процесса на позициях / — загрузка чушек алюминиевого сплава 2—плавление, рафинирование и очистка сплава от шлака 3 — кокильная отливка 4 — отрезка литников и возврат их в плавильную печь для переплавки 5 — загрузка контейнеров поршнями 6—термическая обработка 7 — автоматический бункер 8 — возврат контейнеров 9 — обработка базовых поверхностей (одновременно у двух деталей) 10 — черновое растачивание и зацентровка (одновременно четырех деталей) 11 — черновое обтачивание (одновременно четырех деталей) 12 — фрезерование горизонтальной прорези (одновременно у четырех деталей) 13 — сверление десяти смазочных отверстий в каждой детали (одновременно у четырех деталей) 14 — чистовое обтачивание (одновременно четырех деталей 15 — разрезание юбки и срезание центровой бобышки (одновременно у четырех деталей) 16 — подгонка веса поршней (одновременно у двух деталей) путем удаления лишнего мет 1лла на внутренней стороне юбки 17 — окончательное шлифование на автоматическом бесцентрово-шлифовальном станке (одновременно четырех деталей) 18 — мойка 19 — автоматический бункер 20 — обработка отверстий под поршневой палец (тонкое растачивание отверстий растачивание канавок под стопорные кольца развертывание отверстий) 21 —мойка 22 — контроль диаметров и конусности юбки и сортировка на размерные группы 23 — контроль формы и размеров отверстий под палец и сортировка на размерные группы 24 — покрытие поршней антикоррозийной смазкой (консервация) 25 — завертывание в водонепроницаемую бумагу (пергамент) 26 — набор комплекта поршней, формирование картонной коробки, заклейка ее и выдача.  [c.467]

Большая часть работы (до 95 %), затрачиваемой на деформацию металла, превращается в теплоту (металл нагревается), остальная часть энергии аккумулируется в металле в виде повышенной плотности несовершенств строения (вакансий и, главным образом, дислокаций). О накоплении энергии свидетельствует также рост остаточных напряжений в результате деформации. В связи с этим состояние наклепанного металла термодинамически неустойчиво. При нагреве такого металла в нем протекают процессы возврата, нолигонизации и рекристаллизации, обусловливающие возвращение всех свойств к свойствам металла до деформации.  [c.53]

В процессе во , прата различают две стадии. При более низких температурах (ниже 0,27пл) протекает собственно первая стадия возврата, когда происходит уменьшение точечных дефектов (вакансий) и небольшая перегруппировка дислокаций без образования новых субграниц.  [c.53]

Для некоторых металлов (например алюминия, титана, монокристаллов молибдена и вольфрама) в процессе возврата и поли-гопизации происходит заметное понижение прочности и повышение пластичности. Однако их жаропрочные свойства при этом повышаются. У меди, никеля и их сплавов на определенной стадии поли-гонизации твердость, пределы текучести, упругости и выносливости, а также пластичность повышаются. Одновременно сиижаючся неупругие эффекты. Упрочнение происходит в результате закрепления подвижных дислокаций атомами примесей в дислокационных стенках, возникающих при полигонизации, ( ,е([)ормировациого металла.  [c.54]

Это объясняется уменьшением содержания углерода в а-растворе, с )Ывом когерентности на границе между карбидами и а-фазой, развитием в пей сначала процессов возврата, а прп высокой температуре рекристаллизации, а также коагуляцией карбидов.  [c.188]

К первой группе относятся процессы нагрева металла для устранения неустойчивого состояния (наклепа), возникающего вследствие предварит кой обработки методами холодной пластической деформации. Эт Рвид термообработки основан на процессах возврата, рекристаллизации и гомогенизации и является отжигом первого рода (рекристаллизационным отжигом).  [c.111]

Рассмотрим равновесный процесс расширения газа /1В(рис. 5-9), который прошел через равновесные состояния А, I, 2, 3, п, В. В этом процессе была получена работа расширения, изображаемая в некотором масштабе пл. ABD . Для того чтобы рабочее тело возвратить в первоначальное состояние (в точку Л), необходимо отточки В провести обратный процесс — процесс сжатия. Если увеличить на величину dp внешнее давление на поршень, то поршень передвинется на бесконечно малую величину и сожмет газ в цилиндре до давления внешней среды, равного р+Ф-При дальнейшем увеличении давления на dp поршень опять передвинется на бесконечно малую величину, и газ будет сжат до нового давления внешней среды. Во всех последуюш,их уве-. личениях внешнего давления на dp газ, сжимаясь при обратном течении процес-. са, будет проходить через все равновесные состояния прямого процесса — В, п, 3, 2, 1, А и возвратится к состоянию, характеризуемому точкой А. Затраченная работа в обратном процессе сжатия (пл. BA D) будет равна работе расширения в прямом процессе (пл. ABD ). При этих условиях все точки прямого процесса сольются со всеми точками обратного процесса. Такие процессы, протекающие в прямом и обратном направлениях без остаточных изменений как в самом рабочем теле, так и в окружающей среде, называют обратимыми. Следовательно, любой равновесный термодинамический процесс изменения состояния рабочего тела всегда будет обратимым процессом.  [c.60]


В результате в конденсаторе и линии возврата конденсата образуется горячий раствор диоксида углерода. В случае его высокой концентрации линия возврата конденсата подвергается сильной коррозии. При этом образуется растворимый РеСОз, который с конденсатом возвращается в котел. Здесь он разлагается на Fe(OH)j и СОа последний вновь может участвовать в коррозионных процессах.  [c.285]

ИХ диаметральными краями. В результате этого в течение одной половины периода электрическое поле ускоряет ионы, образовавшиеся в диаметральном зазоре и направляющиеся во внутреннюю полость одного из электродов, где под действием магнитного поля они движутся по круговым траекториям и в конце концов опять попадают в зазор между электродами. Магнитное поле задается таким образом, чтобы время, необходимое для прохождения полуокружности по траектории внутри электродов, равнялось полупериоду колебаний. Вследствие этого, когда ионы возвратятся в зазор между электродами, электрическое поле изменит свое направление, и, таким образом, ионы, входя внутрь другого электрода, приобретут еще одно приращение скорости. Поскольку радиусы траекторий внутри электродов пропорциональны скоростям ионов, время, необходимое для прохождения таким ионом полуокружности, не зависит от его скорости. Поэтому если ионы затрачивают точно половину периода на первую половину своего оборота, то они будут двигаться и дальше в таком же режиме и, таким образом, будут описывать спираль с периодом обращения, равным периоду колебаний электрического поля, до тех пор, пока они не достигнут наружного края прибора. Их кинетические энергии по окончании процесса ускорения будут больше энергии, соответствующей напряжению, приложенному к электродам, во столько раз, сколько они совершили переходов от одного электрода к другому. Этот метод предназначен главным образом для ускорения легких ионов, и в проведенных опытах особое внимание уделялось получению протонов, обладающих высокими скоростями, потому что предполагалось, что только протоны пригодны для экспериментальных исследований атомных ядер. При применении магнита с плошад-  [c.145]

Покропивный В.В., Скороход В.В. Когезия (адгезия, схватывание, сращивание, соединение, сваривание) межчастичных поверхностей и образование ]рааиц зерен в процессах спекания, возврата, рекристаллизации, сверхпластичности, трения и разрушения //Препринт 95-2.- Киев, 1995.  [c.381]

При отсутствии процессов, стремящихся восстановить равновесие, небольшая асггмметрня распределения и соответствующий ей тепловой ноток будут сохраняться неопределенно долго, даже без градиента температуры, приводя тем самым к бесконечно большой теплопроводности. В реальных кристаллах без градиента температуры отклонение N от равновесного значения 92 должно стремиться к нулю. Если предположить, что возврат к положению равновесия происходит по экспоненциальному закону, то  [c.231]

Если распределение фононов отклонилось от равновесного, то эти процессы стремятся возвратить его не к равповеснолгу Jt(0), а к квази-равповесному iR(X), причем X определяется общим импульсом, который сохраняется. Таким образом, процессы с сохранением импульса не могут пернуть к равновесию анизотропное распределение (4.4), которое формально эквивалентно (7.4), если  [c.239]

Сверхзвуковой диффузор с полным внутренним сжатием может быть осуществлен без центрального тела (рис. 8.46). В таком диффузоре косой скачок отходит от кромки обечайки А и пересекается в точке О на оси диффузора со скачком, идущим от противоположной кромки. Поток газа в скачке АО отклоняется от первоначального направления и становится параллельным стенке АС. В точке О линии тока вынуждены возвратиться к первоначальному направлению, в связи с чем возникает отраженный скачок 0D. В точке D поток вновь отклоняется от осевого направления и становится параллельным стенке диффузора это вызывает новый скачок, который отражается от оси диффузора, образуя следующий скачок и т. д. Так как в скачках уплотнения поток тормозится, то предельный угол поворота в каждом последующем скачке меньше, чем в предыдущем. Описанный процесс продолжается до тех пор, пока требуемый угол отклонения потока не оказывается больше предельного (ы > > (Omai) с наступлением этого режима вместо очередного плоского скачка образуется криволинейная ударная волна EF, за которой поток становится дозвуковым. Дальнейшее течение в сужающем канале идет с увеличением скорости, причем в узком сечении скорость должна быть ниже или равна критической в последнем случае за узким сечением может возникнуть дополнительная сверхзвуковая зона, завершаемая скачком уплотнения GH.  [c.475]

При необратимом процессе систелш не может быть возвращена в исходное состояние ни по тому же пути, по которому она пришла в конечное состояние, ни по какому-либо обходному пути вообще без дополнительного внешнего воздействия (т. е. без принуждения ). Из этого следует, что мерой необратимости процесса может служить величина дополнительного внешнего воздействия, которое необходимо для того, чтобы возвратить тело в начальное состояние, или, что то же самое, величина остающихся во внешней среде конечных изменений после возвращения тела в начальное состояние.  [c.24]


Смотреть страницы где упоминается термин Возврата процессы : [c.181]    [c.324]    [c.30]    [c.510]    [c.40]    [c.85]    [c.4]    [c.206]   
Ползучесть кристаллов (1988) -- [ c.108 , c.112 , c.253 ]



ПОИСК



Возврат

Газовый рецикл с извлечением одного компонента газа и раздельным I , возвратом NH и С02 в процесс

Компоновка сложных устройств как шаговый процесс с возвратом

Механизм и температурный уровень процессов возврата и полигонизации

Основные особенности и движущая сила процессов разупрочнения (возврата, полигонизации и рекристаллизации) деформированных металлов и сплавов

Применение парогазовых процессов для переработки агрессивных сред с целью возврата химических соединений в производство

Рентгеноанализ процессов возврата и рекристаллизаци



© 2025 Mash-xxl.info Реклама на сайте