Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент теплоотдачи средний

Для расчета теплопередачи часто необходимо знать среднее по поверхности значение коэффициента теплоотдачи. Среднее значение а определяют согласно закону Ньютона—Рихмана  [c.175]

Начальные и и конечные (tJ и Tj) температуры теплоносителей, найденные по формулам (1.144) или из теплового баланса рекуператора, могут быть использованы для расчета коэффициентов теплоотдачи, среднего температурного напора, локальных 11 средней температур поверхностей нагрева только применительно к регенераторам и конвективным рекуператорам. При расчете радиационных рекуператоров необходимо для указанных целей отыскивать расчетные температуры.  [c.57]


Коэффициент теплоотдачи, средний для всех рядов труб с ламинарным течением пленки конденсата, равен  [c.46]

Теперь мы располагаем полным профилем температуры. Следующим шагом является вычисление средней массовой температуры жидкости и коэффициента теплоотдачи. Средняя массовая температура жидкости вычисляется непосредственно по уравнению (8-12). Однако нам хотелось бы получить решение в замкнутой форме. Поэтому мы должны принять еще одно допущение.  [c.198]

Если все величины, входящие в это уравнение, относить к небольшим элементам ловерхности тела, то из него определяются местные значения коэффициента теплоотдачи. Среднее значение коэффициента теплоотдачи может быть найдено из зависимости  [c.151]

ГОЙ составляющей общей теплопередачи, и температуры газа и печи можно принять равными между собой, суммарный тепловой поток в загрузку находят по формуле (3), а время нагрева — по (4). Если коэффициент теплоотдачи изл сильно изменяется в ходе нагрева, что имеет место при нагреве до высоких температур, продолжительность периода определяют по участкам, на которые разбивают весь температурный интервал от начальной до конечной температуры загрузки. Такое разделение на участки проводят для того, чтобы оперировать в расчетах усредненными — в пределах каждого участка — суммарными коэффициентами теплоотдачи. Средний коэффициент теплоотдачи определяется как среднее арифметическое начального и конечного значения а на участке. Общее время нагрева (или охлаждения) равно сумме значений т на всех участках [8].  [c.93]

Расчетный коэффициент теплоотдачи (средний за время нагрева в условиях постоянства температуры печи)  [c.155]

Периоды процессов Термической обработки Среда нагрева или охлаждения Температура среды в °С Коэффициент теплоотдачи (средний) ккал Предельная толщина изделия, рассчитываемая как тонкая , в мм  [c.59]

Уравнение подобия для коэффициента теплоотдачи, среднего по периметру цилиндра ф = получает более простой вид  [c.255]

В расчетах используются понятия среднего по поверхности коэффициента теплоотдачи  [c.78]

Обтекание шара. Средний по повер- ости коэффициент теплоотдачи от шара, обтекаемого потоком теплоносителя, можно рассчитать по формуле  [c.84]

Пример 10.1. Рассчитать коэффициент теплоотдачи и тепловой поток от стенки трубы подогревателя воды. Длина трубы / = 2м, внутренний диаметр d=16 мм, скорость течения воды аИж = 0,995 м/с, средняя температура воды / = 40 °С, а стенки трубы f,.= 100 С.  [c.86]


Из формулы (10.14) видно, что интенсивность теплоотдачи убывает по мере стенания конденсата из-за возрастания толщины его пленки. Среднее значение коэффициента теплоотдачи от поверхности высотой Н  [c.88]

Площадь поверхности трубы frp считают при этом с той ее стороны, с которой коэффициент теплоотдачи меньше. Если же коэффициенты близки друг к другу, ai 2, то целесообразно площадь считать по среднему диаметру трубы 3 = 0,5 dBH + d ). В этом случае погрешность от замены в расчетах цилиндрической стенки на плоскую будет минимальна. Справедливость приведенных выше рекомендаций несложно проиллюстрировать на примере.  [c.99]

Приведены теоретический расчет коэффициента сопротивления струи в шаровой ячейке методика и результаты экспериментальных работ ио гидродинамическому сопротивлению, среднему и локальному коэффициентам теплоотдачи ири течении газа через различные укладки шаровых твэлов. На основе обобщенных критериальных зависимостей коэффициентов сопротивления и теплообмена разработана методика оптимизационных расчетов размера шаровых твэлов и геометрических размеров активных зон для различной объемной плотности теплового потока. Приводится количественный расчет по предложенной методике.  [c.2]

Коэффициент теплоотдачи, подсчитанный по зависимостям (4.8) и (4.9), не отличается в среднем больше чем на 15% от значений а, полученных экспериментально. Учет теплопроводности позволил уменьшить погрешность определения коэффициента теплоотдачи.  [c.69]

Измерения среднего коэффициента теплоотдачи в разных точках зоны в модели бесканального реактора показали, что разница в значениях а не превышает 5% среднего значения по всей зоне. Влияния неизотермичности потока на теплоотдачу обнаружено не было. Влияние числа Рг авторы предлагают учитывать по аналогии тепло- и массообмена в виде  [c.70]

Максимальный разброс опытных точек лежит в пределах 8%. Для шаровой укладки с пористостью т<0,40 значение экспериментального коэффициента теплоотдачи, по данным работы [33], на 20% больше, чем рассчитанного по зависимости (4.13), а показатель степени при числе Re выше. Авторами работы [26] обнаружено существенное влияние объемной пористости m на средний коэффициент теплоотдачи. При обработке  [c.70]

Данные опытов по определению среднего коэффициента теплоотдачи шаровых укладок в двух рабочих участках при пористости /п = 0,265 и /п = 0,31 приведены на рис. 4.2. Результаты экспериментов представлены в параметрах внешней задачи  [c.73]

Разброс опытных точек вокруг предлагаемой зависимости не превышает 15 /о. Результаты исследования показаны на рис. 4.2 для трех опытов, проведенных автором, четырех опытов по определению среднего коэффициента теплоотдачи, вы-  [c.75]

На рис. 4.2 совершенно отчетливо проявляется весьма существенное влияние объемной пористости т на число Nu. Так, при изменении пористости от 0,673 до 0,265 при одном и том же числе Re = 4-10 критерий Nu увеличивается с 350 до 1650,, т.е. почти в пять раз. С увеличением числа Re при постоянной объемной пористости т эффективность теплоотдачи увеличивается. Наклон кривых, проведенных по средним значениям опытных точек, примерно одинаков, и тангенс их равен 0,7 при всех числах Re>104 Полученные данные убедительно опровергают мнение некоторых исследователей, считающих, что средний коэффициент теплоотдачи не зависит от объемной пористости шаровой укладки [37], и подтверждают данные авторов (26, 36] о существенном влиянии ее на коэффициент теплоотдачи.  [c.76]

ОБОБЩЕННЫЕ КРИТЕРИАЛЬНЫЕ ЗАВИСИМОСТИ ДЛЯ СРЕДНЕГО КОЭФФИЦИЕНТА ТЕПЛООТДАЧИ  [c.76]

По той же методике были обработаны данные по среднему коэффициенту теплоотдачи, полученные в МВТУ им.  [c.80]

Зависимость среднего коэффициента теплоотдачи получилась для объемной пористости /п = 0,26 следующей  [c.82]

Расхождения относительных локальных коэффициентов теплоотдачи при изменении числа Re от 5-10 до 9-10 практически не обнаружено, разброс опытных данных не превышал 8%. Проведенное суммирование полученных локальных коэффициентов по поверхности шарового калориметра диаметром 90 мм показало хорошее совпадение со средним значением коэффициента теплоотдачи, подсчитанного по зависимости (4.18) Nu = 0,485 iRe , полученной авторами при объемной пористости канала т = 0,40.  [c.84]


Проведенные на основании зависимости (4.28) оценки показывают, что для материалов оболочек твэлов, таких как графит, максимальная разность температуры на поверхности между точкой касания и точкой с максимальным локальным коэффициентом теплоотдачи не превышает 10% среднего температурного перепада в оболочке, что, по-видимому, не приведет к существенному изменению температурных напряжений в теплопроводной оболочке шарового графитового твэла.  [c.86]

РАСПРЕДЕЛЕНИЕ СРЕДНЕГО КОЭФФИЦИЕНТА ТЕПЛООТДАЧИ  [c.86]

Как было показано выше, зависимость среднего коэффициента теплоотдачи шарового твэла от массовой скорости, параметров теплоносителя и геометрии укладки найдена для Re lO в виде  [c.86]

Изменение скорости и объемной пористости вызовет изменение среднего коэффициента теплоотдачи в пристеночном слое. Приняв одинаковыми в первом приближении плотность р,  [c.87]

Таким образом, перераспределение скоростей газа в основном сечении и пристеночном слое практически не сказывается на изменении среднего коэффициента теплоотдачи шарового твэла.  [c.88]

Основная трудность, возникаюнцая при экспериментальном исследовании конвективного теплообмена, заключается в том, что коэффициент теплоотдачи зависит от многих параметров. Например, средний по поверхности коэффициент теплоотдачи от продольно омываемой пластины (см. рис. 9.2) зависит от длины пластины /, скорости набегающего потока Шж и теплофизических параметров жидкости  [c.81]

Подробный анализ известных в технической литературе зависимостей среднего коэффициента теплоотдачи при течении теплоносителя через шаровые твэлы показал, что теплообмен детально изучен лишь для областей ламинарного и смешанного режимов течения (Re = 24-2-10 ). Среди наиболее известных работ следует отметить работу 3. Ф. Чуханова, предложившего теоретическое решение Для теплообмена в области безотрывного течения турбулентного пограничного слоя в диапазоне чисел Re =10- 2 102  [c.67]

В 1951 г. М. Э. Аэровым [29] были опубликованы данны экспериментального исследования среднего коэффициента теплоотдачи для насадки из стальных шаров и стальных колец в более широком диапазоне изменения чисел Re=l- -1900 и объемной пористости m от 0,365 до 0,463. В качестве геометрического параметра он принимал эквивалентный диаметр по теории канала [26]. При отсутствии влияния стенки на шаровую насадку (Л >10) da зависит только от объемной пористости [см. выражение (2.6)]  [c.68]

Более значительным является исследование среднего коэффициента теплоотдачи в шаровой насадке, проведенное В. Дентоном, Ч. Робинсоном и Р. Тиббсом (33]. Экспериментальное определение среднего коэффициента теплоотдачи от поверхности шарового твэла к воздуху было выполнено в условиях стационарного режима с использованием шаровых электрокалориметров. Диаметры электрокалориметров и стеклянных макетов твэлов в опытах менялись от 6,4 до 9,5 мм. Шаровой электронагреватель помещался в различных точках шаровой насадки.  [c.69]

Автором настоящей работы в 1962 г. было проведено исследование среднего коэффициента теплоотдачи при прямом направлении теплового потока от поверхности шаровых электрокалориметров к охлаждающему воздушному теплоносителю при стационарном режиме на трех рабочих участках в неизо-термнческих условиях. Диа пазоны изменения чисел Re = = 3,5-103-f-4-10 объемной пористости т = 0,265- 0,40 [40].  [c.71]

Во II рабочем участке шаровые калориметры были раздвинуты (объемная пористость /п = 0,31). Опыты по определению среднего коэффициента теплоотдачи проводились на воздухе при давлении 0,1—0,9 МПа, температуре на входе в рабочий участок 30—285° С нагреве в рабочем участке 10—50° С и средней температуре поверхности шарового калориметра 200— 330° С. Установившийся режим определяли по температурам газа и поверхности элементов и отсутствию температурной разности между внутренней трубой и силовым чехлом. Тепловой баланс между мощностью электрокалориметров и нагревом воздуха подсчитывали по зависимости  [c.73]

В МВТУ им. Н. Э. Баумана в 1975—1976 гг. было проведено исследование среднего коэффициента теплоотдачи в каналах с шаровыми электрокалориметрами на воздушном теплоносителе для диапазона изменения N от 1,16 до 3,0 [40].  [c.76]

Н. Э. Баумана В. А. Сулиным для различных укладок шаровых электрокалориметров в цилиндрических каналах [40]. На рис. 4.3 показаны результаты обработки для коридорной (М— = 1,4), шахматной (ЛГ=1,12 и 1,4) и кольцевой N=2,2) упаковок. Экспериментальные данные по теплоотдаче в шахматных упаковках (iV=l,4 m = 0,5) лежат примерно на 30%, а для Л =1,12 т = 0,5 на 20% выше подсчитанных по зависимости (4.21) для коридорной и кольцевой упаковок средний коэффициент теплоотдачи хорошо описывается предложенной зависимостью. При использовании предложенной методики влияние параметра N на критерий Nu исчезает. Можно найти количественную зависимость Nu=/(m, Re) в рамках внешней задачи, используя те же зависимости для двух областей чисел Re. Для чисел Re = 2-10 4-10 [40]  [c.80]

Локальные коэффициенты теплоотдачи определялись для одной трети поверхности шарового электрокалориметра, поскольку в остальных частях поверхности картина получилась бы подобной. Эксперименты проводились для четырех значений Re, равных 8-10 1,5-10 3-10 и 6-10 . Как указывает автор, увеличение числа Re снижает значения критерия St и в то же время выравнивает распределение локального коэффициента теплоотдачи. Для Re = 8-103 максимальное отношение локальных коэффициентов теплоотдачи в лобовой точке и в кормовой равно 3, а для Re = 6-10 это отношение уменьшается до 2. Минимальное значение локального коэффициента теплоотдачи обнаружено не в месте касания шаров, а в кормовой точке. Для проверки точности экспериментов по локальному коэффициенту Уодсвортом было подсчитано среднее значение а по поверхности и проведено сравнение значения Орасч со средним коэффициентом теплоотдачи, определенным опытным путем на той же установке.  [c.82]

Это в 1,7 выше значения среднего коэффициента теплоотдачи, полученного Дентоном [33] для объемной пористости т = 0,37 и хорошо подтверждает предложенную зависимость (4.24). Сравнение средних значений коэффициента теплоотдачи со средним же значением, но подсчитанным путем интегрирования локальных коэффициентов по всей поверхности, показало хорошую сходимость.  [c.82]


В 1963—1964 гг. в МО ЦКТИ автором настоящей работы совместно с В. К. Ламба на IV рабочем участке воздушной петли были проведены эксперименты по определению локального коэффициента теплоотдачи в шаровой укладке с объемной пористостью т = 0,40. Для увеличения точности был сконструирован и изготовлен шаровой калориметр диаметром 90 мм из стали 1Х18Н9Т с внутренней цилиндрической полостью, в которой размещался электронагреватель. Укладка шаровых элементов для получения средней объемной пористости 0,40 была выполнена путем комбинации шарового электрокалориметра, шести малых шаровых долек, точки касания которых с исследуемым шаром располагались в плоскости, перпендикулярной оси канала, и четырех больших шаровых долек (по две дольки по оси канала до шара и две после), причем точки касания первых двух расположены в плоскости, повернутой на 90° относительно плоскости, в которой находятся две последних  [c.82]

Для исследования была выбрана одна четвертая частЬ ОК--ружности, расположенная в горизонтальной плоскости, где находились две точки касания шарового калориметра е соседними шарами. Опыты проводились при Re = 7-10 средний коэффн-циент теплоотдачи для этого режима был равен 343 Вт/(м -° С) температурная разность в металлической обрлочке при мощности электронагревателя 500 Вт составляла - 62° С измерен-кая разность температур в тангенциальном направлении по поверхности между точкой касания и точкой поверхности с мак- симальным локальным коэффициентом теплоотдачи была равна 6°С влияние неоднородности локального коэффициента теплопередачи практически не сказывалось на температурном поле в оболочке уже на расстоянии 12,5 мм от поверхности. Минимальная температура поверхности получалась в области с максимальным коэффициентом теплоотдачи, максимальная— в месте контакта с соседним шаром. При среднем перепаде в оболочке 62°С измеренная разность температур на поверХ ности электрокалориметра, вызванная наличием переменного коэффициента теплоотдачи, составляла 6° С, что не превышает 10% этого перепада. Полученное экспериментальным путем температурное поле было проверено с помощью расчетных- методов. В частности, был разработан метод, основанный на уравнении теплового баланса в форме конечных разностей, и составлен алгоритм для расчета, распределения температур в объеме на ЭВМ.  [c.85]

Наибольшая разность температур на поверхности определена данным расчетом в 5,6° С, что достаточно хорошо согласуется с экспериментом. В. К. Ламба предложил приближен ную расчетную зависимость для определения дополнительирй относительно среднего перепада температурной разности.в обо лочке шарового твэла, возникающей из-за различных условий отвода тепла от поверхности шарового элемента для случая шести касаний шара с соседними элементами в плоскости, пер-пендикулярной направлению потока (расстояние по углу 30 ) для экстремальных значений локального коэффициента теплоотдачи  [c.85]

Изменения объемной пористости и скорости в пристеночном слое по-разному скажутся на среднем коэффициенте теплоотдачи шаров, расположенных около стенки. Для активной зоны в виде цилиндра с плоским подом и v = onst можно принять, что поля полного и статического давления в поперечном сечении будут одинаковыми, и тогда можно считать, что onst для любой струйки, протекающей параллельно оси активной зоны. Приняв, что плотность газа, коэффициент гидродинамического сопротивления, диаметр твэла и высота активной зоны одинаковы для всех коаксиальных струек газа, можно найти зависимость для определения скорости газа в пристеночном слое  [c.87]

Декеном с сотрудниками [39] была проведена экспериментальная работа по определению среднего коэффициента теплоотдачи в сечении при N 20 методом, основанным на аналогии тепло- и массообмена при испарении нафталиновых шаров диаметром 30 мм. Нафталиновые шары закладывались в слой керамических шаров в трубе диаметром 600 мм (объемная пористость т = 0,40). Расположение шаров в слое было различным в разных сериях опытов, часть опытов была проведена для определения интенсивности массообмена в пристеночном слое при Re = 3-10 . Эксперименты показали, что испарение шаров у стенки происходит на 7% быстрее, чем шаров, расположенных в центре слоя.  [c.88]


Смотреть страницы где упоминается термин Коэффициент теплоотдачи средний : [c.103]    [c.109]    [c.70]    [c.73]    [c.75]    [c.86]   
Техническая термодинамика и теплопередача (1986) -- [ c.326 , c.354 ]



ПОИСК



Коэффициент средний

Коэффициент теплоотдачи

Коэффициент теплоотдачи, отнесенный к средней арифметической разности

Коэффициент теплоотдачи, отнесенный средний интегральный

Максимальный (средний по поверхности) коэффициент теплоотдачи к погруженным в спой трубам и пучкам труб

Местный и средний коэффициент теплоотдачи

Обобщенные критериальные зависимости для среднего коэффициента теплоотдачи

Распределение среднего коэффициента теплоотдачи в бесканальной активной зоне с шаровыми твэлами

Средний коэффициент теплоотдачи и температурный напор

Средний коэффициент теплоотдачи при смешанном течении пленки конденсата

Средняя теплоотдача

Теплоотдача



© 2025 Mash-xxl.info Реклама на сайте