Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Смазка и уплотнение опор

СМАЗКА И УПЛОТНЕНИЕ ОПОР  [c.447]

МОНТАЖ, СМАЗКА И УПЛОТНЕНИЕ ОПОР КАЧЕНИЯ  [c.358]

СМАЗКА И УПЛОТНЕНИЕ ОПОР КАЧЕНИЯ  [c.186]

Смазочные масла по сравнению с консистентными смазками, имеют следующие преимущества меньший коэффициент трения и большую стабильность свойств способны проникать в узкие зазоры, обеспечивают лучший отвод теплоты и удаление продуктов износа допускают смену смазки без разборки опор. Однако жидкие смазки требуют более сложных уплотнений и регулярного наблюдения за подачей. Консистентные смазки хорошо выдерживают высокие давления и колебания температуры, лучше предохраняют опоры от коррозии.  [c.448]


Насосы типа МВ (рис. 9.33) — центробежные, вертикальные, секционные, погружного типа. Базовой деталью насоса является составной цилиндр 6 с опорной плитой. К нижнему фланцу цилиндра крепится насос. Подво.п, 2 насоса выполнен в виде осевого конфузорного патрубка с направляющими лопатками, а отвод 1 — в виде колеса. Секции насоса 3 с направляющими аппаратами соединяются между собой стяжными болтами. Уплотнение стыков секций осуществляется металлическим контактом уплотнительных поясков. Ротор 4 насоса — трехопорный. Нижняя и средняя опоры выполнены в виде подшипников скольжения. В качестве верхней опоры предусмотрен сдвоенный радиально — упорный шарикоподшипник 7, который фиксирует положение ротора по отношению к статору и воспринимает остаточные осевые усилия и вес ротора. Подшипники смазываются перекачиваемой жидкостью, нижний и средний — за счет перетекания смазки. К верхнему подшипнику масло подводится от напорного патрубка.  [c.285]

Надежность ГЦН проверяется окончательно при функционировании АЭС. Этому ответственному моменту предшествуют пусконаладочные работы, холодное опробование каждого насоса в отдельности и всех вместе и затем их горячая обкатка. В этот период выявляются возможные недочеты в конструкции или не предусмотренные при проектировании режимы. Как и все оборудование, расположенное в необслуживаемой при работе реактора зоне, ГЦН должны надежно и устойчиво работать при параметрах окружающей среды, характерных для мест их расположения, без всякого вмешательства обслуживающего персонала в течение длительного времени, равного, по меньшей мере, периоду между плановыми остановками реактора. Это требование предопределяет наличие минимально необходимого дистанционного контроля за эксплуатационными параметрами, достаточно полно характеризующими режим работы насосного агрегата (напор, подача, частота вращения, температура подшипниковых опор и уплотнений, наличие смазки и т. п.). Радиоактивность теплоносителя, поверхностные загрязнения внутренних поверхностей активными продуктами коррозии, размещение в защитных боксах практически исключают возможность ремонта насосных агрегатов с заходом персонала в помещение. В этом случае потребовалось бы недопустимо много времени и средств для ликвидации любой более или менее серьезной неисправности, так как определяющей операцией была бы дорогостоящая дезактивация контура. В связи с этим к конструкции ГЦН предъявляется требование обеспечения замены элементов проточной части и отдельных узлов ходовой части без резки циркуляционных трубопроводов и с минимальным временем нахождения ремонтного персонала вблизи ремонтируемого насоса.  [c.23]


Опоры, подвески, компенсаторы и фасонные части паропроводов в эксплуатации регулярно осматривают, проверяют смазку и исправность подвижных опор и компенсаторов, правильность тепловых перемещений, исправность соединений и сальниковых уплотнений. Перед пуском паропроводы постепенно прогревают, продувая конденсат и наблюдая за состоянием и правильной работой опор и компенсаторов.  [c.227]

Комбинированное уплотнение кольцевыми канавками, кольцевым зазором и гидравлическим затвором (рис. И) применяют для уплотнения верхней опоры вертикального вала, подшипник которого работает на консистентной смазке. Применяют уплотнения в условиях внешней среды, содержащей пары кислот или другие вещества, вызывающие коррозию. Составными элементами этого устройства являются щелевое — канавочное уплотняющее устройство, образованное между валом и нижней съемной крышкой корпуса подшипника, и гидравлический затвор, образуемый маслом, заполняющим на валу чашку, которая перекрывает выступ нижней крышки подшипника.  [c.81]

Пластичные смазки обладают значительно меньшей, чем минеральные масла, способностью вытекать из корпуса, благодаря чему облегчается устройство уплотнений подшипникового узла. Пластичная смазка улучшает герметизацию опоры, заполняя зазоры между вращающимися и неподвижными деталями уплотнительного устройства и создавая дополнительную защиту подшипника от воздействия внешней среды.  [c.353]

При выборе уплотнения для опор валков учитываются скорость прокатки, окружающая среда (температура, наличие воды и окалины), тип смазки. При малых и средних скоростях прокатки применяют контактные уплотнения (манжеты из кожи и синтетических материалов, пружинные кольца типа поршневых), а при высоких скоростях бесконтактные щелевые или лабиринтные уплотнения. Обычно в опорах со стороны бочки валка устанавливают комбинацию из различных типов уплотнений (контактные — для предотвращения вытекания смазки и бесконтактные — для защиты от попадания в подшипники воды или окалины).  [c.477]

В зависимости от системы смазки, конструкций опор, кожухов и уплотнений зубчатые передачи могут быть закрытые и открытые. В закрытых передачах основным видом повреждения является усталостное выкрашивание, поэтому такие передачи рассчитываются на контактную прочность и проверяются на изгиб. В открытых передачах вследствие значительного абразивного износа усталостного выкрашивания не наблюдается и такие передачи рассчитываются на изгиб.  [c.118]

Пластичные смазки лучше, чем жидкие масла, защищают подшипник от коррозии, особенно при длительных перерывах в работе. Для их удержания в подшипнике и корпусе не требуются сложные уплотнения. Отдельные опоры (см. рис. 14.7) с пластичными смазками проще в эксплуатации, чем с жидкими, так как могут длительное время работать без замены или добавления смазки и не требуют частого контроля.  [c.306]

Уплотнительные устройства плавающей и фиксирующей опор идентичны. Наружное устройство включает маслоотбойный диск 12, кольцевую канавку 6, многоступенчатое лабиринтное уплотнение, образованное крышкой 4 и втулкой 5, кожух И. Предусмотрен периодический подвод пластичной смазки к щелям лабиринта. Маслоотбойный диск, отбрасывая на периферию полости масло, которое затем стекает по стенкам крышки и бурту 7 в канал 10, практически предотвращает попадание масла в щели лабиринта. Незначительные утечки возвращаются в полость по кольцевой канавке 6. Для предотвращения повышения давления в полости К за счет вращения кольца 12 предусмотрен канал 8. Кожух И предотвращает непосредственный контакт основной массы горячего песка, просыпающегося в момент выбивки, с корпусами опор. Этим достигается снижение температуры на корпусе и резкое сокращение количества песчаной пыли, попадающей на детали лабиринта. Коническая форма наружной поверхности крышки 4 и проточка на вращающейся втулке 5 обеспечивают стекание песка и пыли. Тем не менее количество песка, проникающего в зазоры лабиринта, весьма велико, и эффективная его работа возможна лишь при регулярной (не реже двух раз в неделю) подаче смазки в щели. Следует отметить, что в данной конструкции эта операция довольно трудоемка, так как для обеспечения доступа к пресс-масленкам, расположенным на крышках 4, приходится демонтировать кожухи.  [c.51]


Уплотнительные устройства опор скомпонованы по принципу разделения функ 1ий. Лабиринтное уплотнение, образованное втулками 2, 14 и крышками 16, н две кольцевые проточки 11, выполняющие роль пылесборника, защищают масляную полость от загрязнения. Отбойник, выполненный на втулке 3, так же как маслоотражательная канавка на втулке 14, вместе с двумя последовательно расположенными кольцевыми камерами 2, 13, охватывающими серии кольцевых канавок и снабженными сливными отверстиями 9, 10, предотвращают утечку масла. Так как уровень масла находится значительно ниже зазоров уплотнений и скорость вращения невелика, нельзя рассчитывать на образование устойчивых масляных дисков в кольцевых камерах. Двухступенчатое лабиринтное уплотнение и двойная проточка без регулярного пополнения пластичной смазки в щелях неспособны полностью предотвратить попадание мелкой сухой угольной пыли в опору. Выбор уплотнений объясняется в данном случае следующими соображениями. Интенсивность абразивного износа поверхностей качения зависит не только от количества абразивных частиц в зоне контакта, но также от скорости и нагрузки. Значения этих величин (особенно нагрузки) в опорах трубчатых мельниц крайне низки, так как в связи с необходимостью обеспечения повышенной надежности выбирается подшипник с большим запасом по грузоподъемности. С другой стороны, для данного класса опор допускается весьма значительное увеличение зазора в подшипниках. Конструкция предусматривает возможность полной замены масла и промывки опоры в процессе эксплуатации.  [c.55]

Под долговечностью уплотнения подразумевается наработка на отказ уплотнительных элементов. При своевременной замене сальников, манжет и т. д., корпуса и другие элементы уплотнительных устройств служат значительно дольше. В условиях нулевого перепада давлений практический срок службы многоступенчатых сальниковых и манжетных уплотнений опор на пластичной смазке может превышать предусмотренный в табл. 39, в связи с их способностью сохранять довольно высокую эффективность и после нарушения контакта в паре трения за счет малых зазоров.  [c.158]

В зависимости от системы смазки, конструкции опор, кожухов и уплотнений зубчатые передачи могут быть открытые, полузакрытые и закрытые.  [c.133]

Лабиринтное уплотнение подшипников в передней части пи-ноли предохраняет их от абразивной пыли и влаги. Для предотвращения вытекания смазки из задней опоры пиноли предусмотрено уплотнение с кольцевыми проточками. Подшипники пиноли смазывают веретенным или трансформаторным маслом, просачивающимся через фетровые пробки. Масло периодически добавляют через отверстие с сеткой.  [c.463]

С промежуточным валом. Положение вала в осевом направлении фиксируется в опоре, расположенной со стороны соединительной муфты. Подшипники имеют кольцевую систему смазки и водяное охлаждение. Тип уплотнения вала выбирается в зависимости от рабочих условий и рода прокачиваемой жидкости. Патрубки расположены горизонтально под прямым углом к оси насоса и направлены в противоположные стороны. Такое их положение позволяет производить осмотр  [c.241]

Сопротивления третьей группы в подшипниках опор зависят от типа подшипников, рода смазки, вида уплотнения, температуры окружающей среды и т. д.  [c.363]

В массе авиационного редуктора масса корпуса составляет значительную часть (15. .. 18 %) несмотря на применение легких конструкционных материалов (сплавов алюминия и магния). Поэтому при конструировании должна обеспечиваться потребная жесткость силовых элементов корпуса при минимальной их массе. Из-за сложной формы корпусы изготовляются литьем и состоят из нескольких секций, объединенных фланцевыми соединениями со шпильками. Взаимная центровка секций корпуса осуш,еств-ляется по цилиндрическим посадочным пояскам или центрирующими штифтами. Из-за недостаточной твердости материала корпуса в отверстия под подшипники опор зубчатых колес запрессовываются тонкостенные стальные втулки. Посадка втулок определяется из условия сохранения взаимного контакта деталей при их неодинаковой термической деформации. Толщина стенок корпуса редуктора и его фланцев невелика. Необходимая прочность и жесткость достигается за счет применения местных утолщений, бобышек, ребер и силовых перегородок. Наряду с равномерно распределенными ребрами, подкрепляющими фланцы разъемов корпуса, используются ребра, назначение которых заключается в восприятии некоторых локальных нагрузок. Часто такие ребра используются для размещения каналов системы смазки редуктора. Уплотнение стыков корпуса производится плоскими  [c.515]

Обычно применяемый подшипник лопатки направляюш,его аппарата в этой турбине заменен двумя подшипниками для средней опоры 8 он закреплен на днище крышке турбины шпильками 9, для верхней опоры 12 установлен в верхнем перекрытии крышки. На внутреннюю поверхность этих подшипников, выполненных из углеродистой стали, нанесен слой нового антифрикционного композиционного материала, работающего здесь без смазки благодаря малому тепловыделению и хорошему отводу тепла. В среднем подшипнике установлено манжетное уплотнение. Такой же подшипник 6 нижней цапфы имеется в нижнем кольце направляющего аппарата. Протекающая в крышку турбины вода отводится самотеком через зуб спиральной камеры по трубе 27. В направляющем аппарате высотой = 0,2Di установлено 20 лопаток 7. Механизм поворота отличается конструкцией рычагов 13 меньшей высоты и жестким низким регулирующим кольцом 17, консольно расположенными на специальных кронштейнах 14 четырьмя сервомоторами 15. В шарнирах механизма установлены втулки со слоем фторопласта, работающие без смазки.  [c.35]

Вал 3 насоса жестко соединен с ротором электродвигателя муфтой 7 и таким образом образована единая сборка, вращающаяся в трех подшипниках. Критическая частота вращения вала в 1,25—1,3 раза превышает фактическую частоту вращения. В качестве нижней направляющей опоры в насосе применен гидродинамический подшипник скольжения 4, смазываемый и охлаждаемый водой, циркуляция которой осуществляется по автономному контуру посредством специального вспомогательного импеллера. В электродвигателе расположены два подшипника качения с масляной смазкой, один из которых рассчитан на восприятие и осевой нагрузки, передаваемой от насоса через соединительную муфту с помощью кольцевых шпонок. Монтаж и демонтаж муфты осуществляются за счет предусмотренного в ней продольного разъема. В самой муфте между торцами валов предусмотрен зазор 370 мм, позволяющий проводить без демонтажа электродвигателя замену узла уплотнения и подшипника ГЦН.  [c.154]


Подщипники качения по жесткости и коэффициентам трения близки к ПЖТ. Они не предъявляют столь высоких требований к смазке и уплотнениям. Главные их недостатки - невысокая нахрузочная способность, большие радиальные габаритные размеры, трудности монтажа и демонтажа с необходимым натягом. Поэтому даже в указанных ранее случаях их все чаще заменяют на ПЖТ. На рис. 8.6.35 приведены валковые опоры клетей непрерывного мелкосортного стана 250.  [c.473]

При доводке двигателей F107, начавшейся с конца 1974 г., был устранен ряд конструкторско-производственных дефектов по суфлированию и уплотнению полости опоры, расположенной между турбинами, по подбору типа консистентной смазки для переднего подшипника, по устранению вибраций ротора высокого давления, по системе запуска в высотных условиях, по устранению вибрационных поломок рабочих лопаток первой ступени вентилятора и т. д. В результате этого предполетные испытания двигателя были завершены в октябре 1975 г., и с марта следующего года двигатель проходил летные испытания. Первые поставки годных к эксплуатации крылатых ракет AL M начались в 1980 г. В соответствии с имеющимися планами в течение 1981—1987 гг. намечено заказать около 3400 крылатых ракет, запускаемых со стратегического бомбардировщика В-52, который может нести 12— 20 ракет на подкрыльевых пилонах [51].  [c.211]

ПА-ЖГрЗМ ПА-ЖНГрЗМ Работают в условиях ограниченной смазки и без смазки в широком диапазоне скоростей скольжения от 0,1 до 100 м/с допустимые давления до 18 МПа, температура до 450 °С на воздухе. Имеют коэффициент трения 0,03-0,20, повышенную износостойкость по сравнению с другими материалами на основе железа. Введение никеля повышает коррозионную стойкость материала, позволяет использовать его при трении в присутствии влаги Подшипники верхних опор скольжения шпинделя барабанов хлопкоуборочных машин, электромоторов, уплотнения бессмазочных компрессоров, приборов и т. п.  [c.814]

Уплотняющие устройства можно разделить на следующие основные типы а) с трущимися эластичными элементами б) манжетного типа в) с трущимися металлическими или графитовыми элементами г) центробежного типа и с винтовыми канавками д) шайбы, кольцевые зазоры, канавки и лабиринты е) уплотнения опор с вертикальным расположением валов. Каждый тип уплотняющих устройств может быть наиболее эффективно использован ТОЛЬКО при определенных условиях работы проектируемого узла. Эти условия характеризуются частотой вращения подшипника видом применяемой смазки и ее физрко-химическими свойствами рабочей температурой подшипникового узла состоянием окружающей среды конструктивными особенностями подшипникового узла и установленных в нем подшипников основным назначением уплотняющего устройства.  [c.318]

Центробежные насосы типа НГК. Нефтяной насос мар1си 2НГК-4х1 (рис. 6.20) [97] предназначен для перекачивания жидкости температурой от -30 до +400 С. Это горизонтальный консольный одноступенчатый насос, состоящий из корпуса 7, крышки 6, подшипникового узла 3, вала 2, рабочего колеса 8 и уплотнения 5 вала. Опорами вала являются шарикоподшипники два радиально-упорных 1 и радиальный 4. Смазка их кольцевая. Уплотнение вала торцевое одинарное. Оно используется при перекачивании жид-  [c.237]

Одним из важнейших условий долговечности и длительного сохранения точное гк работы подшипников является надежное уплотнение, предохраняющее их от вытекания смазки и от попадания внутрь мелких стружек, металлической и абразиип< й пыли, 1рязи, эмульсии и пр. Поэтому наиболее сложные по конструкции уплотнения применяются в передних опорах шпинделей станков, работающих абралц, иым инструментом. Д-1я опор, надежно скрытых внутри коробки скоростей, коробки подач, фартука супорта и т. п., достаточны более простые уплотнения.  [c.419]

Валопроводы, через которые передается вращение от редуктора к промежуточной опоре и далее от опоры к гидроприводу, одинаковы по конструкции. Вал валопровода (рис. 152) представляет собой трубу, в которую с двух сторон запрессованЬ и приварен<и хвостовики. На один хвостовик вала напрессован фланец 3, подогретый до температуры 230 °С, другой хвостовик вала имеет шлицы, с помощью которых он соединяется с фланцем /. Смазка шлицевого соединения и уплотнение полости смазывания аналогичны приведенным для приврда двухмашинного агрегата. К фланцам редуктора и промежуточной опоры валопроводы подсоединяют болтами через пакеты дисков. Каждый пакет состоит из 22 дисков. С обеих сторон пакетов под головки болтов и лапы фланцев установлены сферические шайбы, назначение которых приведено при описании муфты.  [c.197]

Щелевые уплотнения (см. рис. 11.20, б) применяют в опорах качения работаюпщх при окружньос скоростях до 20 м/с и температуре не более 80...90 "С. Щели проточек заполняют пластичным смазочным материалом, который препятствует вытеканию смазки и ограничивает проггикно-вение посторонних веществ извне. Чтобы масло не вытекало из щели, температура разжижения смазочного материала, заполняющего щели, должна быть вьппе рабочей температуры опоры качения.  [c.194]

Для смазки опор шпинделей применяют масляные ванны, кольца, циркуляционную смазку и так называемый масляный туман . Масляные ванны используют для смазки подшипников с самоустанавлнвающи-мися вкладышами. Масло заливают в корпус бабки до уровня, определяемого мзслоукязятелем что гарантирует полное погружение подшипника в масло. Для предотвращения утечек предусматривают уплотнения различного вида.  [c.87]

Пластичные смазки (солидолы, смазка 1-13 и др.) применяют при / -с/дСЮО или при трудном доступе масляных брызг к подшипникам, например в подшипниках вала шестерни конического редуктора. Они лучше жидких масел защищают подшипники от коррозии, не требуют сложных уплотнении, проще в эксплуатации. Однако пластичные смазки чувствительны к изменению температуры и наличию влаги в окружающей среде. Смазкой заполняют свободное пространство корпуса подшип-киковой опоры, а подшипники закрывают с внутренней стороны защитными или маслосбрасывающими кольцами 2 (см. рис. 3.169).  [c.431]

Уплотнения. Применяют для защиты поднгипников от попадания извне пыли, грязи и влаги и предупреждения вытекания смазочного материала из подшипников опор. В машиностроении наибольшее распространение получили следующие уплотнения монтажные (см. рис. 3.167 и 3.168), применяемые при окружных скоростях вала до 10 м/с. Они надежно работают при любом смазочном материале толевые уплотнения (см. рис. 3.166), применяемые при окружной скорости вала до 5 м/с и пластичной с.мазке. Зазоры щелевых уплотнений заполняют пластичной смазкой лабиринтовые (рис. 3.170), применяемые при любых скоростях и смазочных материалах. Уплотняющий эффект создается чередованием весьма малых радиальных и осевых зазоров комбинированные уплотнения, например ла-  [c.431]

Опорами ротора служат подшипники скольжения. 8 с принудительной смазкой. Корпуса подшипников крепятся к корпусам концевых уплотнений. Вкладыши в корпусе подшипника установлены по сферической расточке для -обеспечения самоустансвки вкладышей в процессе работы насоса и исключения ручной цригонки рабочей поверхности к шейке вала. Ъ корпусе заднего подшипника установлены датчик 9 электронного указателя осевого перемещения ротора и упорный шарикоподшипник, ограничивающий возможные перемещения ротора при пуске. Внешний корпус опирается на фундаментную раму 10 четырьмя лапами в горизонтальной плоскости, цроходящей через ось насоса. Лапы крепятся к раме восемью дистанционными болтами. Для обеспечения направленного теплового расширения корпуса на входном и нагнетательном пат рубках выполнены вертикальные шпонки, которые входят в пазы специ- альных траверс, зак репленных на фундаментных опорах. В передних лапах предусмотрены две поперечные шпонки.  [c.242]


Главные циркуляционные насосы АЭС представляют собой сложные агрегаты со значительным числом систем и контрольноизмерительных средств. На рис. В.4 показан общий вид ГЦН для АЭС с реактором РБМК, а на рис. В.5 приведена типовая структурная схема ГЦН в виде комплекса, который включает следующие присутствующие практически во всех конструкциях типовые узлы приводной электродвигатель, подшипниковые опоры с системой смазки, уплотнение вращающегося вала с системой питания и охлаждения, проточную часть насоса.  [c.6]

Насосы с гидродинамическичи подшипниками. Первые отечественные насосы для жидкого металла — натрия и сплава натрия с калием (БР-5 и БН-350), а также зарубежные (SRE—РЕР) имели гидродинамические подшипники, у которых нижняя радиальная опора расположена вне рабочей среды (отсюда следует и часто употребляемый применительно к этим насосам термин консольный ), Выбор такой схемы объяснялся тем, что, во-первых, отсутствовал опыт работы радиальных подшипников в жидком металле, а во-вторых, требуемые характеристики насоса позволяли иметь приемлемые размеры консоли. В этом случае в качестве нижней радиальной опоры консольных насосов использовались подшипники качения или скольжения с масляной смазкой. Насосы получались достаточно компактными, с хорошо зарекомендовавшими себя в общем машиностроении подшипниковыми узлами. Существенно также, что такие насосы могли работать и в режиме газодувки при разогреве реактора, что важно для эксплуатации. Для консольных насосов (рис. 2.16) допустимые колебания уровня натрия над колесом в различных режимах ограничиваются длиной консоли. Для уменьшения внутренних паразитных перетечек (с нагнетания на всасывание) выемная часть монтируется в бак по плотным посадкам или с уплотнением (например, в виде поршневых колец). В связи с этим через щелевое уплотнение по валу, а также через зазоры между неподвижными  [c.40]

Для проведения экспериментов был спроектирован стенд (рис. 7.17), позволявший в широком диапазоне давлений (до 160 МПа), линейных размеров колец (до 240 мм), частот вращения (до 3000 об/мин) и температур среды исследовать конструкции торцовых уплотнений. Испытываемый узел размещается на вертикальном валу, который вращается в двух опорах. Нижняя опора, представляющая собой блок самоустанавливающегося радиально-осевого подшипника скольжения, вынесена из рабочей камеры стенда и смазывается минеральной смазкой с помощью циркуляционной масляной системы. Верхняя опора (радиальный подшипник скольжения) размещена в рабочей полости стенда и смазывается водой. Испытания уплотнений начались после экспериментального подбора коэффициента нагруженности К. Перепад давления на уплотнении был постепенно доведен до рабочего (8—9 МПа) при номинальной частоте вращения вала насоса (1000 об/мин). Протечки через уплотнения при указанных параметрах составляли несколько литров в час. После того как было выявлено, что конструкции и выбранные материалы без доработок обеспечивают принципиальную работоспособность уплотнений (безызносный режим работы при заданных параметрах), на следующих этапах испытаний было показано, что уплотнения сохраняют работоспособность в течение длительного срока (10—> 12 тыс, ч).  [c.239]


Смотреть страницы где упоминается термин Смазка и уплотнение опор : [c.37]    [c.43]    [c.506]    [c.443]    [c.139]    [c.235]    [c.240]    [c.32]    [c.103]   
Смотреть главы в:

Прикладная механика  -> Смазка и уплотнение опор



ПОИСК



Монтаж, смазка и уплотнение опор (подшипников) качения

Монтаж, смазка и уплотнение опор качения

Смазка и уплотнение опор качения

Смазочные устройства и уплотнения Смазка опор и направляющих

Уплотнение опор



© 2025 Mash-xxl.info Реклама на сайте