Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Радиоактивность теплоносителя

Обычно работа ядерного реактора не прекращается, несмотря на то, что оболочки некоторых твэлов становятся негерметичными. Визуальный осмотр оболочек твэлов в реакторе невозможен, и о степени их герметичности судят по радиоактивности теплоносителя.  [c.94]

На АЭС для подавляющего большинства контуров применяется арматура, изготовляемая из углеродистых, легированных или коррозионно-стойких сталей. По сравнению с другими материалами сталь имеет ряд преимуществ, так как обладает высокой прочностью, достаточной технологичностью. Легированием стали можно добиться получения особых свойств, таких, как теплостойкость, коррозионная стойкость, а термической п химико-термической обработкой можно регулировать прочность, твердость, износостойкость. Основными требованиями, предъявляемыми к деталям арматуры, являются прочность и долговечность, поэтому другие материалы, хотя и более дешевые, но менее надежные, чем стали, на АЭС, как правило, не применяются. Обычно материал корпусных деталей арматуры соответствует материалу трубопровода, на котором она устанавливается, поскольку основные требования к материалу трубопровода и корпусных деталей арматуры совпадают. Однако могут быть и исключения, например, для арматуры вспомогательных трубопроводов. Арматура, предназначенная для радиоактивных теплоносителей, изготовляется из сталей, коррозионно-стойких в промывочных и дезактивирующих растворах.  [c.20]


Эти радиоактивные примеси переносятся теплоносителем по всей системе, отлагаются и адсорбируются на поверхностях системы. В случае, если теплоноситель удаляется из системы, радиоактивность его должна быть уменьшена до допустимого уровня, прежде чем вода может быть выведена в окружающую среду. Высокие уровни радиоактивности теплоносителя перед остановкой реактора могут ограничить доступность для ремонта. Обсуждение в этой главе ограничено технологией отдельных процессов и конструкциями систем, в которых они используются, а также специальными проблемами ядерной техники.  [c.197]

Использование жидкометаллических теплоносителей в ядер-ной энергетике обусловливает применение промежуточных контуров, давление в которых поддерживается более высоким, чем в первом контуре. Такая система исключает возможность перетекания радиоактивного теплоносителя в промежуточный контур при нарушении герметичности между контурами. Применение трехконтурных  [c.10]

Важнейшей характерной особенностью ЯЭУ является радиоактивность теплоносителя, перекачиваемого через реактор. В общем случае радиоактивность теплоносителя обусловлена наведенной активностью самого теплоносителя, активностью продуктов, коррозии, загрязняющих теплоноситель, и радиоактивными продуктами деления, которые могут попасть в теплоноситель при нарушении герметичности части тепловыделяющих элементов. Для разных теплоносителей соотношение указанных выше источников активности существенно различно. Физические характеристики реактора (плотность потока нейтронов, энергетический спектр нейтронов), параметры контура циркуляции, обусловленные схемными и конструкционными решениями (период циркуляции теплоносителя, время облучения и т. п.), используемые конструкционные материалы также влияют на долю их вкладов в активность теплоносителя источников различной природы. Для иллюстрации в табл. 1.1 приведены данные по активности теплоносителя для различных реакторов.  [c.14]

Надежность ГЦН проверяется окончательно при функционировании АЭС. Этому ответственному моменту предшествуют пусконаладочные работы, холодное опробование каждого насоса в отдельности и всех вместе и затем их горячая обкатка. В этот период выявляются возможные недочеты в конструкции или не предусмотренные при проектировании режимы. Как и все оборудование, расположенное в необслуживаемой при работе реактора зоне, ГЦН должны надежно и устойчиво работать при параметрах окружающей среды, характерных для мест их расположения, без всякого вмешательства обслуживающего персонала в течение длительного времени, равного, по меньшей мере, периоду между плановыми остановками реактора. Это требование предопределяет наличие минимально необходимого дистанционного контроля за эксплуатационными параметрами, достаточно полно характеризующими режим работы насосного агрегата (напор, подача, частота вращения, температура подшипниковых опор и уплотнений, наличие смазки и т. п.). Радиоактивность теплоносителя, поверхностные загрязнения внутренних поверхностей активными продуктами коррозии, размещение в защитных боксах практически исключают возможность ремонта насосных агрегатов с заходом персонала в помещение. В этом случае потребовалось бы недопустимо много времени и средств для ликвидации любой более или менее серьезной неисправности, так как определяющей операцией была бы дорогостоящая дезактивация контура. В связи с этим к конструкции ГЦН предъявляется требование обеспечения замены элементов проточной части и отдельных узлов ходовой части без резки циркуляционных трубопроводов и с минимальным временем нахождения ремонтного персонала вблизи ремонтируемого насоса.  [c.23]


Рабочие камеры ГСП 60—62 Радиоактивность теплоносителя 14,  [c.315]

Для измерения радиоактивности теплоносителя использовался гамма-спектрометрический анализ проб с применением дрейфового Се (С1)-детектора объемом 35 см2 и разрешением 5 Кэв по линии 662 Кэв Сз Для регистрации спектров использовали 800-канальный амплитудный анализатор импульсов ЬР-4840.  [c.60]

Кроме общих требований к теплообменным аппаратам турбоустановок к аппаратуре атомных электростанций предъявляются еще дополнительные требования. Важнейшим из них является абсолютная герметичность и устранение возможности смешивания теплоносителей и их просачивания наружу, что особенно важно для радиоактивных теплоносителей и жидких металлов. Это требование и условия работы с радиоактивными теплоносителями при довольно высоких температурах (до 600° и выше) обусловили широкое применение нержавеющих сталей, сварных соединений трубок с трубными досками применение конструкций с компенсацией термических деформаций и тщательный контроль материалов и сварных соединений. Если в качестве теплоносителя используют жидкое ядерное горючее (в так называемых гомогенных реакторах), жидкие металлы или другие дорогие вещества, существенным является уменьшение объема, занимаемого ими в теплообменниках и трубопроводах.  [c.403]

Радиоактивность теплоносителя и газоаэрозольных выбросов возрастает при повышении мощности реактора. Поэтому если она превышает допустимые проектом значения на остановленном реакторе, то она тем более будет выше допустимой при работе ЯППУ на мощности, и пуск должен быть безусловно запрещен. Это требование должно соблюдаться для ЯППУ, вводимой в работу после останова, и не распространяется на ЯППУ, пускаемую впервые.  [c.365]

Уровень радиоактивности, который ожидается при работе реактора на мощности, приближенно можно оценить еще до пуска, хотя радиоактивность еще и не превышает допустимых значений. В этом случае, если ожидаемый уровень радиоактивности теплоносителя и газоаэрозольных выбросов выше допустимого, пуск блока также должен быть запрещен и приняты меры к снижению радиоактивности (замена дефектных ТВС, дезактивация).  [c.365]

Большим преимуществом одноконтурных АЭС является их простота и меньшая стоимость оборудования по сравнению с АЭС, выполненными по другим схемам, а недостатком — радиоактивность теплоносителя, что выдвигает дополнительные требования при проектировании и эксплуатации паротурбинных установок АЭС.  [c.33]

Экономичность АЭС с двухконтурной тепловой схемой при прочих равных условиях всегда меньше, чем с одноконтурной. Следует отметить, что стоимость второго контура и парогенератора соизмеримы со стоимостью биологической защиты в одноконтурной схеме. Поэтому стоимости I кВт установленной мощности на АЭС одноконтурного и двухконтурного типов примерно одинаковы. На АЭС предполагается широкое использование в качестве теплоносителя жидкого металла, что позволит понизить давление в первом контуре, получить высокий коэффициент теплоотдачи и уменьшить расход теплоносителя. Обычно в качестве теплоносителя применяют жидкий натрий, температура плавления которого 98 °С. Однако применение жидкого натрия вызывает ряд эксплуатационных трудностей. Особенно опасен его контакт с водой, приводящий к бурной химической реакции, что может создать опасность выноса радиационно-актив-ных веществ из первого контура в обслуживаемые помещения. Во избежание этого создается дополнительный промежуточный контур с более высоким давлением, чем в первом, и тепловая схема такой АЭС называется трехконтурной (рис. 1.31, в). В первом контуре радиоактивный теплоноситель насосом 9 прокачивается через реактор 1 и промежуточный теплообменник 8, в котором он отдает теплоту также жидкометаллическому, но не радиоактивному теплоносителю, прокачиваемому по промежуточному контуру теплообменник 8 — парогенератор 7. Контур рабочего тела аналогичен двухконтурной схеме АЭС (рис. 1.31,6).  [c.34]

Для обеспечения возможности отключения манометра, продувки линии и подключения контрольного манометра используется трехходовой кран 2, при измерении давлений свыше 10 МПа (100 кгс/см ), а также при контроле давления радиоактивного теплоносителя дополнительный запорный вентиль 3 устанавливается на выходе из трубопровода. При измерении давления сред с температурой выше 70 °С трубка 4 сгибается кольцом, в котором вода охлаждается, а пар конденсируется. На АЭС продувка импульсных линий манометров и дифманометров, работающих с радиоактивными средами, осуществляется в специальную дренажную систему.  [c.115]


Следует обратить внимание на тот факт, что истечение радиоактивного теплоносителя из контуров и сосудов высокого дав-  [c.30]

В первом типе реакторов дисперсный поток несет частицы диспергированного ядерного топлива, совмещая при проходе через активную зону свойства системы теплоотвода и системы горючего. Последнее свойство в связи с потерей критичности исчезает при движении через парогенератор. Здесь дисперсный поток выступает в основном лишь как теплоноситель, если не иметь в виду появление запаздывающих нейтронов и значительную его радиоактивность. Отрицательным также является абразивное действие твердых частиц. В качестве последних можно использовать частицы металлического легированного урана, UO2, U , материалов для воспроизводства ядерного топлива (естественный уран, торий). В качестве несущей среды возможно применение как жидкости, так и газов.  [c.390]

Основное достоинство реакторов с активными частицами дисперсного теплоносителя — почти полная ликвидация проблемы тепловыделяющих элементов. Основной недостаток — усложнение всего первого контура в связи с высокой радиоактивностью подобного дисперсного теплоносителя. Главное достоинство реакторов с инертными частицами — усиление теплоотвода за счет интенсификации теплообмена и заметного роста объемной теплоемкости, а также возможность работы в вы-392  [c.392]

Тематику этих исследований, публикуемых в журналах прикладной физики, механики и математики, в общих чертах можно охарактеризовать следующим образом. Первая группа дисциплин объединяет химическую, топливную и пищевую промышленность, агротехнику, целлюлозно-бумажную промышленность, коллоидную химию и физику грунтов. Каждая из дисциплин рассматривает ряд вопросов, касающихся транспортеров, пневматических конвейеров, гетерогенных реакторов, распылительных сушилок, псевдоожижения, осаждения, уплотненных слоев, экстракции, абсорбции, испарения и вихревых уловителей. В группе дисциплин, включающих метеорологию, геофизику, электротехнику, сантехнику, гидравлику, фоторепродукцию и реологию, мы сталкиваемся с такими вопросами, как седиментация, пористость сред, перенос и рассеяние, выпадение радиоактивных осадков, контроль за загрязнением воздуха и воды, образование заряда на каплях и коалесценция, электростатическое осаждение и ксерография. В механике, ядерной и вакуумной технике, акустике и медицине исследуются процессы горения, кипения, распыления, кавитации, перекачивания криогенных жидкостей, подачи теплоносителя и топлива в реакторах, затухания и дисперсии звука, обнаружения подводных объектов, течения и свертывания крови. В общих разделах космической науки и техники исследуются сопротивление движению искусственных спутников, взаимодействие космических аппаратов с ионосферой, использование коллоидного топлива для ракетных двигателей, рассеяние радиоволн, абляция, ракетные двигатели на металлизированном топливе, МГД-генераторы и ускорители.  [c.9]

При работе ядерного реактора радиационная обстановка в помещениях, расположенных в непосредственной близости от него, определяется проникающим излучением активной зоны, конструкций реактора и защиты, а также активностью теплоносителя. При остановке реактора радиационная обстановка в реакторном зале обусловлена остаточным у-излучением продуктов деления ядерного горючего, излучением активированных конструкций реактора и защиты. Во всех других помещениях, где расположены коммуникации или элементы оборудования технологического контура, омываемые теплоносителем, радиационная обстановка после остановки реактора определяется отложениями радиоактивных продуктов коррозии и примесей в теплоносителе, а иногда и продуктами деления ядерного горючего.  [c.7]

Гамма-излучение продуктов активации. Во многих случаях при нейтронных реакциях остаточные ядра являются радиоактивными. При распаде (чаще всего р-распад) эти ядра испускают у-кванты, которые следует учитывать при расчете защиты. Обычно такие источники существенны при остановке реактора, а также при расчете защиты контура теплоносителя, в том числе п при работающем реакторе (см. гл. X).  [c.32]

Теплоноситель, проходя через активную зону реактора с интенсивными потоками нейтронов различных энергий, активируется. В ряде случаев активация ядер, входящих в состав теплоносителя, незначительна по сравнению с активацией ядер примесей в теплоносителе. Примесями являются продукты коррозии внутренних поверхностей стальных стенок оборудования, а также загрязнения, вносимые в теплоноситель в процессе технологии его приготовления. Продукты коррозии внутренних поверхностей активной зоны поступают в теплоноситель в виде радиоактивных примесей.  [c.86]

Формула (10.5) позволяет определить скорость поступления в контур теплоносителя новых радиоактивных ядер. Она равна произведению где С — расход теплоносителя через реактор. Пренебрегая активацией теплоносителя за пределами активной зоны для контура в целом, можно записать следующее балансовое уравнение  [c.90]

Игнорированные нами до сих пор сорбционно-десорбционные процессы весьма сложны. С точки зрения баланса активируемых ядер в контуре теплоносителя (при условии возникновения их только в активной зоне реактора) эти процессы в сумме способствуют выводу радиоактивных ядер из контура, причем скорость вывода пропорциональна концентрации ядер в контуре (стационарный режим работы реактора). Это позволяет записать уравнение баланса активируемых ядер в контуре в следующем виде  [c.92]

Абсолютные значения выхода продуктов деления из топлива зависят от степени разрушения их сердечников и оболочек. Приведенные значения характеризуют соотношение между абсолютными величинами выходов. Из них следует, что основная активность продуктов деления в теплоносителе приходится на радиоактивные благородные газы, галогены (изотопы брома, иода) и теллур. Сорбция и удаление в фильтре приводят к перераспределению активности в группе летучих в сторону относительного возрастания газов.  [c.94]


Связь между концентрацией радиоактивных ядер п и удельной активностью а их в теплоносителе определяется обычной формулой  [c.97]

Теплоноситель — вода — нагревается в реакторе от 190 до 270° С. Эта вода становится радиоактивной из-за происходящей реакции (п, у) и может производить вредное действие. Поэтому нагретая вода поступает в теплообменники — парогенераторы — и выходит отгула при температуре 190° С, тепло передается воде второго контура (рис. 102). Во втором контуре образуется пар с давлением 12,5 атм и температурой 250 — 260° С, который поступает в турбогенератор электростанции.  [c.317]

Метод радиоактивных индикаторов основан на избирательной растворимости солей, которые содержат радиоактивные нуклиды в жидкой и паровой фазах. Так как растворимость солей в паровой фазе много меньше, чем в жидкости, то по активности среды можно определять паросодержание. Если в изучаемой среде содержится недостаточное количество естественных нуклидов, то их можно вносить искусственным путем. Этот метод с успехом применяется в ядерной энергетике для определения паросодержания теплоносителя в реакторе и магистралях по излучению изотопа °К-  [c.241]

При проектировании арматуры для радиоактивных теплоносителей должны учитываться возможные изменения физико-механических свойств материалов под действием радиоактивного облучения. Конструкции и материалы арматуры, в которой находится радиоактивный теплоноситель, должны обеспечивать возможность промывки дезактивирующими растворами. При проектировании оборудования должны быть предусмотрены устройства для отвода воздуха при наполнении средой или вакуумнрования, а также устройства для удаления рабочей среды и конденсата (в местах его скопления).  [c.12]

К зоне строгого режима относятся зал с реактором и смонтированным на нем оборудованием, шахты перегрузки и выдержки, а также помещения, в которых располагается оборудование и проходят трубопроводы контура радиоактивного теплоносителя, являющиеся источником постоянного радиоактивного загрязнения. В эту же зону входят помещения, где проводятся работы, связанные с вскрытием загрязненного оборудования или сопровождающиеся периодическим загрязнением радиоактивными веществами. В зоне строгого режима все помещения подразделяются на необслуживаемые и полуобслуживаемые. При работающем реакторе персонал в необслуживаемые помещения не допускается, в полуобслуживаемые допускается кратковременно по специальным нарядам с тем, чтобы суммарная доза облучения не превышала допустимой.  [c.238]

Техническое освидетельствование оборудования, которое по условиям технологического процесса не может быть остановлено, допускается совмещать с планово-предупредительным или капитальным ремонтом, но выполнять не реже одного раза в четыре года. Перед техническим освидетельствованием оборудование должно быть остановлено, обесточено, надежно отключено от всех трубопроводов, соединяющих его с источниками давления, охлаждено, освобождено от заполняюш,ей его рабочей среды, а поверхности, подлежащие осмотру, очищены до металла от загрязнений, накипи и т. п. Оборудование, находящееся в контакте с радиоактивным теплоносителем, до начала выполнения осмотра и предшествуют,их ему подготовительных работ должно быть тщательно обработано и промыто дезактивирующими растворами в соответствии с инструкцией АЭС и санитарными нормами и правилами. Арматура высотой более 2 м перед внутренним осмотром должна быть оснащена приспособлениями, обеспечивающими безопасный доступ при осмотре всех частей оборудования.  [c.239]

Уровень существующих в исследовательской и инженерной практике методов и средств определения прочности и ресурса атомных реакторов объясняется в первую очередь большим значением конструкций первого контура внутрикорпусных устройств, систем трубопроводов и теплообменников с радиоактивным теплоносителем и в особенности повышенной радиационной активностью тепловыделяющей зоны. Повышенные номинальные напряжения, сложность конструктивных форм, наличие зон умеренной и высокой конструктивной и технологической концентраций напряжений, большие температурные напряжения при программных и аварий-  [c.10]

Конструкция ГЦН должна гарантировать отсутствие протечек -наружу радиоактивного теплоносителя и газа из системы поддав-ливания ( поскольку газ также загрязнен ). Поэтому особое внимание уделяют неподвижным соединениям, например между выемной частью ГЦН и его баком (корпусом), и уплотнению вращающегося вала. В первом случае задача решается достаточно просто, поскольку в машиностроении известно большое разнообразие надежных прокладочных и беспрокладочных соединений. Более сложно и конструкционно, и технологически решается задача уплотнения вращающегося вала (см. гл. 3). Заметим, что уплотнения вала натриевых насосов должны допускать вакуумирование рабочей полости ГЦН.  [c.20]

Насосы должны допускать полный дренаж теплоносителя (свободным сливом или выдавливанием газом). Для этого в заполняемой теплоносителем части насоса необходимо исключать карманы , в которых мог бы остаться теплоноситель, шлам и другие ллотные отложения. Важность этого требования обусловливается тем, что даже следы радиоактивного теплоносителя на оборудовании требуют достаточно громоздких защитных устройств при проведении ремонтных работ, а наличие полостей с плохо удаляемым теплоносителем усложняет процесс дезактивации.  [c.20]

Вопросы подбора таких материалов становятся тем острее, чем выше уровень температуры теплоносителя и чем меньше в ем примесей кислорода. В ЯЭУ стремление как можно больше снижать концентрацию кислорода в натрии вытекает из необходимости уменьшить скорость коррозии конструкционных материалов, снизить радиоактивность теплоносителя. Успехи, достигнутые в разработке средств очистки натрия от кислорода и средств измерения его малых количеств, поз-волил и уверенно контролировать содержание кислорода на уровне массовых час-  [c.27]

Присоединение штуцера )у 10 к трубопроводу организованного отвода протечек производят после проверки сальникового уплотнения на плотность. Слив радиоактивного теплоносителя долн<ен производиться в специальные емкости. Для сбора протечек из этих емкостей должна быть предусмотрена замкнутая централизованная система спецкаиализации, оборудованная приспособлениями для подачи жидких радиоактивных отходов на очистные сооружения.  [c.268]

Существует два типа насосов герметичные (бессальниковые), в которых полностью исключается протечка радиоактивного теплоносителя в помещения АЭС, и насосы с уплотнением вала, имеющие малую организованную протечку теплоносителя.  [c.404]

В спецканализацию направляются неорганизованные протечки из главного циркуляционного контура, оборудования, в которое возможно попадание радиоактивного теплоносителя, и от других радиоактивных контуров блока, а также стоки из санузлов и душевых зоны строгого режима, спецпрачечной, обмывочные воды помещений, где установлено оборудование радиоактивных контуров и систем. Эти стоки собираются в емкости и направляются на спецво-доочистку, после чего могут быть направлены в емкости чистого конденсата или на сброс за пределы АЭС, если их активность не превышает норм, установленных [28.1 и 28.2].  [c.434]

Помещения зоны строгого режима отличаются той особенностью, что в период работы блока в них возможно появление радиоактивных газов и аэрозолей вследствие протечек радиоактивного теплоносителя, а также возможно наличие гамма-фона от оборудования и трубопроводов при работе ЯППУ. Вход в зону строгого режима возможен только через санпропускник.  [c.441]

Средства измерения, применяемые в различных отраслях промышленности, научных исследованиях для анализа состава газов, называются газоанализаторами. На основе непрерывного автоматического контроля состава газов осуществляется автоматизированное управление химико-технологическими процессами, связанными с получением и использованием газов в металлургии, коксохимическом производстве, нефтепереработке, газовой промышленности. При сжигании органических топлив на тепловых электрических станциях автоматические газоанализаторы используются для контроля за процессом горения и определения требуемого избытка воздуха. Не менее важные функции возложены на приборы газового анализа, работающие в системах, обеспечивающих безопасное функционирование технологических объектов. К числу таких приборов относятся газоанализаторы, измеряющие концентрацию водорода в системе охлаждения турбогенераторов, в газах сдувок аппаратов с радиоактивным теплоносителем на АЭС и т.д.  [c.166]


Если в качестве теплоносителя применяют жидкие металлы (натрий, калий), которые бурно реагируют с водой, то осуществляют два промежуточных контура. Последние умепынают опасность распростраиепня радиоактивного металла в случае аварии установки. На рис. 20-3 изображена схема трехконтурной атомной электростанции, где 1 — реактор 2 — первый промежуточный теплообмен-инк 3 — насос для перекачки теплоносителя 4 — парогенератор, НЛП второй теплообменник 5 — насос для данного контура 6 — турбогенератор 7 — конденсатор 8 — питательный насос 9 — биологическая защита.  [c.320]

Из реакторов на быстрых нейтронах наиболее освоены реакторы с натриевым теплоносителем. Высокая радиоактивность натриевого теплоносителя и его химическая активность требуют особых мер предосторожности при выборе материалов защиты реактора. Это исключает возможность использования в защите реактора такого высокоэффективного защитного материала, как вода, взаимодействий с которой может создать опасные ситуации [58]. Вопросы безопасности быстрых реакторов предъявляют особые требования к использованию в защите и других водородсодержащих материалов с точки зрения их попадания в активную зону реактора, что может привести к опасным колебаниям реактивности. Большие трудности возникают при организации эффективного теплосъема верхней защиты.  [c.83]

Активность теплоносителя обусловливает необходимость сооружения защиты вокруг него. Как правило, наиболее мощным оказывается у-излучение радиоактивных ядер теплоносителя. Поэтому защита теплоносителя проектируется прежде всего как защита от у-источников. Вторым по мощности проникающим излучением является нейтронное излучение. Оно может быть результатом распада ядер N , образующихся вследствие реакции (п, p) N или распада некоторых короткоживущих продуктов деления. Во всех случаях энергия нейтронов относительно небольщая и необходимость в специальной защите от них возникает лишь в отдельных случаях. Роль защиты от нейтронов, как правило, выполняет защита от у-квантов.  [c.87]

Теплоноситель циркулирует по замкнутому контуру. При этом на участках с интенсивным нейтронным излучением (активная зона) происходит рождение и распад радиоактивных ядер, а на других участках — преимущественно распад ядео. Отсюда следует, что расчет активации теплоносителя не может  [c.87]

В качестве типичного равновесного состава активности теплоносителя, характерного для водо-водяного реактора, обычно указывают состав, представленный в табл. 10.3. Происхождение радиоактивных ядер К не объясняется. Принципиально возможна реакция К (у, л) К , однако порог ее должен составлять 10—12 Мэе. Содержание К в естественной смеси изотопов составляет 93,3%.  [c.99]

Защита контура теплоносителя должна обеспечивать снижение уровней излучений до заданных допустимых значений во всех окружающих его помещениях. Эти помещения могут быть обслуживаемыми во время работы реактора и не обслуживаемыми. Для второй категории помещений расчет защиты производится только с учетом остаточного уизлучениЯ, к которому следует отнести долгоживущие продукты активации и продукты деления. При этом обычно имеют в виду радиоактивные ядра с периодами полураспада, измеряемыми часами и ббльщими  [c.100]

В случае теплоносителя — обычной воды основной проблемой при работе реактора является защита от излучения самой воды. Наибольшим по удельной активности и интенсивности испускания проникающего излучения оказы-пается у-излучение ядер N . Эти ядра образуются в результате реакции О (я, p)N происходящей на быстрых нейтронах (энергия более 11,6 Л1эо). Радиоактивные ядра распадаются с периодом полураспада 7,35 сек (постоянная распада Л = 0,094 сек )- Каждый распад ядра сопровождается испусканием у-кваятов  [c.316]


Смотреть страницы где упоминается термин Радиоактивность теплоносителя : [c.319]    [c.364]    [c.79]    [c.91]    [c.97]   
Главные циркуляционные насосы АЭС (1984) -- [ c.14 , c.20 , c.23 ]



ПОИСК



Газ радиоактивный

Радиоактивность

Теплоноситель



© 2025 Mash-xxl.info Реклама на сайте