Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Расчет валов корпуса

Расчет IV вала выполнен по методике расчета II и III валов. Расчет размеров корпуса может быть выполнен в соответствии с рекомендациями, изложенными в табл. 6.18 ч. 1.  [c.331]

Коэффициенты неравномерности рас-преде.ления нагрузки (концентрации нагрузки) по ширине зубчатого венца при расчете на контактную прочность Кц и при расчете на изгиб Кр зависят от упругих деформаций валов, корпусов, самих зубчатых колес, износа подшипников, погрешностей изготовления и сборки, вызывающих перекашивание зубьев сопряженных колес относительно друг друга, последнее увеличивается с увеличением ширины венца bj, поэтому ее ограничивают (значения bj регламентируются рекомендуемыми пределами значений vj/,,).  [c.191]


При расчете вала на прочность с учетом нагрузочных режимов диаметр его должен быть выполнен 70 мм, что потребует соответствующего увеличения отверстия во фланце. Вследствие этого при сохранении толщины стенки фланца увеличится и его наружный диаметр, а также габариты корпуса механизма.  [c.128]

Расчет валов. Валы шестеренных насосов рассчитывают на прочность исходя из нагрузок, действующих на шестерни. Необходимо обеспечить жесткость валов, так как прогиб их может нарушить условия нормального зацепления и вызвать задиры корпуса.  [c.224]

После расчетов валов и подшипников следует перейти к конструированию корпуса передачи и натяжного устройства.  [c.317]

Нагрузки, возникающие при работе передачи, воспринимаются валами и через опоры передаются на корпус или раму. Эти нагрузки необходимо знать для прочностного расчета валов и проверки долговечности подшипников.  [c.161]

Целью второго этапа компоновки является конструктивное оформление шестерен, зубчатых колес, валов, корпуса и некоторых других деталей, а также подготовка необходимых данных для расчетов на прочность валов.  [c.263]

Второй этап компоновки (рис. 16.10). На этом этапе разработки конструктивно оформляем зубчатые пары, валы, корпус и т. п. Вычерчиваем редуктор, как и в первом этапе, в масштабе 1 1с учетом изменений, выявленных в начальной стадии конструирования. Если возможно, то следует использовать чертеж первого этапа компоновки редуктора. После вычерчивания уточняем расстояние между опорами и положение зубчатых колес относительно опор. Если размеры значительно отличаются от полученных на первом этапе компоновки, то необходимо внести изменения в ранее проведенные и последующие расчеты.  [c.522]

В книге изложены расчеты зубьев на изгиб и контактную прочность при сдвиге передач с цилиндрическими прямозубыми, косозубыми шевронными колесами, передач с коническими прямозубыми колесами, а также червячных передач приведены рекомендации по конструированию зубчатых и червячных колес, червяков, валов, корпусов редукторов, узлов с подшипниками качения и других элементов редукторов обш,его назначения, а также приводятся их конструкции приведены примеры расчета передач соответствующих редукторов.  [c.2]


Произвести ориентировочный расчет валов, предварительно выбрать подшипники, определить размеры элементов корпуса, степок, фланцев и пр.  [c.12]

Точное определение деформаций— трудоемкая задача из-за влияния на конечный результат расчета ряда факторов жесткости корпуса, зазоров, местной формы вала и др. При упрощенных расчетах вал ступенчатой формы рассматривается как брус постоянного сечения.  [c.185]

На следующем этапе (эскизное проектирование) выполняются проектировочные расчеты, позволяющие приближенно определить размеры основных деталей (шестерен, валов, муфт и др.) и сделать эскизный чертеж проектируемого устройства. Размеры некоторых элементов деталей (например, обода, диска, ступицы зубчатого колеса, литого или сварного корпуса и т. д.) можно определить по рекомендациям, составленным на основе опыта проектирования подобных конструкций. На параметры многих деталей машин (подшипники, муфты, смазочные устройства и др.) имеются ГОСТы, ознакомление с которыми и применение — одна из важных задач курсового проектирования.  [c.6]

Выполняется расчет кинематических и основных геометрических параметров механизма (передаточных отношений, угловых скоростей, диаметров колес, размеров шкал, габаритов корпуса и т. д.) с учетом параметров, конструкции, размеров, мест расположения и способов присоединения комплектуемых (готовых покупных) изделий, связанных с механизмом (см. 2.9). Вычерчиваются лучшие варианты кинематических схем, на которых в условных обозначениях изображаются все звенья и кинематические пары механизма и указываются их взаимное расположение и связи с другими узлами прибора. Каждая кинематическая схема снабжается необходимыми сведениями, характеризующими механизм. На схеме указывается тип двигателя и частота вращения его вала, цена оборота и цена деления шкалы, передаточные отношения, числа зубьев и модули колес, степень их точности, вид сопряжения и другие данные (см. рис. 28.7).  [c.402]

В реальной передаче (зубчатом зацеплении) нагрузка но длине зуба распределяется неравномерно из-за деформаций валов, опор, корпусов и самих колес (изгиб, сдвиг, кручение), погрешностей изготовления. Концентрация нагрузки, являясь интегральной оценкой концентрации напряжений, существенно влияет на прочность зубьев. Ее учитывают (как и концентрацию напряжений), вводя в расчет коэффициент неравномерности распределения нагрузки Хр = Определение Хр про-  [c.342]

В маслоприемниках корпуса, маслосборники, маслосбрасывающие козырьки выполняются из чугуна СЧ 28-48, ВП 48-10 или из стали ЗОЛ, штанги и вставки в корпусе — из бесшовных труб, а фланцы — из листовой углеродистой стали. Штанги и соответствующие полости корпуса рассчитывают на внутреннее давление. Штанги, кроме того, проверяют на поперечные колебания аналогично валу. Подробно этот расчет дан в работе [27].  [c.208]

При расчетах редуктора известными являются мощность, передаваемая от корпусов турбин, частота вращения турбин и гребного вала и массогабаритные требования.  [c.302]

Расчет винта и гайки можно показать на примере винтовых пар, применяемых в грузовых домкратах. На рис. 28.12, а показан привод механизированного домкрата. Основными частями такого домкрата являются 1 — грузовой винт 2 — гайка грузового винта 3 — ведущий вал 4 — ведущее зубчатое колесо 5 —чашка 6 — ведомое зубчатое колесо 7 — корпус 8 — дистанционное управление 9 — предохранительная шайба.  [c.479]

Недостатком данной конструкции является то, что при разомкнутом тормозе осевое усилие пружины 8 через полумуфту 6, шайбы 7 и шарики 10 передается на подшипники вала двигателя. Когда электродвигатель выключен, а тормоз замкнут, то осевое усилие пружины не передается на подшипники вала двигателя, так как при этом подвижная тормозная полумуфта 6 прижимается к неподвижному диску на корпусе 4 тормозного устройства. На подшипники вала редуктора осевое усилие передается во все периоды работы механизма, что и должно быть учтено при расчете подшипников редуктора. В конструкции по фиг. 189, а этот недостаток устранен. Осевое усилие при разомкнутом тормозе здесь не передается ни на подшипники вала двигателя, ни на подшипники вала редуктора, а замыкается на валу 7 редуктора. В этой конструкции окружное усилие от ведущей полумуфты /, имеющей три наружных выступа 12, передается на пальцы 14 ведомого диска 2 через промежуточную чашку 3, имеющую внутренние выступы 11 и резиновые вкладыши 10. Полумуфта 1 может поворачиваться вместе с чашкой 3 на угол фд в обе стороны относительно ведомого диска 2. При размыкании тормоза осевое усилие сжатой пружины 6 воспринимается с одной стороны заплечиком на валу 7 редуктора, а с другой стороны передается через чашку 3 на шток 8 и затем через гайки 9 и упорный подшипник 13 на тот же вал 7 редуктора.  [c.286]


Нужно отметить, что большая часть деталей обеих коробок скоростей валы, зубчатые колеса, муфты и т. д.) были выполнены как конструктивные нормали. Так как 56-миллиметровый станок имеет в передней бабке те же. детали за исключением корпуса, что и 76-миллиметровый станок, что оказалось вполне рациональным, так как практика показывает, что изготовление конструктивно нормализованных деталей, по признаку избыточного запаса прочности, является более ЭКОНОМИЧНЫМ, чем изготовление тех же деталей в соответствии с результатами расчета, т. -е. индивидуализированными для каждого отдельного типоразмера станка..  [c.23]

Величина ошибки при пренебрежении тем или иным фактором зависит от того, какие факторы учтены в расчете. Это объясняется тем, что связь между переносными и абсолютными разностями углов поворота зубчатых колес, как видно из выражения (7. 5), также зависит от многих параметров. Следует отметить, что на величины приведенных моментов инерции иногда могут значительно влиять деформации корпуса редуктора н подшипников опор валов.  [c.251]

Такая ситуация, в частности, возникает при расчете колебаний планетарного редуктора, где в качестве одной из подсистем принимается зубчатая передача. Предполагается, что в диапазоне 500—1000 гг часть элементов зубчатой передачи колеблется как сосредоточенные массы на жесткостях зацеплений валов и осей. Зубчатые барабаны, эпициклы, корпус редуктора и фундамент в указанном диапазоне частот приходится рассматривать как подсистемы с распределенными параметрами.  [c.27]

Жесткость валов, вращающихся в не-самоустана вливающихся подшипниках скольжения, должна быть достаточной, чтобы обеспечить необходимую равномерность распределения давления по длине подшипников. Расчет валов и подшипников в совместной работе при рассмотрении задачи как контактной и как гидродинамической приводится в специальной литературе. Применяют также упрощенные расчеты, в которых допустимый угол упругой линии вала в опоре (в радианах) выбирают равным минимальному диаметральному зазору в подшипнике, деленному на длину подшипника. Эти расчеты не могут считаться достаточно обоснованными, так как контактные деформации и упругие углы поворота корпусов соизмеримы с зазорами в подшипниках.  [c.331]

Разработан метод расчета опор, получивший название ПВК (подшипник — вал — корпус), в котором работу подшипни рассматривают в комплексе с конструкцией вала и корпуса. Метод ПВК с использованием ЭВМ позволяет более точно определять нагрузки на опоры с учетом жесткости и погрешностей изготовления сопряженных с подшипниками деталей, оценивать влияние перекосов колец на расчетный ресурс и т. д.  [c.457]

Расчетно-пояснительная записка должна быть сброшюрована в обложку из чертежной бумаги или вложена в скоросшиватель. По курсовому проекту цилиндрического редуктора записка должна иметь примерно следующее содержание техническое задание на проектирование кинематический расчет привода и выбор электродвигателя выбор материалов зубчатых колес и определение допускае мых напряжений (гл. V, 24) определение геометрических параметров передачи (гл. V, 24), ориентировочный расчет валов редуктора (гл. IV, 17), определение конструктивных размеров зубча.тых колес и корпуса редуктора (гл. VI, 28), уточненный расчет валов на усталостную прочность (гл. IV, 17), подбор и расчет подшипников качения (гл. IV, 18), проверка прочности шполочных соединений (гл. III, 15), выбор системы смазки зубчатых колес и подшипников (гл. VI, 28 и гл. IV, 18), обоснование выбора допусков и посадок (гл. VI, 28).  [c.246]

Втулки и вкладыши подшипников скольжения изготовляют из бронзы. При расчете валов должны быть учтены напряжения от изгиба и кручения. Коэффициент запаса прочности в материале валов относительно предела усталости не менее 2. Корпуса и крышки редукторов выполняют литыми из стали или из серого чугуна, или сварными из листовой стали марки. ВСтЗ. Последние более надежны в работе и менее тяжелы.  [c.92]

Пояснительная записка в общем случае должна включать техническое задание на проектирование введение особенности и сраа-ннтельную оценку проектируемого редуктора выбор электродвигателя и кинематический расчет привода расчет открытой передачи расчет редукторной передачи эскизную компоновку предварительный расчет валов редуктора, подбор подшипников и проверочный расчет на долговечноств конструктивные проработки и определение основных размеров валов, зубчатых (червячных) колес, корпуса и корпусных деталей редуктора выбор смазки зубчатых (червячных) зацеплений и подшипников выбор посадок для сопряжения основных деталей редуктора уточненный расчет валов редуктора тепловой расчет редуктора (только червячного) подбор соединительных муфг краткое описание технологии сборки редуктора, регулировки подшипников и деталей зацепления подбор соединительных муфт перечень использованной литературы, нормативно-технической документации или других источников, использованных при выполнении проекта, содержание.  [c.192]

Первый этап эскизной компоновки проводят с целью получения необходимых расчетных схем валов, определения реакций опор, расчета валов и подбора подшипников. Эскизную компоновку начинают с выбора масштаба (желательно 1 1), исходя из возможности размещения хотя бы одной проекции на листе формата А1 (594x841 мм). Далее наносят осевые линии валов и изображают положение колес в горизонтальной и вертикальной проекциях. Дополнительные размеры, неопределяемые расчетом, назначают из конструктивных соображений (см. рис. 5.31). Минимальный зазор X между внутренней стенкой корпуса, наружными и торцевыми поверхностями зубчатых передач определяют в зависимости от наибольшего расстояния Ь между деталями передач или толщины 5 стенки корпуса  [c.87]


Корпус редуктора (вместе с крышкой) име< т сложную форму и подвержен действию пространственных нагрузок. Поэтому расчет деталей корпуса на прочность и жесткость возможен лишь методами теории упругости. На практике корпуса многих машин, механизмов и узлов конструируют по прототипам или с использованием тензометрируемых моделей Невысокая нагруженность корпуса редуктора позвитяет изготавливать его тонкостенным. э жесткость обеспечивать с помощью ребер и соответствующих утолщений. Для облегчения изготовления кo -пуса выполняют с разъемом по плоскости, проходящей через оси валов.  [c.274]

Тепловой расчет волнового редуктора выполняется так же, как и для зубчатых и червячных редукторов (см., например, гл. 1, ч 2). В случае несоблюдения теплового баланса на корпусе волнозого редуктора предусматривают охлаждающие ребра, при этом уч )ты-вается только половина их площади. Для охлаждения редук ора может быть использован также и вентилятор, который устанавливается на быстроходном валу.  [c.204]

В реверсивных подшипниках шарниры устанав.чнвают в центре сегментов (37), что ухудшает их характеристики, или, предпочтительнее, в выемках корпуса (38) с таким расчетом, чтобы сегменты при перемене направления вращения перемещались под действием сил трения в наиболее выгодное положение. Величину зазоров (и.положение вала в подшипнике) можно регулировать с помощью винтов I.  [c.411]

Расчет подшипников по приведенным формулам и каталожным данным дает лишь средние н притом несколько приуменьшенные значения долговечности. -Согласно статистическим данным у 50% подшипников долговечность в 3 — 4 раза, а у 10% в 10 — 20 раз превышает расчетную, причем у подшипников повышенной точности она значительно больше, чем у подшипников нормальной точности. Долговечность и несущая способность подшипников очень сильно зависит от конструкции узла, правильности установки подшипников, жесткости вала и корпуса, величины натягов на посадочных поверхностях и, особенно, от условий смазки. Полшипипки в правильно сконструированных узлах при целесообразном предварительном натяге нередко работают в течение срока, во много раз превосходящего расчетный. С другой стороны, высокое значение коэффициента работоспособности не является гарантией надежности. Такие подшипники могут быстро выйти из строя вследствие ошибок установки (перетяжка подшипников, перекос осей, недостаточная или избыточная смазка).  [c.471]

В конструкции в 1ЮДШИПНИКИ посажены в общий корггуо, разделены на валу и в корпусе дистанционными кольцами и стягиваются гайкой 3. Длину последнего (со сгороны затяжки) дистанционного кольца 4 в корпусе выбирают с таким расчетом, чтобы при плотной установке мфжду кольцом и наружной обоймой смежного подшипника оставался расчетный зазор 5.  [c.527]

Расчет и выбор посадок с натягом. Посадки с патягом предназначены в основном для получения неподвижных неразъемных соединений без дополнительного крепления деталей. Иногда для повышения надежности соединения дополнительно используют шпонки, штифты и другие средства креилення, как, например, при крепле-ппи маховика на коническом конце коленчатого вала двигателя. Относительная неподвижность деталей обеспечивается силами сцепления (трения), возникающими на контактирующих поверхностях вследствие их деформации, создаваемой натягом при сборке соединения. Благодаря надежности и простоте конструкции деталей и сборк1г соединений эти посадки применяют во всех отраслях машиностроения (например, при сборке осей с колесами на железнодорожном транспорте, венцов со ступицами червячных колес, втулок с валами, составных коленчатых валов, вкладышей подшипников скольжения с корпусами и т. д.).  [c.222]

В учебном пособии изложены основы теории, расчета и конструирования точных механизмов. При этом рассмотрены структура, кинематика и динамика механизмов основы взаимозаменяемости, допуски и посадки, ошибки механизмов конструкция и расчет зубчатых, червячных, винтовых и фрикционных передач, планетарных, дифференциальных, волновых, кулачковых, рычажных, мальтийских, храповых, счетно-решающих и др. механизмов конструкция и расчет узлов и деталей механизмов и приборов — соединений, валов, осей, подшипников, нуфт, направляющих, корпусов, упругих и чувствительных элементов, отчетных устройств, успокоителей и регуляторов скорости.  [c.2]

Достигнутые результаты научных исследований прочности в машиностроении нашли практическое приложение в создании новых и усовершенствовании суш ествующих методов расчета и испытания деталей машин и элементов конструкций, широко используемых промышленностью. Эти результаты, а также опыт расчета на прочность и конструирование деталей машин получили обобш ение в ряде монографий, руководств, справочников и учебников, подготовленных отечественными учеными за 50 пет Советской власти, что способствовало использованию на практике новых данных теоретических и экспериментальных работ. В ряде отраслей опубликованы руководства по прочности валов и осей, резьбовых соединений, пружин, зубчатых колес, лопаток и дисков турбомашин, корпусов котлов и реакторов, трубопроводов, сварных соединений и др. Разработанные методы расчета на основе исследований прочности оказали суш,ественное влияние на улучшение конструкций деталей машин. Они количественно показали значение для прочности деталей уменьшения концентрации напряжений, снижения вибрационной напряженности, ослабления коррозионных процессов, улучшения качества поверхности, роль абсолютных размеров и многих других факторов.  [c.44]

Из-за большой разницы коэффициентов теплового расширения алюминиевых сплавов и стали или чугуна монометаллические вкладыши из алюминиевого сплава, установленные в стальной или чугунный корпус (наиболее распространенная конструкция подшипника), при рабочих температурах могут иметь высокие внутренние напряжения сжатия, тем большие, чем выше температура (см. табл. 77—78). При некоторой критической температуре внутренние напряжения могут достигать предела текучести материала (при условиях, зависящих от посадки, геометрических размеров, прочности сплава и разницы в коэффициентах теплового расширения корпуса и вкладыша) и вкладыши начнут деформироваться пластически. Вследствие этого при последующем охлаждении вкладышей внутренний диаметр их уменьшается против начального, что приводит к опасному уменьшению или исчезновению зазора между валом и вкладышами. Величина критической температуры, как показали расчеты и экспериментальная прогерка, обратно пропорциональна пределу текучести материала, что и привело к распространению наиболее прочных алюминиевых сплавов в начальный период промышленного применения алюминиевых антифрикционных сплавов.  [c.113]


Смотреть страницы где упоминается термин Расчет валов корпуса : [c.4]    [c.37]    [c.308]    [c.294]    [c.123]    [c.330]    [c.133]    [c.391]    [c.391]    [c.258]    [c.482]    [c.322]    [c.322]    [c.59]   
Проектирование электромагнитных и магнитных механизмов (1980) -- [ c.124 ]



ПОИСК



Валы Расчет

Корпус

Расчет валов



© 2025 Mash-xxl.info Реклама на сайте