Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трение реактивные

В каждой точке образующей касания возбуждаются, согласно законам трения, реактивные силы и моменты, которые после приведения к точке касания О в плоскости фигуры будут вполне определены нормальной реакцией. N, направленной вверх, касательной реакцией А или трением скольжения, направленной по оси Qs, и, наконец, моментом трения качения, перпендикулярным к плоскости фигуры, проекцию которого на ось Q , образующую вместе с осями S и Qtq правую систему осей, мы будем обозначать через Г.  [c.43]


В результате сопротивления металла деформированию возникают реактивные силы, действующие на резец нормального давления и трения. Реактивные силы — это силы упругого Ру1 и пластического деформирования, действующие перпендикуляр-ио передней поверхности резца, и силы Ру и Ра , действующие перпендикулярно главной задней поверхности резца (рис. VI.14, а). Наличие нормально действующих сил обусловливает возникновение силы трения = /1(Ру1 + Рт)- действующей вдоль передней поверхности резца, и T. = + Рт)-> действующей вдоль с главной задней поверхности резца (/1 и/2 — коэффициенты трения стружки о резец и резца о заготовку).  [c.400]

Рассмотрим соотношения между моментами и силами, действующими на механизмы в целом и на отдельные его звенья. Обозначим момент на ведущем колесе 1 через момент на ведомом водиле Н — через Мн и момент на неподвижном опорном колесе 3 — через (реактивный или опорный момент). Если пренебречь потерями на трение в зубьях и опорах, можно написать уравнение мощностей для всего механизма в форме  [c.319]

Упругое скольжение возникает в результате упругой деформации материала рабочих поверхностей катков (рис. 170). Поверхностные слои материала ведущего катка, нагруженного движущим моментом М , под действием силы трения, по мере приближения к точке контакта р сжимаются, а проходя эту точку растягиваются. Поверхностные слои материала ведомого катка под влиянием реактивного момента получают противоположные деформации.  [c.251]

В ряде случаев при изучении трения качения активные и реактивные силы, действующие на каток, удобно представлять себе в ином виде (рис. 6.11, а, б).  [c.55]

Для того чтобы определить параметры эжекторной реактивной системы с учетом этих потерь, необходимо ввести соответствующие коэффициенты потерь в уравнения энергии и силу трения в уравнение количества движения.  [c.560]

Потребную длину камеры можно существенно сократить, если раздробить эжектирующую струю на несколько струй для этого применяют многосопловую конструкцию или специальное секционное сопло (рис. 9.37). С помощью такого эжектора принципиально можно получить выигрыш в реактивной силе, несколько больший указанных выше значений, поскольку в результате уменьшения длины камеры смешения снижаются потери на трение о ее стенки, сильно влияющие на эффективность эжекторной реактивной системы.  [c.565]

Управление обтеканием, проявляющееся в непосредственном воздействии на поток газа около летательных аппаратов, используется для улучшения их аэродинамических свойств и позволяет решать две основные задачи. Одна из них связана с таким воздействием на обтекающий газ, при котором достигаются заданные суммарные аэродинамические характеристики или их составляющие. Например, может обеспечиваться нужное значение максимального коэффициента подъемной силы или наивыгоднейшее аэродинамическое качество, требуемое изменение (повышение или снижение) лобового сопротивления, сохранение устойчивости ламинарного пограничного слоя и, как результат, уменьшение трения и теплопередачи. Решение второй задачи позволяет формировать таким образом управляющий поток, чтобы улучшить условия обтекания органов управления и стабилизирующих устройств (оперения) и тем самым повысить управляющий и стабилизирующий эффекты. Кроме того, соответствующие устройства, управляющие движением газа, используются для повышения эффективности реактивных двигателей (в частности, путем улучшения обтекания воздухозаборников), а также отдельных средств механизации летательных аппаратов (щитки, предкрылки, закрылки и др.).  [c.103]


Экспериментальные данные и теория конических течений позволяют рассчитывать волновое сопротивление конуса для различных интенсивностей вдува. При определении суммарного лобового сопротивления помимо волнового и донного сопротивлений, а также трения следует учитывать сопротивление вдува, представляющее собой сумму проекций на ось ОХа скоростной системы координат всех реактивных сил, образующихся от истечения газа через проницаемую поверхность. Величина этого сопротивления при небольшой интенсивности вдува составляет примерно 10% суммарного сопротивления.  [c.416]

Шарнирно-неподвижная опора (рис. 7.3,6). Поперечное сечение бруса, проходящее через щарнирно-неподвижную опору, не может смещаться поступательно. Считается, что трение в шарнире отсутствует, а потому в опоре возникает лишь реактивная сила, проходящая через центр шарнира. Ее составляющими являются вертикальная сила В, препятствующая вертикальному смещению, и горизонтальная сила Я, исключающая горизонтальное смещение закрепленного сечения бруса. Опора не препятствует повороту бруса относительно центра шарнира, и, следовательно, брус, закрепленный при помощи одной такой опоры, имеет одну степень свободы. Закрепление бруса с помощью щарнирно-не-подвижной опоры накладывает на него две связи.  [c.213]

Задача 3.37. Определить относительный внутренний кпд реактивной ступени, если располагаемый теплоперепад в ступени Ao=100 кДж/кг, скоростной коэффициент сопла ф = 0,94, скоростной коэффициент лопаток ф = угол наклона сопла к плоскости диска ai = 18°, средний диаметр ступени /=0,95 м, частота вращения вала турбины и = 3600 об/мин, угол выхода пара из рабочей лопатки 2 = 20 20, степень реактивности ступени р = 0,45, расход пара М=22 кг/с и расход пара на утечки Му,= = 0,4 кг/с. Потерями теплоты на трение и вентиляцию пренебречь.  [c.123]

Задача 3.40. Определить относительный внутренний кпд реактивной ступени со степенью реактивности р = 0,5, если скоростной коэффициент сопла ср = 0,94, угол наклона сопла к плоскости диска ai = 14°, отношение окружной скорости на середине лопатки к действительной скорости истечения пара u/ j = 0,43., относительные потери тепловой энергии на трение и вентиляцию Ств = 0,03 и относительные потери тепловой энергии от утечек С = 0,025.  [c.125]

Схема расчета гидроцилиндра представлена на рис. 63. На ней указаны все силы, действующие на гидроцилиндр. Силы сопротивления усилие на штоке Т, сила трения уплотнения поршня F , сила трения уплотнений штока реактивное усилие от давления в штоковой полости Активной силой является сила давления в поршневой полости Р . Пусть рабочий ход осушествляется при подаче жидкости в поршневую полость. От насоса поступает поток жидкости Q . В зависимости от величины сил сопротивления (Т, F , и Р . ) насос развивает давление Pj . Как указывалось выше, давление насоса возникает как отклик на нагрузку.  [c.190]

По условиям равновесия найденный момент реактивных сил определяет собой необходимый движущий момент, расходуемый на подъем гайки и преодоление сил трения в резьбе.  [c.326]

Действительно, при подходе заготовки к валкам в точках первичного контакта возникают, С одной стороны, радиально ориентированные активные Р и равные им реактивные (действующие на заготовку) R силы, а с другой — силы трения Т, касательные к поверхности валков в точках упомянутого контакта. Каждая из сил трения равна произведению нормальной активной силы Р на коэффициент трения /, т. е. Т = Pf = Rf. Рассмотрим проекции сил R и Т т продольное (горизонтальное) направление X и вертикальное — Z. При этом заметим, что силы выталкивают заготовку из рабочего пространства, а силы — втягивают в него (захватывают заготовку). Условием захвата заготовки валками и осуществления прокатки будет неравенство > Ру.. Но так как = Г os а = Rf os а, а Р = R sin а, то условием прокатки будет Rf os а > sin а. Разделив обе части неравенства на / os а, получим />tga, где а—угол захвата.  [c.63]


Непрерывность рабочего процесса в турбине и ротационный принцип действия облегчают конструкцию турбин и обеспечивают отсутствие трения в частях (за исключением подшипников вала). Типы ступеней. По способу преобразования энергии турбины делятся на активные, реактивные и со ступенями скорости. Тур-  [c.9]

При парциальном впуске рабочего тела только часть лопаток занята газом, остальные каналы заполнены нерабочим телом. При подходе этих каналов к соплам часть энергии рабочего газа затрачивается на выталкивание нерабочего тела. В этом случае неработающие лопатки как бы перекачивают газ с одной стороны рабочего колеса на другую, вызывая вентиляционные потери. Потери на трение дисков рабочего колеса о газ происходят потому, что газ заполняет пространство между диском и корпусом турбины. Диск захватывает близлежащие частицы газа и сообщает им ускорение, в результате чего затрачивается определенное количество энергии на торможение диска газом. В реактивных турбинах потерями на трение и вентиляцию обычно пренебрегают, так как рабочие лопатки располагаются не на дисках, а на барабанах, и подвод газа осуществляется по всей окружности.  [c.217]

Рассмотрим систему со связями, не зависящими от времени, в которой реакции связей могут производить удары. Связями без трения называют связи, в которых работа реактивных ударных импульсов, рассматриваемых как силы, равна нулю (как и работа реакций связи) на всяком перемещении системы, совместимом со связями.  [c.48]

Реактивной паре, которая может уравновесить внешнюю силу с моментом относительно д, не превосходящим Гц, дают название naj bi трения качения а Го называется предельным моментом трения качения. Как мы видим, отношение VJE измеряет так называемую предельную силу тяги, т. е. наибольшую горизонтальную силу, перпендикулярную к оси, которая, будучи приложена к центру тяжести, не нарушит его равновесия.  [c.131]

Предположим теперь, что шар подвергается действию двух равных и противоположных сил, расположенных в одной и той же горизонтальной плоскости. Момент этой пары сил относительно точки опоры Р будет вертикальным поэтому вертикальным будет и реактивный момент, уравновешивающий момент активной пары. Увеличивая этот последний, мы увидим, что шар начнет вращаться вокруг вертикали, проходящей через точку Р и представляющей собой линию действия реактивного момента. Это заставляет с полным основанием предположить, что в статических условиях этот момент препятствует телу вертеться, как если бы оно было зажато в подшипниках, расположенных вокруг нормали к плоскости опоры в точке соприкосновения. Поэтому реактивный момент, нормальный к плоскости опоры, и называется моментом трения верчения.  [c.134]

Если мы обозначим через N абсолютное значение составляющей реактивной силы Ф по нормали п к поверхности опоры в точке Р, через Гт и Г абсолютные значения касательной (момент трення качения) и нормальной (момент трения верчения) составляющих момента Г, то будем иметь  [c.135]

Для уточнения и пояснения постановки задачи мы предпошлем несколько замечаний. Во всякий момент в соответствующей точке соприкосновения С плоскость будет действовать на шар с некоторой реактивной силой, которую мы, пренебрегая трением качения и верчения (т. I, гл. 13, 6), будем предполагать представленной в виде одной силы Ф. Согласно раз навсегда установленным принципам (гл. I, 8) мы будем считать действительными законы динамического или, в частности, статического трения.  [c.184]

В эти выражения для изменений, испытываемых при ударе тремя характеристическими величинами и, v, Ь, входят две неизвестные проекции X, У реактивного импульса, а потому, чтобы сделать задачу определенной, необходимо ввести еще два условия. Заметим теперь же, что к одному из них мы придем, допуская применимость также и в этом случае эмпирического закона Ньютона, а другое будет получено из исследования влияния трения.  [c.493]

Для этой цели, как уже указывалось, нам надо только принять во внимание эмпирические законы трения скольжения. Прежде всего, заметим, что, по определению, имеем dR = dl = Фdt , вспоминая, что импульс Ф всегда будет обращен наружу от преграды, мы видим, что на чертеже путь точки R , от Р до должен быть направлен вверх. Кроме того, в силу законов динамического трения, направление движения точки Rt, совпадающее с направлением реактивного импульса Ф, который должен быть противоположным скольжению, будет совпадать с направлением g-, или g , смотря по тому, будет ли > О или а <0 если же в некоторый момент i исчезает, то R будет находиться на прямой s нулевого скольжения и элементарное перемещение точки R будет подчинено только  [c.496]

Сила Р, поворачивающая кулак, вызывает силы Рх и Ра, действующие на тормозные колодки. Колодки, прижатые к барабану этими силами, вызовут со стороны последнего равномерно распределенные по поверхности трения реактивные силы и (/г, которые можно без большой погрешности заменить двумя силами Ql и Сг, приложенными по оси тормозного барабана. Силы и 0,2 создадут на поверхности трения силы трения и (1 2- От стяжной пружины на колодки действуют силы Р. В результате де11ствия сил Р , Рг и Р в точке 0 подвески колодок возникают реакции Р и Рг. Уравнение моментов для левой колодки относительно точки подвески колодок будет  [c.402]

Сложнее обстоит дело, если звенья р и V образуют поступательную пару (рис. 68, а). В такой паре при отсутствии трения возникают нормальная к ее направляющей реакция P v. которую мы условились прикладывать в середине ползуна, и реактивный мо-мен1 Лlцv  [c.93]

Ось вращения физического маятника называется осью привеса маятника. Примем ось привеса маятника за ось д . Координатную плоскость уОг проведем через центр тяжести С маятника и совместим эту плоскость с плос-коскостью чертежа (рис. 180). На маятник, отклоненный от положения покоя, действуют внешние силы сила тяжести G и составляющие реакции цилиндрического шарнира Yq и Zq. Трением в шарнире пренебрегаем. Реактивные силы не имеют моментов относительно оси привеса. Момент силы G относительно оси X  [c.214]


Состави.м дифференциальные уравнения, описывающие движение механической системы (рис. 197, а). К колесу В приложены вращающий момент М, сила тяжести G = mgg, нормальная реакция в опорной точке К и сила сцепления Есп, предположительно направленная вправо. На тело А действуют сила тяжести Q = т , приложенная в центре тяжести С, реакция Yp, сила трения Xo=fYo и реактивный момент корпуса двигателя М. Силы взаимодействия в точке О. между телом А и колесом В являются реакциями внутренних идеальных связей и не показаны на рисунке. При расчленении системы на части (рис. 197, б, в) в точках О прикладываются силы взаимодействия Хо = Х о и Yq = Y q между телами Л и В.  [c.271]

Со второй половины XIX столетия наряду с продолжающимися строгими и изящными аналитическими исследованиями в механике под влиянием чрезвычайно быстрого роста техники возникает и все более и более интенсивно разрастается другое направление, связанное с решением реальных практических задач при этом важным методом исследования в механике наряду с математическим анализом и геометрией становится эксперимент. Выдающимися представителями этого направления являются творец теории вращательного движения артиллерийского снаряда в воздухе Н. В. Майеаский (1823—1892) основоположник гидродинамической теории трения при смазке И. П. Петров (1836—1920) отец русской авиации Н. Е. Жуковский (1847—1921) создатель основ механики тел переменной массы, нашедшей важные приложения в теории реактивного движения, И. В. Мещерский (1859—1935) известный исследователь в области ракетной техники и теории межпланетных путешествий К. Э. Циолковский (1857—1935) автор выдающихся трудов во многих областях механики, непосредственно связанных с техникой, основоположник современной теории корабля А. Н. Крылов (1863—1945) один из крупнейших отечественных ученых автор ряда фундаментальных работ по аналитической механике и аэродинамике, создатель основ аэродинамики больших скоростей С. А. Чаплыгин (1869—1942) и многие другие ).  [c.16]

В космических полетах при отсутствии внешней среды не имеют места силы трения, являющиеся движущими силами наземного транспорта, отсутствуют и силы вязкости, в ]5езультате которых возникают аэродинамические силы, определяющие двил енне воздушного транспорта. Силами, не зависящими от трения и вязкости среды, являются реактивные силы. Они определяются скоростью  [c.165]

Человек при отсутствии трения не мог бы перемещаться по горизонтальной гладкой плоскости усилиями собственной мускулатуры. Только благодаря силам треиия иодошв о пол возникает горизонтальная реакция, переносящая центр масс тела в горизонтальном направлении. Человек, стоящий на абсолютно гладком горизонтальном полу, может привести себя в движение, бросая в горизонтальном направлении предметы в сторону, противоположную желательному направлению движения, и тем самым создавая реактивную силу. При этом часть массы системы перемещается, остальная часть массы системы должна переместиться в противоположном направлении так, чтобы сумма произведений масс на их абсциссы осталась прежней и центр масс сохранил свое начальное положение. И наоборот, если бы пол был идеально гладок, движущийся человек не мог бы остановиться. Но бросая предметы в сторону своего движения, человек мог бы затормозиться и при отсутствии трения.  [c.118]

В части 1 рассмотрена теория одномерных газовых течений, на которой б зируются методы расчета реактивных двигателей, лопаточных машин, эжекторов, аэродинамических труб и испытательных стендов. Изложены теория пограничного слоя и теория струй, лежащие в основе определения сопротивления трения, полей скорости и температуры в соплах, диффузорах, камерах сгорания, эжекторах и т. п.  [c.2]

Вместе с тем многие вопросы, нанример определение сопротивления трения ц нолей скорости п температуры, построение картины течения в камере сгорания, эжекторе и сверхзвуковом диффузоре, выяснение силового и теплового воздействия выхлопной струи реактивного двигателя на органы управления и другие части летательного аппарата, а также на стенки испытательного стенда и т. п., не могут быть разрешены без привлечения дифференциальных уравнений гидрогазодинамики или уравнений пограничного слоя.. В связи с этим в кннге значительное внимание уделено основам гидродинамики, теории пограничного слоя и теории струй.  [c.9]

В качестве примера вычислим коэффициент потерь для диффузора с соотношением поперечных сечений FJFe = 3 при угле раствора а = 8°. Можно принять для этого случая (с учетом трения) ij) = 0,2. Тогда = 0,2 4 = 0,8, Од = 1 — 0,44Яд. Приведенная скорость в конце диффузора дозвукового воздушно-реактивного двигателя обычно бывает порядка Яд = 0,2 — 0,4. Тогда  [c.456]

Влияние вторичных потерь на реактивную тягу в полете более существенно, чем при работе на месте. Дело в том, что с увеличением скорости движения аппарата увеличиваются расход и скорость эжектируемого газа и соответственно возрастают потери на трение, примерно пропорциональные количеству движения GsWs- Поскольку ударные потери в процессе смешения при этом уменьшаются, то вторичные потери, связанные с трением, становятся преобладающими и в основном определяют совершенство процесса. Если без учета этих потерь выигрыш в тяге лишь снижается с ростом а, то при реальных значениях коэффициентов потерь уже при со = 0,2—0,3 выигрыш в тяге исчезает, а для больших значений скорости движения вместо прироста получится снижение тяги.  [c.561]

Начнем со случая, когда в системе, обладающей линейными реактивными элементами, трение описывается идеализированным законом сухого трения. В этом случае, как указывалось выще, функция диссипации имеет вид Р у)—ау й> 0 приу>0 и а< 0 при /-<0. Зависимость силы трения от скорости была показана на рис. 2.1. Для простейщей системы с одной степенью свободы при линейности инерционных и упругих сил мы можем записать уравнение, описывающее движение в подобной системе, в виде  [c.47]

В реактивном самолетном двигателе, работающей на топливе ТС-1 (состав в массовых долях С = 0,86, Н == = 0,137, О = 0,003), используется сопло с отношением сучений F IF p = 0,1774. Какой избыток воздуха предусмс-трен на расчетном режиме, если при этом отношение давл(-ний в крайних сечениях сопла = 20. Для оценки пс-казателя адиабаты использовать значения истинных тепле-емкостей газов (табл. 1 Приложения) при температуре 600 °С, близкой к средней температуре газа в соплс.  [c.99]

Силы поверхностные. Эти силы приложены к поверхности, ограни-чиваюгпей рассматриваемый объем жидкости, выделенный, например, внутри покоящейся или движущейся жидкости (см. объем AB D жидкости на рис. 1-9). При равномерном распределении этих сил по данной поверхности величина их пропорциональна площади этой поверхности. К числу таких сил относятся, например, атмосферное давление, действующее на так называемую свободную поверхность жидкости, а также силы трения, о которых говорили в 1-3 (действующие по поверхности, намеченной внутри жидкости). Изучая механическое действие жидкости на поверхность какого-либо твердого тела, можно говорить о реакции этой поверхности, т. е. реактивной силе, приложенной к жидкости со стороны твердого тела. Такая сила также должна рассматриваться как внешняя поверхностная сила (по отношению к объему жидкости, ограниченному поверхностью упомянутого твердого тела). В общем случае плотность распределения поверхностной силы (т. е. напряжение) в различных точках рассматриваемой поверхности может быть различной. В частном случае, когда поверхностная сила Р распределяется равномерно по рассматриваемой поверхности площадью S, величина этой силы  [c.22]


Реактивная тяга — результирующая газодинамических сил давления и трения, приложенных к внутренней и наружной поверхностям двигателя без учета внешнего сопротивления. Газотурбинный двигатель — тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реажтивной струи и (или) в механическую работу на валу двигателя, основными элементами которой являются компрессор, камера сгорания и газовая турбина. Турбореактивный двигатель — ГТД, в котором энергия топлива преобразуется в кинетическую энергию струй газов, вытекающих из реактивного сопла.  [c.256]

Силы, действующие на паровоз, находятся в йоо,тояжт. предельного равновесия относительно качения, так что всякая опора оказывает наибольшее сопротивление качению, ва которое она способна, т. е. момент реактивной пары имеет для каждой опоры наибольшее возможное для него значение. В то же время, так как мы исключаем возможность скольжения, реакции трения скольжения не будут наибольшими из возможных. Силы, действующие на паровоз, должны удовлетворять основным уравнениям равновесия. Для вывода, который мы имеем в виду, достаточно приравнять нулю результирующую всех внешних сил, которые (если пренебречь сопротивлением воздуха) сводятся к следующим  [c.136]

Чтобы дать простейший пример, рассмотрим систему, состоящую из двух материальных точек Р, Pj, движущихся без трения по прямой Ох, и предположим, что, в то время как точка Р подвергается действию какой-нибудь активной силы, составляющая которой по оси X есть X, при помощи подходящего автоматического устройства осуществляется воздействие на точку Pj некоторой силы Ф, вынуждающей эту точку следовать за Р при ее движении на неизменном расстоянии. Сервомоторная сила Ф, осуществляющая эту динамическую связь, не удовлетворяет всем условиям, характеризующим идеальные связи, так как работа этой силы не равна нулю при всяком бесконечно малом перемещении, совместимом со связями. Действительно, здесь единственной связью является динамическая связь, вынуждающая точку Pj сохранять неизменным ее расстояние от точки Р, а так как перемещение Зх точки Р, равное перемещению точки Pj, остается произвольным, то работа ФЗх сервомотор-ной силы отлична от нуля, поскольку, вообще говоря, не исчезают ни тот, ни другой сомножители. Отсюда следует, что сервомоторная сила Ф при постановке задачи о движении должна рассматриваться как прямо приложенная к системе, а не как реактивная сила, осуществляющая связь без трения неизменяемой системы двух точек PPj.  [c.319]


Смотреть страницы где упоминается термин Трение реактивные : [c.149]    [c.261]    [c.491]    [c.277]    [c.491]    [c.14]    [c.558]    [c.429]    [c.133]    [c.134]   
Основы теории штамповки выдавливанием на прессах (1983) -- [ c.23 ]



ПОИСК



Реактивность

Снижение реактивных и повышение разгружающих сил трения при вытяжке



© 2025 Mash-xxl.info Реклама на сайте