Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффект стабилизирующий

При назначении режима термической обработки, включающей обработку холодом, необходимо учитывать явление стабилизации аустенита. Дело в том, что во многих промышленных сортах стали, в структуре которых после закалки имеется остаточный аустенит, выдержка при комнатной температуре уменьшает количество остаточного аустенита, превращающегося при обработке холодом. Это и означает, что аустенит стабилизируется. Естественно, что при этом эффект обработки холодом уменьшается. Поэтому обработку холодом рекомендуется проводить немедленно после закалки.  [c.306]


Выдержка закаленной стали при комнатной температуре до глубокого охлаждения в течение более 3—6 ч стабилизирует аустенит, вследствие этого он менее полно превращается в мартенсит при дальнейшем охлаждении и уменьшает эффект обработки холодом. Поэтому обработку холодом надо выполнять с])азу после закалки.  [c.216]

Здесь первый член определяет дестабилизирующий эффект из-за динамических перепадов давления, второй член в зависимости от направления ускорения может быть стабилизирующим (если g направлено от легкой фазы к тяжелой) или дестабилизирующим  [c.256]

Влияние вязкости, являющейся стабилизирующим фактором, определяется числом Лапласа, показывающим отношение поверхностных эффектов к вязким  [c.259]

О,, (О, и а, располагаются за центром тяжести, что указывает на возникновение стабилизирующего эффекта (продольного демпфирования) в случае вращения крыла вокруг поперечной оси, а также изменения по времени П, и а.  [c.470]

Таким образом, и в рассматриваемом случае действия гироскопических сил соответствующий центр давления находится за центром тяжести площади крыла, что свидетельствует о возникновении стабилизирующего эффекта.  [c.473]

Хвостовая часть корпуса, расположенная за консолями крыла, влияет на смещение центра давления в направлении к донному срезу, так как нагрузки, индуцируемые крылом, распространяются на эту часть корпуса и способствуют возникновению большего стабилизирующего эффекта.  [c.611]

Применяя кольцевой стабилизатор, можно при том же стабилизирующем моменте получить меньшие поперечные размеры летательного аппарата, чем при плоском оперении. Большие критические углы атаки обеспечивают надежную работу кольцевых стабилизаторов в значительном диапазоне летных углов атаки. Повышению стабилизирующего эффекта способствуют пластины (пилоны), крепящие кольцевой стабилизатор на корпусе. К его недостаткам относятся более слабая, чем у плоского оперения, зависимость подъемной силы и стабилизирующего момента от угла атаки и повышенное сопротивление за счет пилонов. Кроме того, величины этой силы и момента уменьшаются вследствие неблагоприятной интерференции с корпусом. Причем такое неблагоприятное влияние тем значительнее, чем ближе к корпусу расположен кольцевой стабилизатор.  [c.70]

Управление обтеканием, проявляющееся в непосредственном воздействии на поток газа около летательных аппаратов, используется для улучшения их аэродинамических свойств и позволяет решать две основные задачи. Одна из них связана с таким воздействием на обтекающий газ, при котором достигаются заданные суммарные аэродинамические характеристики или их составляющие. Например, может обеспечиваться нужное значение максимального коэффициента подъемной силы или наивыгоднейшее аэродинамическое качество, требуемое изменение (повышение или снижение) лобового сопротивления, сохранение устойчивости ламинарного пограничного слоя и, как результат, уменьшение трения и теплопередачи. Решение второй задачи позволяет формировать таким образом управляющий поток, чтобы улучшить условия обтекания органов управления и стабилизирующих устройств (оперения) и тем самым повысить управляющий и стабилизирующий эффекты. Кроме того, соответствующие устройства, управляющие движением газа, используются для повышения эффективности реактивных двигателей (в частности, путем улучшения обтекания воздухозаборников), а также отдельных средств механизации летательных аппаратов (щитки, предкрылки, закрылки и др.).  [c.103]


Осуществляя аэродинамическую компоновку, необходимо учитывать особенности старта с летательного аппарата-носителя, обладающего определенной скоростью полета. Если старт производится по направлению полета носителя, то следует предусмотреть органы управления, обеспечивающие предотвращение разворота стартующего летательного аппарата в сторону носителя. При старте под углом к направлению полета носителя возникает эффект поперечного обтекания вследствие дополнительной составляющей скорости движения, что может привести к ухудшению устойчивости. Поэтому органы управления и стабилизирующие устройства должны обеспечивать ликвидацию неблагоприятных последствий поперечного обтекания.  [c.129]

Применение виброочистки при одновременной реконструкции котлов-утилизаторов КУ-100, установленных за двухванными сталеплавильными печами Магнитогорского металлургического комбината, позволило обеспечить устойчивую работу котлов при интенсивной продувке ванн кислородом [21]. После внедрения виброочистки повысилась удельная выработка тепла каждым котлом на 40—75%, увеличился коэффициент использования котлов во времени до 98%, стабилизировалось аэродинамическое сопротивление котлов. Применение виброочистки позволило полностью устранить забивание поперечных и продольных промежутков между трубами, отказаться от применения паровой обдувки и водяной обмывки, в результате чего практически устранен коррозионный износ поверхностей нагрева. На котлах-утилизаторах с вибрационной очисткой значительно улучшились условия эксплуатации, обслуживающий персонал освобожден от тяжелого физического труда, затрачиваемого на водяную обмывку и ручную очистку. Годовой экономический эффект от внедрения виброочистки на четырех КУ-ЮО составляет 380 тыс. руб. [21].  [c.168]

Кремний повышает стойкость к растрескиванию и уменьшает потери пластичности, если его концентрация достаточно велика [66, 67, 69, 83, 87, 90]. Эффект кремния особенно заметен при концентрациях свыше 4%, причем, по некоторым данным, при этом подавляется как зарождение, так и распространение трещин [91]. Однако такие высокие концентрации кремния стабилизируют б-феррит в микроструктуре стали, поэтому не исключено, что этот эффект в основном обусловлен изменением микроструктуры, а не состава. Как растворенная примесь в аустените кремний несколько снижает значение ЭДУ [77], и, следовательно, служит примером того, что уменьшение ЭДУ не обязательно приводит к усилению растрескивания или других форм разрушения. Правда, уменьшение ЭДУ при введении малых добавок кремния невелико и может быть просто недостаточным, чтобы вызвать заметный эффект [68]. В пользу последнего предположения свидетельствует то, что при концентрациях 0,8—1,5% кремний (слабо влияющий в этом случае на б-феррит и присутствующий, следовательно, в аустените) не изменяет поведение сплава при КР [69, 82, 92]. Предполагается, что в водных растворах влияние кремния имеет электрохимическую природу [66], однако и в этом случае исследования микроструктуры были бы очень полезны. Испытания в газообразном водороде также могли бы дать интересную информацию.  [c.72]

В составы алюминиевых сплавов входят также многочисленные мелкие добавки, с которыми связаны в основном два типа эффектов. Первый — тенденция многих элементов образовывать нерастворимые интерметаллические частицы, укрепляющие межзеренные границы и тем самым стабилизирующие форму деформированных зерен (рис. 23). Такие добавки, следовательно, предотвращают формирование равноосной структуры . К элементам этого типа относятся Мп, 2г и Сг, влияющие на форму зерна в сплавах всех четырех основных типов. Форма зерна играет, как будет показано ниже, важную роль в КР алюминиевых сплавов, поэтому к результатам многих исследований, выполненных на модельных сплавах с равноосной структурой, следует относиться с осторожностью. Подобные сплавы можно исследовать с целью выявления роли добавок отдельных элементов, но они не моделируют промышленные сплавы, более сложные с точки зрения как химического состава, так и микроструктуры. Поэтому следует полагать, что отдельные (а возможно, н многие) выводы, сделанные на основании изучения модельных сплавов, не применимы к сложным промышленным материалам с деформированной формой зерна.  [c.82]


Имеющиеся данные о влиянии а-стабилизирующих и р-изо-морфных элементов позволяют объяснить представленные на рис. 30 результаты сравнительного исследования трех промышленных сплавов. Очевидно, что уменьшение содержания алюминия (особенно ниже 5%) или увеличение суммарной концентрации молибдена и ванадия повышает стойкость к КР- Необходимо отметить, однако, что проводить подобные сравнения следует с осторожностью, поскольку рассматриваемые сплавы отличаются содержанием кислорода, соотношением фаз а и р, а также уровнем вязкости разрушения. Тем не менее основные закономерности влияния состава на стойкость к КР достаточно ясны и используются при разработке и совершенствовании сплавов [198]. Теперь мы обратимся к микроструктурным эффектам, которые играют важную роль в поведении титановых сплавов.  [c.97]

Мы сейчас показали, как в результате динамических воздействий статически устойчивое положение маятника становится неустойчивым. Известно, что возможен и обратный эффект. В частности, в главе 5 будет показано, что статически неустойчивое положение маятника (а = 180°) при вибрации точки подвеса может оказаться устойчивым. Динамическое воздействие в этом случае оказывает на систему стабилизирующий эффект.  [c.36]

Следует указать, что стабилизирующее влияние сильных карбидообразующих элементов позволяет повысить эффект упрочнения в результате высокотемпературной термомеханической обработки.  [c.35]

Данные табл. 9.13 наглядно показывают, что стабилизирующее воздействие создается только органическими соединениями, принадлежащими к основному классу. Сопоставляя данные табл. 9.13 и рис. 9.17, можно сделать вывод, что стабилизирующий эффект возникает при концентрации органических соединений основного класса примерно 10—13 мг Ог/л по ПО и 45—50 мг Оа/л по ХПК с учетом 7—10 % погрешности метода разделения, следовательно, для исследуемой сточной воды — при /Су 20.  [c.227]

Следовательно, данные по стабилизирующей способности органических соединений сточных вод получены при оптимальных значениях pH. Поэтому для оценки стабилизирующего эффекта, создаваемого только за счет оптимального  [c.228]

Этот закон обеспечивает устойчивость программной траектории qp (/) по отношению к начальным возмущениям. Для его реализации нужно точно знать параметры и организовать обратные связи по всем компонентам векторов q н q. Однако для надежного отслеживания программной траектории с заданной точностью этого недостаточно. Важно, чтобы закон управления роботом обладал достаточно сильным стабилизирующим эффектом, т. е. обеспечивал асимптотическую устойчивость qp t). В этом случае при любом уровне начальных возмущений динамическая ошибка е = q — qp (t) будет стремиться к нулю.  [c.134]

Термические циклы усиливают этот эффект. Остановить ползучесть а-урана под действием облучения и термических циклов невозможно, поэтому тепловыделяющий элемент должен иметь такую конструкцию и работать в таких условиях, чтобы не происходило его формоизменения. Размерные изменения, происходящие в урановых сплавах непосредственно в процессе облучения, в некоторых случаях удается уменьшить, применяя термическую обработку. Урановые сплавы, легированные молибденом, алюминием или другими элементами, которые растворяются в уране и стабилизируют р- и -фазы, нагревают выше температуры фазового перехода и закаливают, при этом сплав быстро охлаждается  [c.131]

Опыты проводили на речных и подземных водах различного химического состава (щелочность 2,8—5,9 мг-экв/л, жесткость 5,1— 20,4 мг-экв/л, Са + 3,9—11 мг-экв/л, С1 16—233 мг/л, SOI" 76— 1123 мг/л, pH = 7,28,4, окисляемость перманганатная 1,3— 6,3 мг/л) в диапазоне температур оборотной воды от 30 до 80° С. Этими опытами показано, что щелочность оборотной воды при обработке ее полифосфатами обусловлена главным образом бикарбо-натными ионами, концентрация же карбоната кальция различных степеней дисперсности очень невелика и не превышает 0,1—0,2 мг-экв/л. Кроме того, при обработке воды полифосфатами создаются условия, при которых может существовать сильное пересыщение раствора ионами OI , произведение концентрации ионов Са + и СО3 в десятки раз может превышать произведение растворимости СаСОз, вследствие чего для углекислотного равновесия оказываются достаточными дозы кислоты, гораздо меньшие доз, рассчитанных по теоретической формуле для данной щелочности воды. Следовательно, основной эффект стабилизирующего воздействия поверхностно-активных веществ заключается в сильном замедлении самого процесса распада бикарбонатных ионов вследствие пересыщения раствора ионами OI , обусловленного замедлением одной из фаз процесса кристаллизации — перехода карбоната кальция из коллоидного раствора в кристаллы.  [c.49]

Согласно [Л. 365] влияние роста Re на EJE обратное, а Voi/v и р — прямое. Последнее, как уже отмечалось, не согласуется со многими литературными данными. Имеющиеся данные недостаточны для обобщенных оценок. Можно лишь утверждать, что влияние частиц может быть многофакторным и разнонаправленным. Рассматриваемая проблема нуждается в систематическом накоплении надежных экспериментальных данных с тем, чтобы оценить обобщенные условия, при которых в потоке преобладает стабилизирующий или турбулизирующий эффект етрисутствия частиц [Л. 58].  [c.113]

Коэффициенты интерференции. При расчете аэродинамических характеристик летательных аппаратов, представляющих собой комбинации из нескольких элементов, в частности корпуса и несущих (стабилизирующих) поверхностей, необходимо учитывать эффект взаимного влияния на характер обтекания этих элементов. В результате этого взаимного влияния (или так называемой интерференции), сумма аэродинамических сил (моментов) взятых отдельно (изолированных) крыла и корпуса или оперения и корпуса не равна полной силе (моменту) комбинации, состоящей из соответствующих элементов и представляющих собой единое целое. Таким образом, отдельно взятые элементы — корпус, крыло, оперение, — будучи соединенными в единую конструкцию летательного аппарата, каюбы теряют свои индивидуальные аэродинамические характеристики и приобретают вследствие интерференции новые. Например, нормальная сила оперения в виде пары плоских консолей, расположенных на тонком корпусе, обтекаемом под малым углом атаки, определяется в виде суммы  [c.132]


Обычно напряжение генератора стабилизировано и напряжение на индукторе можно считать приблизительно постоянным. Характерные зависимости потребляемой стальной заготовкой мощности от времени (О при i/ = onst приведены на рис. 13-1. Вид кривой зависит от соотношения размеров индуктора и заготовки, от относительной длины системы, а также от степени проявления поверхностного эффекта. При больших зазорах, применяемых при сквозном нагреве, мощность, потребляемая в начальных стадиях нагрева стальных заготовок, всегда больше, чем в конце.  [c.202]

При решении задачи использовались в силу высокой частоты нагружения компенсаторов диаграммы циклического деформирования, полученные в условиях, когда эффект времени не успевал проявиться, т. е. диаграммы деформирования, близкие к мгновенным (изоциклические ди-аграммы деформирования). Кроме того, в связи с характерным для гофрированной оболочки компенсатора наклепом, возникающим в процессе пластического формообразования профиля, диаграммы деформирования были получены на материале, предварительно наклепанном растяжением до величины порядка 20%. На рис. 4.3.3 приведены диаграммы деформирования после указанного наклепа стали Х18Н10Т для ряда полу-циклов нагружения к = 1,5) при 600° С и временах нагружения в цикле порядка 30 с. Материал рис. 4.3.3 циклически стабилизировался после А = 5.  [c.205]

Осмий стабилизирует р-фазу. Она поддается закалке от 1000 С уже в сплаве с 4 ат. % Os, что соответствует электронной концентрации 4,16 эл1ат и совпадает с таковой, принятой для р-стабйлиза-торов титана. Температура р а-превращения с повышением содержания осмия резко понижается. Величина термических эффектов быстро уменьшается и, начиная с 5 ат. % Os, это превращение на термограммах не обнаруживается. Превращение р -v а идет с большим переохлаждением. Растворимость осмия в а-титане при 600 С составляет примерно 1 ат.%,  [c.179]

Аустенитные стали имеют, как правило, однофазную микроструктуру. Основными исключениями являются присутствие б-феррита (при наличии в достаточном количестве стабилизирующих его элементов, таких как хром, кремний или титан) и образование (в некоторых сталях) индуцированного деформацией мартенсита. Мартенсит может быть представлен или о, ц. к. а -фазой, или г. п. у. 8-фазой, или обеими фазами вместе в зависимости от стали. Согласно некоторым данным присутствие б-фазы повышает стойкость против КР [66, 91, 96], хотя этот вывод мог быть более однозначным, если бы одновременно были исследованы и стали без феррита [66, 91]. При испытаниях в водороде, где основным эффектом является уменьшение параметра относительного сужения, наличие 6-феррита влияет на морфологию разрушения растрескивание происходит по границам аустенита и б-фазы [97]. В сталях 304А и 3095 такое изменение морфологии разрушения не сопровождалось дополнительным уменьшением относительного сужения по сравнению со сплавом без феррита [72, 97, 98], Можно предположить, что б-феррит способен оказывать влияние на распространение трещины либо как менее растрескивающаяся фаза, либо как фаза, в которой затруднен процесс электрохимического заострения вершины трещины (этот процесс будет более подробно рассмотрен в дальнейшем) [60, 64]. Поскольку при испытаниях в водороде этот процесс не происходит, в этих условиях (потери вязкости) роль б-феррита должна быть другой.  [c.75]

Введение марганца в бинарные сплавы А1 — Mg дает положительный эффект, усиливая образование выделений р. Добавки марганца и хрома стабилизируют структуру деформированных зерен [133] и повышают прочность [134]. Введение 0,2—0,4 % В1 способствуют стабилизации сплава, приводя к образованию частиц Bi2Mgз [135]. Было показано, что добавки меди и циркония также повышают стойкость к КР [136]. При хорошей стабилизации сплавы серии 5000 могут довольно успешно эксплуатироваться во влажных морских средах [2], хотя, по имеющимся данным, при высоком содержании магния повышение прочности все же сопровождается слабым понижением стойкости к КР [134]. В некоторых новых сплавах, например С519, характеризуемых, помимо высокого предела текучести (свыше 200 МПа), хорошей вязкостью и свариваемостью, наибольшая чувствительность к КР наблюдается в направлении толщины материала [134] (см. рис. 23). Подобным образом ведут себя и многие другие алюминиевые сплавы.  [c.84]

Твердость. Так же как прочность и модуль упругости, твердость растет при облучении. Эффект повышения твердости зависит от совершенства кристаллической структуры графита. Так, при низкотемпературном (100—150° С) облучения пирографита, как полученного при 2100° С, так и прошедшего до-лолнительную термообработку при 2400 и 2800° С, твердость быстро возрастает, и при флюенсе нейтр./см процесс стабилизируется. При этом относительный прирост твердости оказался существенно выше у образцов, прошедших дополнительную обработку при более высокой температуре (рис. 3.33).  [c.139]

Результаты исследований показали (табл. 3.3), что сточные воды, прошедшие механическую очистку по схеме, существующей на городских сооружениях, имели неблагоприятные органолептические свойства, высокий уровень взвешенных веществ, биогенных элементов, БПКз и ХПК. Эти стоки характеризовались значительным бактериальным загрязнением, причем в отдельных пробах до обеззараживания обнаруживались возбудители кишечных инфекций. После микрофильтрации состав сточных вод заметно улучшался и стабилизировался. Применение на этом фоне хлора давало существенный обеззараживающий эффект. Колииндекс хлорированной воды (остаточный хлор 4—5 мг/л, время контакта 60 мин) не превышал 100, а патогенная микрофлора в ней не обнаруживалась. Из приведенных данных следует, что при обработке сточных вод по рекомендуемой схеме на городских очистных сооружениях будет достигаться необходимая степень их обеззараживания, а качество воды, подаваемой на ТЭЦ, соответствовать требованиям эпидемиологической безопасности. Доведение качества воды до норм по другим химическим показателям —  [c.74]

Стабилизация воды солями орто- или метафос-форной кислоты. Применяются гексаметафосфат натрия, водная вытяжка суперфосфата, тринатрийфосфат натрия, иногда продувочная вода фосфатируемых котлов (вещества приведены в порядке убывания стабилизирующего эффекта).  [c.68]

Для регулирования расхода воздуха и, частично, скоростного поля в зоне теплообмена отмеченных в 3.4 конструкций градирен входные окна оборудуются направляющими щитами. По направлению движения воздушного потока устанавливаются ветровые перегородки. Они стабилизируют поток воздуха и препятствуют боковому выносу воды (рис. 3.21). Наибольший эффект охлаждения достигается при закручивании воздушного потока в башне градирни, что обеспечивается соответствующим ориентированием вертикально установленных направляющих щитов на входе в градирню и конфигурацией ветровых перегородок, а также установкой направляющего устройства в башне градирни. Однако значительные материальные и трудовые затраты пока исключили возможность оборудования этими устройствами построенных брызгальных градирен. В настоящее время запроектировано достаточно простое и, как показывают эксперименты, эффективное воздухонаправляющее устройство [3].  [c.94]

В модель Форрестера была включена подсистема Энергетика на основе сценария развития энергетики, разработанного в [19], в предположении о переходе мировой системы к глобальному равновесию энергопотребление тепловой мощности стабилизируется на уровне б кВт-год/чел. Согласно этому сценарию максимально возможная доля энергопроизводства (по экономическим и техническим соображениям) приходится на альтернативные источники энергии. Климатологическая модель парникового эффекта и повышение среднегодовой приземной температуры при развитии энергетики по этому сценарию дает результаты, представленные на рис. 4.  [c.53]

Достоинством ПИД-регуляторов является чрезвычайная простота их реализации, не требующая никакой информации о параметрах g робота. Однако им присущ и целый ряд недостатков. Во-первых, они требуют ручной настройки параметров К , /С,,, и зачастую теряют работоспособность при резком изменении параметров (например, при изменении массы груза). Во-вторых, они не обладают требуемым стабилизирующим эффектом, вследствие чего динамическая оп1ибка имеет незатухающий колебательный характер и заданная точность контурного управления зачастую не достигается. В-третьих, при управлении по формуле (5.8) полностью игнорируются перекрестные связи в каналах управления, порожденные взаимным влиянием звеньев манипу-  [c.135]



Смотреть страницы где упоминается термин Эффект стабилизирующий : [c.321]    [c.80]    [c.666]    [c.471]    [c.471]    [c.72]    [c.162]    [c.27]    [c.96]    [c.128]    [c.100]    [c.116]    [c.226]    [c.77]    [c.136]    [c.69]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.51 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте