Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электронно-ядерного движения

Полосатые молекулярные спектры поглощения и излучения возникают при переходах между дискретными уровнями молекул. В точной постановке задача определения энергетических уровней молекулы не имеет решения и для учета взаимного влияния движения электронов и ядер, связи спиновых моментов с орбитальными и т. д. приходится опираться на приближенные методы, использующие характерные особенности внутримолекулярных взаимодействий. Вследствие заметной разницы в массах скорость движения электронов в молекулах велика по сравнению со скоростью движения ядер и стало быть электроны и ядра вносят неодинаковый вклад в полную энергию молекулы. При этом оказалось возможным отделить проблему определения энергии, связанной с движением электронов в поле ядер, от энергии собственно ядерного движения и учесть методами последовательных приближений взаимное влияние электронной (характеризующейся относительно большой частотой переходов) и ядерной (характеризующейся относительно малой частотой переходов) подсистем в молекуле.  [c.849]


Мы ограничимся кратким обсуждением лишь наиболее об]л их положений, отсылая интересующихся деталями вычислений к оригинальным статьям и монографиям [354—359]. Значительное упрощение расчетов электронного строения молекул и твердых тел дает приближение Борна—Оппенгеймера, позволяющее записать раздельные уравнения Шредингера для электронов и ядер на основании существенного различия масс этих частиц. Вместе с тем следует помнить, что такое приближение игнорирует взаимное влияние электронного и ядерного движений, ответственное за рассеяние электронных волн на фононах, которое проявляется, например, в виде электрического сопротивления.  [c.132]

НЛО, например, получение гармоник, смешение света, самофокусировку, вынужденное комбинационное рассеяние (см. гл. 3 и 4), которые не могут быть объяснены на основании материального уравнения линейной оптики. То обстоятельство, что при не слишком больших напряженностях поля величина превалирует над не означает, что р1 является каким-то дополнительным членом к обусловленным побочными эффектами или свойствами. Существование нелинейной части поляризации непосредственно связано с основными физическими закономерностями (см. гл. 2), например с зависимостью потенциала точечного заряда от расстояния по закону 1/г, с существованием силы Лоренца, с взаимодействием электронного и ядерного движений в атомных системах или в магнитном случае с фундаментальной зависимостью между магнитным моментом и моментом количества движения протонов и вообще атомных ядер.  [c.41]

Переходные моменты могут быть вычислены следующим образом (для упрощения мы здесь не принимаем во внимание вращение молекулы и ограничиваемся двухатомными молекулами). В так называемом адиабатическом приближении полную собственную функцию молекулы фд можно записать в виде произведения электронной собственной функции 11 0 , заданной при фиксированном расстоянии между ядрами и параметрически зависящей от положения ядер, и функции ядерного движения (см., например, [П2-1])  [c.494]

Даже при таких целях любое рассмотрение интересующих нас электронных и решеточных степеней свободы должно быть по необходимости приближенным, так как электронно-ядерная система является системой многих тел, для которой в настоящее время нет теоретического описания. Наиболее важным прибли-л<ением, которое положено в основу и нашего рассмотрения, является адиабатическое приближение Борна — Оппенгеймера [89], Самым важным в этом приближении является способ, которым разделяются электронные и ядерные переменные, так что их можно рассматривать порознь. Разделение переменных не является полным, так как именно деформация электронных состояний, создаваемая движением ядер, обусловливает гармонический и ангармонический потенциал, в котором движутся ядра. Показано, что потенциальная энергия ядер, которая в классическом рассмотрении предполагалась гармонической ( 67 и 109), возникает вследствие зависимости полной энергии многоэлектронной системы от смещений ядер. Она ра-вна электронной энергии, определенной при фиксированном положении ядер. Волновые функции всей системы являются произведениями решеточной  [c.351]


В последнее время существенно повысился интерес к исследованию влияния электронно-ядерных (ЭЯ) взаимодействий на структуру спектров молекул. Обычно КВ-задачи решаются в приближении Борна—Оппенгеймера (В-0) в предположении, что движение ядер происходит в поле с некоторым эффективным потенциалом, который определяется из решения электронной задачи. При этом полная волновая функция системы представляется в виде произведения электронной волновой функции на ядерную. Такое решение задачи, будучи лишь приближением к реальной картине, может не давать точного представления о всех особенностях КВ-спектра конкретных молекул. К настоящему времени известен ряд работ, например, [2, 4, 18, 45, 52], результаты которых выходят за рамки приближения Б-0. Более точные приближения дают заметное улучшение расчетов изотопической зависимости нормальных частот, электронного изотопического сдвига, поправок в дипольный и квадрупольный момент и некоторых других эффектов. Нужно отметить, что в большинстве работ рассмотрены двухатомные молекулы. Интерес представляет также вопрос о поправках к приближению Б-0 для многоатомных молекул. Например, как влияют отклонения от него на КВ-гамильтониан каким образом формируются молекулярные и спектроскопические параметры (эффективные моменты инерции, нормальные частоты, константы ангармоничности и т. д.) может ли вызвать ЭЯ-взаи-модействие появление линий, соответствующих запрещенным переходам, и каково его влияние на вероятности разрешенных Эти и некоторые другие вопросы требуют по крайней мере качественного изучения отклонения от приближения Б-0.  [c.30]

Прежде чем обсуждать различные проявления электронно-ядерного-взаимодействия, вернемся к вопросу, кратко обсуждавшемуся в гл. I, а именно, к вопросу о том, что ядерное орбитальное движение не вызывает появления ядерного парамагнетизма (в отличие от положения, существующего в теории электронного парамагнетизма, для которого орбитальное движение электрона существенно).  [c.169]

Возможность создания ядерной динамической поляризации при насыщении электронного резонанса была предсказана теоретически, реализована экспериментально для случаев, когда в образце суш,ествует быстрое электронно-ядерное относительное движение (парамагнитные примеси в жидкости, электроны проводимости в металлах и полупроводниках), для различных типов электронных статистик (Ферми или Больцмана) и для различных типов электронно-ядерных взаимодействий (скалярное или диполь-дипольное).  [c.365]

Факторы Франка — Кондона по существу определяют относительную интенсивность переходов между колебательными состояниями двух электронных состояний таким образом, они выступают здесь как аналог правила отбора, обусловленного физически тем, что в приближении Борна — Оппенгеймера электронные и ядерные движения можно разделить. Действительно, примни Франка — Кондона гласит, что ядерные движения ( 10 с) можно считать замороженными за характерные времена электронных переходов (с< 10 с). Поэтому переходы (вверх или вниз) между электронными состояниями молекул можно представить на диаграмме потенциальной энергии вертикальными прямыми. Рис. 3.14 иллюстрирует этот принцип и поясняет, почему определенные колебательные переходы являются более предпочтительными по сравнению с другими. Обратившись к рис. 3.14, можно легко понять качественное поведение факторов Франка — Кондона, если вспомнить, что колебательные волновые функции с V > О имеют максимум вблизи классических точек поворота (см. рис. 3.5).  [c.107]

Если движение нуклонов в ядре имеет хаотический характер и можно воспользоваться статистическим методом рассмотрения, то ядро можно уподобить разреженному ферми-газу, находящемуся в замкнутом объеме. В этом случае мы будем иметь газовую модель ядра. Наоборот, если нуклоны ядра совершают упорядоченные дни жения, то ядро уподобляется планетной системе или атомной си стеме с почти независимым орбитальным движением электронов По определенному закону нуклоны ядра группируются в оболочки В этом случае мы будем иметь дело с моделью ядерных оболочек  [c.178]


Изучение внутренней конверсии имеет большое значение для определения различных характеристик ядерных уровней (энергии — по энергии конверсионных электронов, момента количества движения — по величине коэффициента конверсии и  [c.170]

Правда, эта величина существенно больше, чем сечение взаимодействия быстрого нейтрона с ядрами (- 10 2 см ), однако если учесть, что в процессе взаимодействия с электроном нейтрон теряет лишь ничтожную часть своей энергии (- 10 эв), тогда как при ядерном столкновении может потерять значительную ее долю (при лобовом столкновении с протоном — всю), то становится ясно малая роль ионизационных потерь при движении нейтрона в среде.  [c.239]

На сегодняшний день главным свойством ядерной структуры следует считать существование в ядре независимых движений, скажем осторожно, одночастичного типа. Путь к пониманию этого свойства был долгим и мучительным, так как оно обосновывается не одним-двумя определяющими фактами, а лишь обширной совокупностью данных о статических свойствах, спектрах возбужденных состояний, а также о ядерных реакциях. Из этого свойства следует, что ядро более всего похоже на вырожденный ферми-газ, т. е. на плотный идеальный газ, состоящий из частиц, подчиняющихся принципу Паули, и находящийся при температуре, соответствующей энергии кТ, намного меньшей кинетической энергии последнего заполненного состояния. Такой ядерный газ похож на электронный газ в кристаллах.  [c.112]

Введение изотопического пространства само по себе не содержит физических гипотез, а является лишь методом описания. Ничто не мешает нам ввести другое формальное пространство, в котором разными состояниями одной и той же частицы были бы, скажем, нейтрон и электрон. Однако такое пространство никто не вводит из-за его бесполезности для физики. Изотопическое пространство полезно тем, что по отношению к нему можно сформулировать имеющее физический смысл утверждение, состоящее в том, что ядерные взаимодействия (и вообще все сильные взаимодействия, см. гл. VII, 2) инвариантны относительно поворотов в изотопическом пространстве. Это утверждение эквивалентно тому, что изотопический спин является интегралом движения, правда, только по отношению к сильным внутриядерным взаимодействиям. В электромагнитных взаимодействиях закон сохранения изотопического спина нарушается. Таким образом, изотопическая инвариантность может быть выражена в форме частичного (т. е. справедливого не для всех видов взаимодействий) закона сохранения изотопического спина. Посмотрим теперь, как работает этот закон сохранения, т. е. каким образом из него можно извлекать экспериментально проверяемые следствия.  [c.192]

Энергию, необходимую для перехода электрона в свободное состояние или для образования дырки, может доставить не только тепловое движение, но и другие источники энергии, например свет, поток электронов и ядерных частиц, электрические и магнитные поля, механические воздействия и т. д.  [c.14]

Атомные частицы, проходя через вещество, теряют энергию двумя способами. Во-первых, они могут возбуждать или вырывать атомные электроны во-вторых, они могут передавать энергию атому в целом при ядерных столкновениях. В связи с этим прохождение атомных частиц через вещество представляет сложную задачу многих тел. Однако ввиду большой массы ядра по сравнению с массой электрона можно с приемлемой степенью точности провести различие между ядерными столкновениями , при которых импульс и кинетическая энергия частицы переходят в поступательное движение атома как целого, и электронными столкновениями , при которых энергия передается атомным электронам и происходит возбуждение или ионизация атома. Ядерные столкновения относят к разряду упругих в отличие от неупругих столкновений при обмене энергией налетающей частицы с электронной подсистемой вещества.  [c.198]

Проникновение в микромир, познание его законов показали необычайную мощь фундаментальной науки, как основы принципиально новых производств. Открытие материальных носителей электричества — электронов и закономерностей их движения в вакууме, в твердом теле положило начало новой области науки — электронике. Только благодаря успехам электроники удалось создать радиолокацию, радиотехнику сверхвысоких частот, электронно-вычислительные машины, электронную биомедицинскую аппаратуру, электронные микроскопы и многое другое. Открытие возможности управления электрическими свойствами полупроводниковых и диэлектрических кристаллов ряда веществ, глубокие познания законов и механизмов электропроводности, поляризация твердого вещества вызвали новую революцию в радиотехнике, электронике и вычислительной технике. Электронные вакуумные лампы заменяются ничтожными по размерам кристаллами. Компактные полупроводниковые силовые вентили высокой надежности с успехом заменяют сложные установки в энергетических устройствах. Прочно вошли в практику транзисторные радиоприемники. Недавно открытое явление сверхпроводимости второго рода дало возможность приступить к изготовлению мощных электромагнитов. На основе квантовой теории созданы квантовые генераторы света и радиоволн (лазеры и мазеры), открывающие огромные перспективы для различных областей техники. Наиболее значительным достижением абстрактной науки о ядерных реакциях стало производство атомной энергии.  [c.31]

ИЗЛУЧЕНИЕ электромагнитное [—процесс испускания электромагнитных волн, а также само переменное электромагнитное поле этих волн Вавилова — Черенкова возникает в веществе под действием гамма-излучения и проявляется Б свечении, связанном с движением свободных электронов видимое способно непосредственно вызывать зрительное ощущение в человеческом глазе при длине волн излучения от 770 до 380 нм вынужденное образуется в результате взаимодействия атомов вещества с полем при условии отдачи энергии атомов полю гамма-излучение — испускание волн возбужденных атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также при распаде частиц, аннигиляции пар частица — античастица и других процессах (при длине волн в вакууме менее 0,1 нм) инфракрасное испускается нагретыми телами при длине волн в вакууме от 1 мм до 770 нм (1 нм=10 м) оптическое (свет) характеризуется длиной волны в вакууме от 10 нм до 1 мм рентгеновское возникает при взаимодействии заряженных частиц и фотонов с атомами вещества и характеризуется длинами волн в вакууме от 10—100 нм до 0,01—1 пм ультрафиолетовое является оптическим с длиной волны в вакууме от 380 до 10 нм] ИНДУКТИВНОСТЬ [характеризует магнитные свойства электрической цепи с помощью коэффициента пропорциональности между силой электрического тока, текущего в контуре, и полным магнитным потоком, пронизывающим этот контур взаимная является характеристикой магнитной связи электрических цепей, определяемой для двух контуров коэффициентом пропорциональности между силой тока в одном контуре и создаваемым этим током магнитным потоком, пронизывающим другой контур] ИНДУКЦИЯ магнитная—силовая характеристика магнитного поля, определяемая векторной величиной, модуль которой равен отношению модуля силы, действующей со стороны магнитного поля на малый элемент проводника с электрическим током, к произведению силы тока на длину проводника, расположенного перпендикулярно вектору магнитной индукции  [c.240]


РАЗРЯД (искровой имеет вид прерывистых зигзагообразных разветвляющихся нитей, быстро прекращающихся после пробоя разрядного промежутка уменьшения напряжения, вызванного самим разрядом кистевой относится к разновидности коронного разряда, сопровождающегося появлением искр вблизи острия коронный — высоковольтный самостоятельный разряд, возникающий в резко неоднородном электрическом поле вблизи электродов с большой кривизной поверхности (острие, проволока) лавинный электрический разряд в газе, в котором возникающие при ионизации электроны сами производят дальнейшую ионизацию несамостоятельный— газовый разряд, существующий при ионизации газа внешним ионизатором самостоятельный не требует для своего поддержания внешнего ионизатора тлеющий происходит самостоятельно в газе при низкой температуре катода, сравнительно малой плотности тока и пониженном по сравнению с атмосферным давлении газа электрический — прохождение электрического тока через вещество, сопровождающееся изменением состояния вещества под действием электрического поля) РАЗУПРОЧНЕНИЕ — понижение прочности и повышение пластичности предварительно упрочненных материалов, РАКЕТОДИНАМИКА — наука о движении летательных аппаратов, снабженных реактивными двигателями РАСПАД радиоактивный (альфа состоит в испускании тяжелыми ядрами некоторых химических элементов альфа-частиц бета обозначает три типа ядерных превращений электронный и позитронный распады, а также электронный захват гамма является жестким электромагнитным излучением, энергия которого испускается при переходах ядер из возбужденных энергетических состояний в основное или менее возбужденное состояние, а также при ядерных реакциях) РАСПЫЛЕНИЕ катодное — разрушение твердых тел при  [c.269]

Существование флуктуирующего сверхтонкого взаимодействия, связанного либо с движением носителей электронного спина, либо с быстрой переориентацией этого спина в обменном поле, приведёт к появлению др. релаксац. процессов. Контактное фермиевское взаимодействие приводит к релаксац. процессу типа Д5г = —1 при А/г — 1, и наоборот (со скоростью релаксации w . Флуктуирующее дипольное взаимодействие приведёт к процессу типа ДА = —1, Д/ — —1 (со скоростью релаксации и з). В ядерной магн. системе существуют релаксац. процессы Д5г = О, Д/j = 1 (со скоростью релаксации ю ).  [c.398]

В изотропных средах возникают эффекты третьего порядка, при которых геометрические свойства распространения электромагнитных волн зависят от амплитуды напряженности электрического поля. На эти свойства распространения волны с частотой могут влиять, кроме компоненты напряженности поля с той же частотой /, также компоненты с другими частотами, например Простая модель, объясняющая такую зависимость, уже была представлена в 2.3. На основании этой модели было описано возникновение нелинейной поляризации в результате ориентации анизотропных молекул. При известных условиях эта поляризация служит существенным фактором, влияющим на распространение волн. Напомним явление, описанное в 2.3 если в связанной с молекулой системе координат существует строгая линейная зависимость между Р. и то в лабораторной системе координат возникает нелинейная поляризация, которая, очевидно, обусловлена ориентацией отдельных молекул. При этом существенную роль играет не только движение электронов, но и вращательное движение ядер. Поэтому настоящий параграф посвящен эффектам электронно-ядерного движения. Следующей причиной зависимости свойств распространения от амплитуд напряженности поля является электрострикцня. При элек-трострикции электрическое поле изменяет плотность среды, что влечет за собой изменение оптических констант. Следовательно, и в этом случае играет роль движение молекул в целом. Значения восприимчивости жидкостей с сильно анизотропными молекулами, соответствующие модели 2.3, и значения электрострикции имеют, вообще говоря, одинаковые порядки величин (10 3°А-с-м-В" ) наоборот, в жидкостях из изотропных молекул, т. е. молекул со сферической формой эллипсоида поляризуемости, электрострикцня часто превалирует над всеми другими возможными причинами. Наконец, в очень сильных полях может появиться и чисто электронный эффект. Он обусловлен тем, что связь между  [c.186]

I РАВНОВЕСНАЯ КОНФИГУРАЦИЯ молекулы — расположение атомов в молекуле, соответствующее минимуму потенциальной поверхности. Понятие Р. к. Имеет смысл только в адиабатическом приближении, при к-ром разделяются электронные и ядерные движения. При строгом рассмотрении говорить о Р. к, молекул не имеет смысла, т. е, понятие Р. к. является ириближённым.  [c.197]

Источником Ш. а. л. являются электронно-ядерные ливни, порождаемые космич. протонами и более тяжёлыми ядрами с последующим развитием электронно-фотонного и вдерного каскадов в атмосфере. Углы вылета частиц в первом акте взаимодействия адрона, вызывающего Ш.а.л., малы бйЮ рад. Поэтому развитие каскада происходит по направлению движения первичной частицы и Ш.а.л. имеет осевую симметрию относительно этого направления (небольшие отклонения от осевой симметрии могут возникать под влиянием магн. поля Земли). Плотность частиц максимальна около оси и уменьшается с расстоянием. С расстоянием от оси меняется и состав частиц в ливне. Вблизи оси 98% всех частиц составляют электро-  [c.462]

Франк-кондоновское (F ) и герцберг-теллеровское (НТ) взаимодействия. Как уже отмечалось в адиабатическом приближении функция системы взаимодействующих электронов и ядер берется в виде произведения (4.6). Та часть полного электронно-колебательного взаимодействия, которую учитывает эта функция называется адиабатическим взаимодействием. Это взаимодействие выражает степень влияния электронного и ядерного движений друг на друга.  [c.55]

Теплоемкости определяются экспериментально (калориметрически), но они могут быть и вычислены теоретически, исходя из строения элементарных частиц и всего вещества в целом с достаточной степенью точности. При расчете теплоемкостей и энтальпий газов при высоких температурах, когда поглощение энергии газообразным веществом происходит вследствие возрастания энергии поступательного движения молекул, вращательного движения сложных молекул, колебательного движения атомов внутри молекул и расхода энергии на возбуждение электронных оболочек атомов, а в случае высокотемпературной плазмы (- 10 K) и на возбуждение ядерных структур (термоядерные реакции). Суммируя все расходы энергии, можно в общем виде представить уравнение теплоемкости газа следующим уравнением  [c.255]

Опыт классификаций материальных объектов, основывающийся на трудах Ф. Энгельса, свидетельствует, что именно отсюда и следует начать использовать для классификации видов энергии комплексный подход, включающий эти три критерия, поскольку какого-то одного из них недостаточно. Действительно, одни и те же виды материи участвуют в разных формах движения (например, электрон — в электрической, химической, тепловой и т. д.). Формы движения не охватывают пока напряженных состояний какой, например, форме движения соответствует потенциальная энергия подвешенной гири, являющаяся следствием гравитационного взаимодействия И вместе с тем всего лишь четыре четко выде-Л нных класса физических взаимодействий — ядерное (сильное), электромагнитное, нейтринное (слабое) и гравитационное (ультраслабое) — тоже не дают оснований для определения всех разновидностей энергетических явлений.  [c.131]


Выделяемое при первом же взрыве тепло вполне достаточно для того, чтобы образовался ионизированный слой раскаленного газа, или плазмы, которая распространяется по цилиндру вслед за ударной волной. В таком газе орбитальные электроны отделяются от своих исходных атомов, и присутствие этих свободных электронов делает ионизированный газ (то есть плазму) электропроводящим Ч Колеблясь вместе с ионизированным газом вдоль цилиндра, волна свободных электронов создает переменный электрический ток, и, таким образом, ядерная энергия в реакторе- бомбе непосредственно превращается в электрическую (без обременительного процесса кипячения воды, необходимого для получения пара и приведения в движение турбогенератора). Конечно, мы еще должны найти способ извлекать эуу электроэнергию из реактора- бомбы , прежде чем сможем использовать его на практике. В принципе для этого можно установить соответствующие катушки-токосниматели (как показано на рис. 21) переменный электрический ток, текущий внутри реактора, будет индуцировать электрический ток в таких катушках подобно тому, как первичная обмотка трансформатора индуцирует токи во вторичной обмотке. Однако на практике токоснимающие катушки очень сложно установить настолько близко к реактору, чтобы такая индуктивная связь была достаточно эффективной. Из этого затруднительного положения можно выйти, пропустив токоснимающие электроды сквозь стенки цилиндра, однако и в этом случае весьма трудно найти такой материал для электродов, который выдержал бы громадные рабочие температуры внутри реактора (около 3500° С у внутренней поверхности цилиндра и вдвое большая — в критической зоне).  [c.70]

КОЛЕБАНИЯ — движения или состояния, обладающие той или иной степенью повторяемости во времени, К, свойственны всем явлениям природы пульсирует излучение звёзд, внутри к-рых происходят циклич. ядернью реакции с высокой степенью периодичности вращаются планеты Солнечной системы (а всякое вращение можно представить себе как два одновременных К, во взаимно перпендикулярных направлениях) движение Луны вызывает приливы и отливы на Земле в земной ионосфере и атмосфере циркулируют потоки заряж, и нейтральных частиц ветры возбуждают К, и волны на поверхностях водоёмов и т, д. Внутри любого живого организма — от одиночной клетки до высокоорганизованных их популяций — непрерывно происходят разнообразные, ритмично повторяющиеся процессы (биение сердца, колебания психич. состояний и др.). В виде сложнейшей совокупности К. частиц и полей (электронов, фотонов, протонов и др.) можно представить устройство микромира.  [c.399]

С.-с. в. между ядрами атомов, входящих в кри-Сталлич. решётку твёрдого тела, определяет форму линий ядерного магнитного резонанса и даёт информацию о структуре вещества и внутр. атомно-молекулярных движениях. В жидкостях быстрое тепловое движение атомов и молекул приводит к тому, что анизотропная часть ядерно-ядерного С.-с. в., усредняясь, уменьшается практически до нуля. Это ведёт к резкому сужению линий и повышению разрешающей способности ЯМР. Сходных результатов можно достигнуть и в твёрдых телах за счёт быстрого вращения образца либо с помощью спец, радиочастотных полей, заста-вляюпщх ядерные спины быстро менять свою ориентацию. Косвенное ядерное С.-с. в., обусловленное очень слабым взаимодействием ядерных спинов и Ij через общую электронную систему молекулы, носит изотропный характер и поэтому не усредняется. Оно образует малые ( 1 Гц) мультиплетные расщепления в спектрах ЯМР высокого разрешения. Эти расщепления не зависят от величины внеш. магв. поля и могут быть использованы для классификации и структурного анализа сложных молекул и их фрагментов,  [c.646]


Смотреть страницы где упоминается термин Электронно-ядерного движения : [c.241]    [c.405]    [c.248]    [c.395]    [c.101]    [c.365]    [c.324]    [c.122]    [c.207]    [c.13]    [c.36]    [c.132]    [c.152]    [c.436]    [c.503]    [c.635]    [c.331]    [c.331]    [c.434]    [c.647]    [c.18]   
Введение в нелинейную оптику Часть1 Классическое рассмотрение (1973) -- [ c.0 ]



ПОИСК



Движение электронное

Электронно-ядерного движения эффекты



© 2025 Mash-xxl.info Реклама на сайте