Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электронные времени

Металлы имеют электрическое сопротивление из-за того, что никакое твердое тело не является идеальным кристаллом. В нем всегда есть примеси, вакансии и другие несовершенства периодической структуры, на которых могут рассеиваться электроны, и при очень низких температурах именно они ограничивают проводимость. Однако даже если бы удалось полностью устранить несовершенства периодической структуры, то и тогда проводимость осталась бы конечной из-за тепловых колебаний ионов, которые нарушают идеальную периодичность потенциала, действующего на электроны. Такие отклонения, величина которых зависит от температуры, могут приводить к рассеянию электронов они обусловливают температурную зависимость электронного времени релаксации, отмечавшуюся в гл. 1.  [c.218]


Эффект Гантмахера в параллельных и наклонном полях дает также ценную информацию об электронных временах релаксации.  [c.280]

Эта величина совершенно аналогична электронному времени релаксации, введенному при обсуждении модели Друде. Последующие рассуждения во многом напоминают рассуждения, проведенные при рассмотрении электронов различие заключается лишь в том, что фононы не имеют заряда (отсутствует термоэлектрическое поле), плотность числа фононов зависит от температуры и число фононов может не сохраняться, в особенности на концах образца.  [c.126]

Улучшение характеристик противоточной системы с помощью принципа механического торможения изучалось автором совместно с сотрудниками не только при каскадно расположенных вставках, рассмотренных выше. Представляется, что наиболее эффективным осуществлением этого принципа является применение винтовых сетчатых вставок (одно- или многозаходных). Экспериментальное изучение таких вставок проводилось методами меченых частиц, р-просвечивания и отсечек [Л. 21, 84]. В первом случае экспериментальная установка состояла из стенда торможенной газовзвеси и электронного блока для регистрации заряженных частиц. Стенд торможенной газовзвеси включал в себя прозрачную цилиндрическую камеру из органического стекла высотой 0,8 и диаметром 0,34 м, в которую вставлялись сменные винтовые сетчатые вставки. Источником излучения являлась частица алюмосиликата di = = 4,35 мм, меченная Со активностью 0,5 мг-экв. Для проверки методики вначале были проведены опыты по определению времени свободного падения одиночной меченой частицы, которое сопоставлялось с теоретически рассчитанной величиной. Время находилось по (2-45) при у = 0, Vo.a=VT,a=0. Многократное определение времени, в течение которого меченая частица проходила контрольный участок камеры, совпадало с расчетным с погрешностью 4%, что лежит в пределах точности эксперимента и служит частной проверкой  [c.95]

Рассмотрим законы распределения некоторых naj a-метров при имитационном моделировании станочных модулей. Для электрической и электронной частей систем управления станочных модулей используется экспоненциальный закон распределения времени безотказной работы. Время безотказной работы v-ro режущего инструмента — Tv рассчитывается с помощью закона распределения Вейбулла  [c.66]

Модели в алгоритмической и аналитической формах называют соответственно алгоритмическими и аналитическими. Среди алгоритмических моделей важный класс составляют имитационные модели, предназначенные для имитации физических или информационных процессов в объекте при задании различных зависимостей входных воздействий от времени. Собственно имитацию названных процессов называют имитационным моделированием. Результат имитационного моделирования — зависимости фазовых переменных в избранных элементах системы от времени. Примерами имитационных моделей являются модели электронных схем в виде систем обыкновенных дифференциальных уравнений или модели систем массового обслуживания, предназначенные для имитации процессов прохождения заявок через систему.  [c.147]


Если при этом система уравнений (5.10) есть модель динамической системы (например, электронной схемы), то величины— 1Д/ принято называть постоянными времени т>. Тогда условие устойчивости явного метода Эйлера приводится к виду  [c.239]

Имитационное моделирование — метод исследования, основанный на том, что изучаемая динамическая система заменяется ее имитатором и с ним проводятся эксперименты с целью получения информации об изучаемой системе. Напомним, что динамическими являются такие системы, которые изменяются во времени. Имитаторы могут быть реализованы на ЭВМ, а также на гидродинамических, механических или электронных системах.  [c.349]

Зависимые источники можно разделить на группы 1) источники, зависимые от времени 2) источники, зависимые от фазовых переменных. Источники, зависимые от времени, используются для моделирования внешних воздействий на объект, например трапецеидальным источником расхода может быть отражено функционирование идеального гидронасоса в режимах включения, работы и выключения, синусоидальным источником напряжения — подключение генератора сигналов к электронной схеме. Источники, зависимые от фазовых переменных, используются для отражения нелинейных свойств объектов, а также для установления взаимосвязей между подсистемами различной физической природы.  [c.75]

Для этого звена также можно получить соответствующую структурную схему, но с точки зрения затрат машинного времени и памяти экономичнее будет звено, представленное электронной схемой (рис. 3.19) с зависимым источником напряжения на входе.  [c.148]

С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.  [c.81]

Влага на поверхности металла, возникшая в результате конденсации или попадания осадков, является электролитом для данного элемента. Кучера и др. для определения скоростей атмосферной коррозии предложили установку, представленную на рис. 8.4 [27, 28]. Элемент В расположен на расстоянии около 1 м над поверхностью земли, под углом 45°. В течение длительных периодов времени электронный интегратор регистрирует появление тока в элементе. Сопоставление результатов электрохимических измерений с параллельными гравиметрическими показало пригодность электрохимической методики для оценки быстрых изменений скорости коррозии [28].  [c.179]

Судя по количеству водорода, накапливающегося в котлах в зависимости от времени, а также по данным лабораторных измерений скорости коррозии, скорость роста оксида подчиняется параболическому закону 123], а следовательно, контролируется диффузией. Механизм этого процесса, как это описано в гл. 10, связан с миграцией ионов и электронов через слой твердых продуктов реакции.  [c.283]


Полагаем, что движение электрона, как частицы с массой Ше и зарядом е, под действием поля Е и ускоряющей силы еЕ происходит в течение времени т = "к/, где v — средняя квадратичная скорость электрона (тепловая, так как скоростью дрейфа пренебрегаем из-за сравнительной малости), а "к — средняя длина свободного пробега электрона (пробег). Движение с ускорением еЕ/т за время т разгонит электрон до скорости дрейфа  [c.33]

Мембрана манометра, например, практически никак не прореагирует на удар одной молекулы газа, а амперметр—на прохождение через него одного электрона. Как схематически показано на рис. 1.1, после включения того или иного прибора в момент времени отклонение его стрелки, которое после градуировки определит нам  [c.16]

Чтобы оценить его величину, вспомним о том, что говорилось в 1.3 о времени инерционности макроскопических измерительных приборов такой прибор реагирует лишь на сумму тех воздействий, которым он подвергается за время т . В частности, значение тока /, регистрируемого прибором, определяется количеством электронов М, протекших через него за время т , следующим образом / = еЛ /т где заряд электрона. Поэтому число электронов, которые определяют показания прибора, N = И /е. Относительная  [c.44]

Выражение (2-39) — приближение довольно грубое, так как практически никогда не бывает соединений с чисто ионной связью. Валентные электроны могут в разные моменты времени, описывая свои орбиты, изменять заряд иона, т. е. заряд иона является временной функцией от положения электрона.  [c.51]

Рекомбинационное свечение. Числа положительных ионов и электронов, образованные вследствие возбуждения в данной системе, обозначим соответственно через N w п. Если вероятность рекомбинации в единицу времени положительного иона и электрона обозначить через р, то число рекомбинирующих пар за время  [c.370]

Полная мощность энерговыделения в защите определяется как произведение числа частиц, поглощаемых в защите за единицу времени, на величину энергии, передаваемой частицей защите. Электроны, у-кванты передают защите всю энергию. Тяжелые заряженные частицы (протоны, а-частицы) передают энергию, равную алгебраической сумме кинетической энергии частицы и энергии реакции, вследствие которой поглощается частица. Нейтрон передает свою кинетическую энергию и энергию связи, освобождающуюся при поглощении его ядром вещества защиты.  [c.108]

Скорость упорядоченного движения электронов в проводнике. Для определения скорости упорядоченного движения свободных электрических зарядов в проводнике нужно знать концентрацию п свободных носителей заряда и силу тока I. Если концентрация свободных электрических зарядов в проводника п, то за промежуток времени Дг через поперечное сечение S проводника при скорости V их упорядоченного двин ения проходит электрический заряд Лд, равный  [c.153]

Проекцию скорости электрона на ось OY молено найти по проекции ускорения йу и времени ti движения электрона мелсду пластинами  [c.204]

Методы возбуждения и регистрации радиоволн приведены в курсах электро- и радиотехники и имеют лишь косвенное отношение к проблеме распространения коротких электромагнитных волн. Важно лишь отметить, что для частот v > 10 Гц (к < 30 см) электронная лампа типа триода, на использовании которой до недавнего времени была основана классическая радиотехника, уже становится непригодной. Действительно, в этой области частот время пролета электрона от катода до анода сравнимо с периодом изменения электромагнитного поля и сетка уже не может управлять анодным током.  [c.10]

Экспериментальная установка для съемки цветного объемного голографического мультипликационного фильма. Цветной голографический кинокадр представляет собой мультиплексную голограмму, состоящую из двух сфокусированных голограмм, одновременно зарегистрированных в двух слоях пленки, сенсибилизированных к красному и зеленому диапазонам длин волн. Такая двухслойная голограмма воспроизводит два перекрывающихся цветоделенных изображения, каждое в своем диапазоне спектра. Оптическая схема съемки цветного объемного голографического фильма приведена на рис. 103. Запись велась на линиях излучения аргонового лазера 0,514 и криптонового 0,647 мкм на двухслойной пленке, описанной выше. Средний угол между опорным и объектным пучками в красном и зеленом каналах составлял около 56°. Съемка мультипликационных экспериментальных фильмов производилась на лабораторной съемочной площадке, предназначенной для получения изобразительных голограмм. Базой площадки служил амортизированный голографический стол размером 2500X4000 мм, разработанный в НИКФИ (см. раздел 1.4.1). На столе размещались голографическая киносъемочная камера, элементы оптической схемы съемки, поворотный стол с объектами съемки. Два лазера Spe tra Physi s модель 171 и часть оптических элементов были установлены на площадке, поднятой над столом на 2000 мм и жестко связанной с ним. Вспомогательные блоки и электронное временное устройство управления съемочной камерой, затворами, поворотным столом, ва  [c.162]

Температурное уширение квазилиний обусловливается изменением упругих постоянных, ангармонизмом колебаний, неадиабатичностью и зависимостью силы осциллятора электронного перехода от колебаний. Последний фактор уменьшает время жизни электронного состояния и соответственно уширяет линии по сравнению с первоначальной радиационной шириной. Изменение упругих постоянных (точнее, та часть его, которая приводит к перепутыванию нормальных координат кристаллических колебаний, т. е. к изменению осей системы нормальных координат кристаллических колебаний ири электронном переходе) и ангармонизм колебаний (точнее, ангармонические члены связи между колебаниями, обусловливающие релаксацию) приводят к температурным уширениям, которые можно для наглядности сопоставить временам колебательной релаксации. Характерные времена колебательной релаксации меньше электронных времен кизни в 10 —10 раз уже для разрешенных излучательных электронных переходов. Поэтому увшрения, обусловленные изменением упругих постоянных и ангармонизмом, играют обычно преобладающую роль.  [c.26]


В этом случае целесообразно С1 арку вести импульсным электронным лучом с большой плотностью энергии и частотой импульсов 100—500 Гц. В результате повышается глубина нронлавления. При правильной установке соотношения времени паузы и импульса можно сваривать очень тонкие листы. Благодаря теплоотводу во время пауз уменьшается протяженность зоны термического влияния. Однако при этом возможно образование подрезов, 1соторые могут быть устранены сваркой колеблющимся или расфокусированным лучом.  [c.68]

Проектирование технологических процессов требует больщих затрат времени и высокой квалификации проектировщика. Автоматизация проектирования технологических процессов с помощью электронно-вычислительных машин (ЭВМ) начинает применяться в научных организациях и некоторых заводах. Процесс автоматизации проектирования технологических процессов начинают с выбора детали. Используют чертеж детали, материал, технические условия и др. Кодируют их и вводят в ЭВМ (вручную или автоматически). Сложную деталь представляют состоящей из простых элементов (плоскостей, окружностей, цилиндров, конусов, поверхностей и др.). Все эти элементы кодируют и вводят в ЭВМ. С помощью ЭВМ можно выбрать заготовку, маршрут обработки, расчет припусков, режимов резания, норм времени, выбор оснастки, загрузки оборудования, подготовку программ для станков с цифровым программным управлением и др. .  [c.125]

Таким образом, при химическом взаимодействии окислительный компонент внешней среды, отнимая у металла валентные электроны, одновременно вступает с ним в химическое соединение — продукт коррозии, который в большинстве случаев образует на поверхности корродируюш,его металла пленку. Образование на металле пленки продуктов коррозии протекает с самоторможением во времени, если пленка обладает защитными свойствами, т. е. затрудняет проникновение реагентов (металла и окислителя) друг к другу.  [c.31]

Схематический график зависимости логарифма i от h по Хауффе и Ильшнеру приведен на рис. 31. Из этого графика следует, что скорость перемещения электронов вследствие туннельного эффекта определяет скорость образования самых тонких пленок (область /), а скорость переноса ионов — скорость роста более толстых пленок (область II). Так, окисление алюминия во влажном кислороде при 25 С описывается во времени логарифмическим законом, переходящим по мере увеличения толщины окисной пленки в обратный логарифмический закон (рис. 32) переход от логарифмического закона к обратно логарифмическому закону окисления наблюдали у тантала в интервале от 100 до 300° С.  [c.55]

Электропроводность а пропорциональна подвижностям электронов и дырок, которые в свою очередь пропорциональны временам релаксации Те и та для электрон-фононных и дырочнофононных взаимодействий соответственно. Поэтому  [c.197]

То, что а и б являются характеристиками термометра, естественно следует из теории, обсуждавшейся ранее. Согласно (5.1), наклон кривой зависимости сопротивления от температуры обратно пропорционален полному времени релаксации т. Основная часть т — это вклад элоктрон-фононных взаимодействий, который обратно пропорционален температуре, однако сюда входят также времена релаксации для взаимодействий электронов с примесями, вакансиями и границами зерен. Все эти вклады зависят также от температуры, и поэтому величина а должна служить и служит чувствительным показателем чистоты проволоки и качества ее отжига. Отклонение от линейности б является функцией коэффициентов при Р и членах более вы-  [c.202]

Отраженные от дефекта импульсвл упругих колебаний подаются на пьезопластину и преобразуются в ней в электросигналы. Эти колебания усиливаются в усилителе, затем подаются кл экран электронно-лучевой трубки. При развертке расстояние от зондирующего импульса до принятого сигнала пропорционально времени прохождения импульса от пьезонластипы до дефекта и обратно. По числовому значению скорости и времени прохождения ультразвука можно определить координаты дефекта. Отклонение луча на электронно-лучевой трубке в вертикальном направлении характеризует амплитуду с сигнала и пропорционально значению размера дефекта.  [c.132]

Несмотря на то, что с появления первых САПР прошло совсем немного времени, уже наглядно проявились их преимущества. Например, используя САПР при проектировании станочных приспособлений, удалось повысить производительность труда разработчиков в 5—10 раз, а при проектировании итиндельных коробок а -регатных станков — в 18 раз. В настояи1ее время существуют САПР автомобилей, самолетов, электронных приборов н др.  [c.329]

Особенностью ММ на м и к р о у р о в н е является отражение физических процессов, протекающих в непрерывных пространстве и времени. Типичные ММ на микроуровне — дифференциальные уравнения в частных производных (ДУЧП). В них независимыми переменными являются пространственные координаты и время. С помощью этих уравнений рассчитываются поля механических напряжений и деформаций, электрических потенциалов, давлений, температур и т. п. Возможности применения ММ в виде ДУЧП ограничены отдельными деталями, попытки анализировать с их помощью процессы в многокомпонентных средах, сборочных единицах, электронных схемах не могут быть успешными из-за чрезмерного роста затрат машинного времени и памяти.  [c.38]

В ряде предметных областей удается использовать специфические особенности функционирования объектов для упрощения ММ. Примером являются электронные устройства цифровой автоматики, в которых возможно применять дискретное представление таких фазовых переменных, как напряжения и токи. В результате ММ становится системой логических уравнений, описывающих процессы преобразования сигналов. Такие логические модели существенно более экономичны, чем модели электрические, описывающие изменения напряжений и сил токов как непрерывных функций времени. Важный класс ММ на метауровне составляют модели массового обслуживания, применяемые для описания процессов функционирования ииформацнопиых и вычислительных систем, производственных участков, линий и цехов.  [c.39]

Формула Ричардсона — Дешмана. Плотность термоэмиссионного тока. Если число электронов, выходящих из эмиттера через выбранный участок поверхности за единицу времени, равно то плотность термоэмиссионного тока  [c.62]

Как следует из этого выражения, количество излучаемой энергии прямо пропорционально времени торможения di, квадрату количества заряда ядра и обратно пропорционально квадрату массы частицы. Следовательно, сильное тормозное излучение происходит в случае резкого торможения легчайших заряженных частиц — электронов — в поле ядра тяжелых элементов. Тогда так как q = е, то имеет место  [c.157]

Ускорители различаются видом ускоренных частиц (электроны, протоны, а-частицы, дейтроны, тяжелые ядра) способом ускорения (разрядные и рентгеновские трубки, электростатические генераторы, линейные ускорители, бетатроны, циклотроны, синхроциклотроны, синхрофазотроны и др.) максимальной энергией ускоренных частиц (от нескольких десятков килоэлектронвольт до нескольких сотен гигаэлектронвольт) числом ускоряемых в единицу времени частиц (от 10 —10 в 1 сек до нескольких миллиампер) назначением и способом использования ускоренного числа частиц (сброс ускоренных частиц на внутреннюю мишень, внешнюю мишень, мезонные фабрики , для медицинских и промышленных целей, физических исследований и т. д.).  [c.230]


Особенностью эволюции природных систем является наличие взаимосвязанных превращений структур разных иерархий, протекающих в различных временных шкалах. Поэтому введены представления о иерархической термодинамической системе как системе, состоящей из иерархических подсистем (взаимосвязанных в порядке структурного или какого-либо другого подчинения и перехода от низшего уровня к высшему), выделенных либо в пространстве, либо по времени установления в этих подсистемах равновесия при релаксации. Простейший пример иерархической пространственно выделенной термодинамической системы - двухфазная система пар - жидкость. Здесь каждая фаза системы - ее подсистема. Простейший пример системы, в которой подсистемы выделяются по временам релаксации, - плазма, включающая подсистемы электронов и ионов. Равновесие в каждой подсистеме последней системы устанавливается сравнигельно быстро, тогда как в системе в целом медленно, поскольку обмен энергией между подсистемами затруднен. В подобных ситуациях говорят о частично равновесных состояниях (равновесие в одной структурной гюдсистеме) и вводят различные температуры подсистем. Указанные примеры тривиальны, и термин иерархия в таких простых случаях не упо фебляется. Однако в более сложных иерархических термодинамических системах, например, биологических, содержащих много подсистем различных типов, удобно говорить о структурной и релаксационной иерархии. Так,  [c.23]

Измерив с помощью электронной аппаратуры длительность промежутка времени At между моментами времени отправления и возвращения электромагнитных волн, можно определить путь, пройденный радиоволнами S = -At, где с — скорость электромагнитной волны. Так как волны прощли путь до тела и обратно, расстояние до тела, отражавшего радиоволны, равно половине этого пути  [c.260]

Интервал времени т, в течение которого электрон может накопить энергию, необходимую для Boei o освобождения, можно определить, разделив работу выхода на значение энергии, приобретаемой электроном в единицу времени от электромагнитного поля.  [c.301]


Смотреть страницы где упоминается термин Электронные времени : [c.14]    [c.380]    [c.349]    [c.454]    [c.133]    [c.189]    [c.190]    [c.436]    [c.454]    [c.83]    [c.322]   
Машиностроение Энциклопедический справочник Раздел 4 Том 8 (1949) -- [ c.58 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте