Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоемкость расчет

Для практических расчетов теплоемкости всех веществ сводят в таблицы, причем с целью сокращения объема таблиц средние теплоемкости приводят в них для интервала температур от О до t.  [c.17]

Здесь t — температура, °С, с г — средняя в диапазоне температур О — / °С теплоемкость продуктов сгорания при постоянном давлении, отнесенная к единице их объема в нормальных условиях, Дж/(м -К). Энтальпия Hr измеряется в Дж/кг или Дж/м . Удельная (отнесенная к 1 в нормальных условиях) теплоемкость дымовых газов чуть больше, чем воздуха, поскольку вместо двухатомного кислорода в них появляются более теплоемкие трехатомные Oj и НаО, однако разница не превышает 5—10%. Как и у всех газов, теплоемкость продуктов сгорания заметно возрастает с температурой. Для более точных расчетов ее можно найти по составу смеси газов  [c.128]


Расчеты теплоемкости для жесткого ротатора иллюстрированы примером 1. Эти вычисления указывают, что теплоемкость двухатомного жесткого ротатора приближается к классической не-  [c.119]

Расчеты показывают, что теплоемкость увеличивается от нулевого значения при температурах абсолютного нуля до значения,  [c.122]

Для приближенных расчетов при не очень высоких температурах можно рекомендовать использование постоянных мольных теплоемкостей 1Су и [хСр, полученных, с некоторой корректировкой для трех- и многоатомных газов, на основании молекулярно-кинетической теории теплоемкости. Эти данные приведены в табл. 6-1.  [c.76]

В практических расчетах при определении количества теплоты обычно применяют так называемые средние теплоемкости.  [c.77]

При расчетах тепловых установок приходится встречаться со смесями газов, а в таблицах приводятся теплоемкости только для отдельных идеальных газов, поэтому нужно уметь определить теплоемкость газовой смеси. Если смесь газов задана массовыми долями,  [c.79]

Для приближенных расчетов иногда пользуются эмпирическими формулами, учитывающими зависимость теплоемкости от температуры по линейному закону. Для истинной теплоемкости эта зависимость может быть представлена уравнением вида  [c.81]

Уравнения для средних массовых и объемных теплоемкостей газов в пределах от О до 1 500 С приведены в табл. XIV приложения. В будущем при издании достаточно большого числа пособий, в которых будут приведены точные значения теплоемкостей, а также энтальпии и внутренней энергии, расчет теплоемкостей по приближенным эмпирическим формулам потеряет всякий смысл.  [c.81]

Расчет ведем на массу 1 кг. Теплоемкость рабочего тела принять  [c.273]

Температура в третьей точке не должна превышать 1000°К рабочее тело — воздух теплоемкость воздуха постоянная расчет проводится на 1 кг рабочего тела.  [c.292]

Расчет по формуле (6i8) дает достаточно хорошее совпадение с экспериментальными результатами при малых докритических давлениях охладителя тогда, когда теплоемкость пара мало зависит от температуры. Вблизи критических давлений, т. е. когда теплоемкость охладителя в значительной степени зависит от температуры, следует пользоваться выражением (6.56).  [c.159]

Для приближенных расчетов при невысоких температурах можно принимать следующие значения мольных теплоемкостей (табл. 3).  [c.38]

Теплоемкость газов изменяется с изменением температуры, причем эта зависимость имеет криволинейный характер. В табл. V—XII (см. приложения) приведены теплоемкости для наиболее часто встречающихся в теплотехнических расчетах двух- и трехатомных газов.  [c.38]


Найти теоретическую мощность двигателя для привода компрессора и расход охлаждающей воды, если температура ее повышается на 13° С. Расчет произвести для изотермического, адиабатного и политропного сжатия. Показатель политропы принять равным 1,2, а теплоемкость воды 4,19 кДж/кг.  [c.157]

На фиг. 4.13 показано изменение локального числа Нуссельта в осевом направлении при различных содержаниях твердой фазы, полученное по результатам численных расчетов [713]. Значения чисел Рейнольдса 27 000 и 13 500 были выбраны, чтобы сопоставить результаты расчетов с экспериментальными данными [212]. Отношение удельных теплоемкостей Ср с = 1,2 соответствует случаю движения смеси частиц окиси алюминия и двуокиси кремния в воздухе при стандартных условиях (1 атм, 15,5° С). Как видно из фиг. 4.14, выполненный нами анализ подтверждает выводы работы [212] о линейной зависимости между средним числом  [c.177]

Истинная удельная массовая теплоемкость с есть количество теплоты, необходимое для изменения на один кельвин температуры единицы массы тела (см. рис. 5.3). В расчетах бывает удобно пользоваться средней удельной массовой теплоемкостью в данном интервале температур от 7) до Т2  [c.142]

Рассмотрим изменение энтальпии реальных веществ, которые могут менять свои фазовые состояния и теплоемкость которых зависит от температуры и скачкообразно изменяется в момент фазовых переходов. В общем виде уравнение для расчета энтальпии реального вещества, имеющего одно фазовое превращение в твердом состоянии, будет следующим  [c.254]

Для МНОГИХ веществ интегралы с теплоемкостями просчитаны и приведены в справочной литературе в виде таблиц с графой (НJ— 298.is) для различных температур. Пользование такими таблицами существенно облегчает расчет.  [c.258]

Для расчета стандартного изменения энергии Гиббса и констант равновесия газовых систем можно пользоваться уравнениями с различной степенью точности, используя справочные данные по термодинамическим величинам. Если, например, не хватает данных для точного расчета, то можно вести приближенный расчет без учета функциональных зависимостей теплоемкости, энтальпии и энтропии, т. е. вести расчет по их значениям при стандартных условиях.  [c.276]

В теплотехнических расчетах использовать удельные теплоемкости удобно, потому что при работе с ними не нужно знать ни точный состав вещества, ни строение входящих в него молекул. А то и другое требуется, если мы хотим вычислить число частиц, составляющих систему.  [c.169]

Согласно формуле (7.18), средняя энергия осциллятора = ЗТ, откуда для теплоемкости в расчете на один атом твердого  [c.174]

В теплоизолированном сосуде находятся вода и лед при температуре О °С. Массы воды и льда соответственно равны 0,5 кг и 60 г. В воду впускается водяной пар массой 10 г при температуре 100 °С. Какой станет температура воды в сосуде после установления теплового равновесия Теплоемкость сосуда в расчетах не учитывать.  [c.124]

Динамическая теория решетки. Метод, предложенный для вычисления теплоемкости Борном и Карманом [6—8], основан на расчете действительного вида колебательного спектра при определенных предположениях о характере межатомных сил. Частоты собственных колебаний решетки вычисляются здесь как корни секулярного уравнения, получающегося из определителя преобразования к нормальным координатам. Степень такого уравнения есть 3. (5—число атомов в одной ячейке), а число уравнений равно числу ячеек. Поэтому все-таки для окончательного вычисления g(v) должны быть развиты соответствующие приближенные методы. Борн и Карман [8] использовали метод, в основном подобный тому, каким мы пользовались при выводе формул (5.1) и (5.2), и показали, что их результаты подтверждают закон Дебая для низких температур, согласно которому теплоемкость  [c.320]

Точный расчет табулярным способом автора требуег введения в расчетную табличку всех веществ — как соединений, так и элементов, чтобы учесть их теплоемкости. Расчет осложняется еще необходимостью манипулирования с этими дополнительными функциями для теплоемкостей, число которых для одного вещества может изменяться от одной до четырех (или даже до пяти) по числу членов в формуле, выражающей зависимость теплоемкости от температуры. В качестве примера рассмотрим реакцию окисления железа.  [c.95]


Теплоемкость кипящей жидкости. Беннинг [7] измерил теплоемкость кипящей жидкости при четырех температурах в диапазоне от —17,3 до +55,1° С. Поскольку экспериментальная установка представляла собой закрытый калориметр, то в опытах непосредственно измерялась теплоемкость двухфазной системы жидкость— пар. Хотя Беннинг в таблице опытных данных представил результаты своих измерений как теплоемкость Ср (в тексте и на графике указывается просто теплоемкость жидкости ), ряд обстоятельств вынуждает интерпретировать его результаты как теплоемкость кипящей жидкости с . Беннинг указывает, что при обработке опытных данных им вводились поправки на парообразование и конденсацию, которые составили для фреона-22 при температурах 45,5 и 55,1° С соответственно 0,8 и 3,0% от величины теплоемкости. Расчеты показали, что такие поправки могли быть вве-  [c.31]

Тепловая диаграмма газов. Теплоемкость. Расчет пpeвpaщeни  [c.144]

В приближенных термодинамических расчетах процессов с влажным воздухом в небольшом диапазоне температур можно применять удельную изобарную теплоемкость сухого воздуха Срв= 1 кДж/(кг-К) = onst, удельную изобарную теплоемкость водяного пара Срв 2 кДж/(кг К) = onsl. В этом случае, выражая теплоемкость в кДж/(кг-К), получаем  [c.42]

При попытке применить числовые расчеты к нескольким различным областям возникает проблема единиц. В настоящее время не существует твердо установленных единиц, которые годились бы сразу для всех случаев применения. Однако перевод единиц из одной системы в другую представляет определенные трудности. В этой книге переход от одной системы единиц к другой сведен к минимуму путем подбора наиболее удобной системы единиц для каждой данной задачи. Выбор единиц обычно диктуется имеющимися в наличии данными. В большинстве случаев отдается предпочтение метрической системе с выражением энергии в калориях, массы в граммах, температуры в градусах Кельвина (или в стоградусной шкале). При применении английской системы единиц, энергия выражается в британских тепловых единицах, масса в фунтах и температура в градусах Рэнкина (или Фаренгейта). Перевод единиц из одной системы в другую редко бывает необходим. Например, величина, выраженная в калЦмоль °К), имеет то же числовое значение в брит. тепл. ед./(фунт-моль °R). Следовательно, теплоемкости и энтропии имеют одинаковое численное значение в обеих системах.  [c.28]

На рис. 5.5 представлены схемы выполнения сварки по суперпроходам, принятые при расчете ОСН. Последовательность наложения суперпроходов соответствовала последовательности выполнения проходов в реальном процессе сварки. Основной металл (перлитная сталь 12НЗМД) и аустенитный сварочный материал принимались для всех анализируемых соединений одинаковыми. Теплофизические свойства — теплопроводность X и объемная теплоемкость су — принимались независимыми от температуры, равными Я = 32,3 Вт/(м-град), су = 3,8-10 Дж/(м -град) для основного металла и i = 14,7 Вт/(м-град), су = 4,6- 10 Дж/(м -град) для аустенитного металла шва. Используемые при решении термодеформационной задачи зависимости температурной деформации е , модуля упругости Е (одинаковая зависимость для основного металла и металла шва) и предела текучести ат приведены соответственно на рис. 5.6. и 5.7. Так как аустенит не претерпевает структурных превращений, для него зависимости От и е от температуры на стадии нагрева и охлаждения одинаковые. Основной металл претерпевает структурные превращения, и, так как сварочный термический цикл далек от равновесного (большие скорости нагрева и охлаждения), температурный интервал Fe — Fev-превращения от T l до Ти (см. рис. 5.6) при нагреве не совпадает с интервалом  [c.282]

Пример 6-4. Определить изменение энтропии 1 кг О2 в процессе расширения. Начальные параметры 62 — = 300° С, pi = = 3,0 УИн/ж (pi = 30 бар), конечные — /2. = 40° С, рг =0,4 Мн1м (/ 2 = 4 бар). Расчет произвести для двух случаев 1) при постоянной теплоемкости 2) при переменной теплоемкости.  [c.86]

V — onst начальные параметры рабочего тела pi = 1 бар и Ti = = 300°К. Степень увеличения давления в адиабатном процессе сжатия — = 10 k = 1,4. Температура в третьей точке не должна превышать 1000°К. Рабочее тело — воздух теплоемкости постоянные расчет проводится на 1 кг рабочего тела. Определить параметры всех основных точек, работу расширения, сжатия и полезную, количество подведенной и отведенной теплоты, термический к. п. д. цикла.  [c.293]

Незначительная скорость течения в характерных сечениях позволяет вести расчет по статическим температурам. Потерями на неадиабатность в первом приближении можно пренебречь. Теплоемкость газа принимается постоянной С = onst. Вводя величину допустимого температурного напора на выходе охлажденного потока из теплообменника = Т — и определяя используемую холодопроизводительность эффектом подогрева в камере холода - Т , исходная система сводится к виду  [c.237]

Обычно при расчете принимаются допушения гидравлические сопротивления в тракте несущественны теплоемкость газа в рабочем интервале температуры принимается постоянной  [c.245]

Использование ЭВМ при проектировании подшипников скольжения является весьма эффективным в связи с бол1>н1им об ьемом и сложностью вычислительных работ. Точность расчетов можно повысить, учитывая влияние температуры на удельную теплоемкость и плотность масла, что обычно не делают при ручном счете.  [c.393]

Решение дифференциального уравнения (7.33) при подстанов-. не в него формул (7.34)...(7.36), если принять коэффициенты ср, рг и а не зависящими от температуры, может оказаться неточным при изменении температуры в широких пределах. Эти коэффициенты следует считать зависящими от температуры, а решение уравнения (7.33) проводить численными методами на ЭВМ. Значение ср в формуле (7.34) выражает среднюю теплоемкость металлического стержня и покрытия в расчете на общее поперечное сечение электрода F — ndt/A (рис. 7.14, б).  [c.224]


Теплоемкости определяются экспериментально (калориметрически), но они могут быть и вычислены теоретически, исходя из строения элементарных частиц и всего вещества в целом с достаточной степенью точности. При расчете теплоемкостей и энтальпий газов при высоких температурах, когда поглощение энергии газообразным веществом происходит вследствие возрастания энергии поступательного движения молекул, вращательного движения сложных молекул, колебательного движения атомов внутри молекул и расхода энергии на возбуждение электронных оболочек атомов, а в случае высокотемпературной плазмы (- 10 K) и на возбуждение ядерных структур (термоядерные реакции). Суммируя все расходы энергии, можно в общем виде представить уравнение теплоемкости газа следующим уравнением  [c.255]

При расчете теплоемкости твердого тела (Дебай) энергия теплового движения рассматривается как энергия ЗЫ упругих нормальных колебаний (волн) данного тела. Эти дебаевские упругие волны и фурье-компоненты, на которые разлагаются адиабатиче-  [c.592]

Для определения зависимости теплоемкости от температуры Т необходимо знать, как зависит от температуры тепловая энергия твердого тела. Задача, следовательно, сводится к тому, чтобы вычислить среднюю энергию колебаний атома по одному из трех взаимно перпендикулярных направлений. Помножив результат на число атомов и на 3 (соответственно трем слагающим движения), МЫ получим полную тепловую энергию. Формула для определения среднего значения энергии линейного гармонического осциллятора была выведена еще Планком, который считал, что в тепловом равновесии состояния с тем или иным значенпем энергии встречаются с относительной вероятностью, определяемой фактором Больцмана и в расчет долл ны приниматься не все энергии, а лишь дискретные значения энергии вида п (п — 0, 1, 2, 3,...,).  [c.166]

Теоретическое исследование температурной зависимости электрического сопротивления в значительной степени аналогично исследованию температурной зависимости теплоемкости, но отличается некоторыми дополнительными осложнениями. Для проведения такого исследования необходимы сведения не только о колебаниях решетки, но и о механизме взаимодействия между электронами и ионами, или, как говорят, о рассеянии электронов. Последний вопрос в свою очередь включает некоторые детали поведения самой совокупности электронов. Введенное Планком представление о нулевой энергии колебаний решетки не повлияло на теорию теплоемкости твердых тел много позже было выяснено, что нулевые колебания решетки не вносят вклад и в электрическое сопротивление металла (Блох, Хаустон и Зоммер-фельд). В настоящее время можно с полным основанием утверждать, что механизм электрического сопротивления, обусловленного колебаниями решетки, предложенный в работах периода 1927—1932 гг., в общих чертах был правилен (хотя этого нельзя сказать относительно некоторых вопросов в теории теплопроводности и термоэлектричества). Тем не менее оставалось много вопросов, в которых численное согласие расчетов с экспериментом и детальное понимание процессов были далеко недостаточными. Таким образом, хотя расчет теплоемкости простых твердых тел не вызывает сомнения, однако относительно электрического сопротивления простого металла этого сказать нельзя.  [c.187]

Типы тепловых возбуждений. Теплоемкость тела при постоянном объеме с определяется как производная по температуре от его внутренней энергии. Для расчета тенлоемкости нун но знать, каким образом внутрен-  [c.315]

С таким механизмом связаны, по-впди-мому, и аномалии в поведении теплоемкости разбавленных парамагнитных солей (см. п. 35). В случае редкоземельных элементов точный анализ явления сильно усложняется в связи с магнитным взаимодействием. Паркинсон и др. из результатов измерений на гидратированных сульфатах рассматриваемых редкоземельных элементов вычислили соответствующее расщепление уровней и связанный с ним вклад в теплоемкость, которую сравнили затем с экспериментально измеренными значениями избыточной теплоемкости. Учитывая всю сложность такого рода расчетов, названные авторы нашли, что предложенное ими объяснение, по-видимому, правильно, так как теоретические результаты достаточно хорошо согласуются с данными калориметрических измерений.  [c.343]


Смотреть страницы где упоминается термин Теплоемкость расчет : [c.119]    [c.396]    [c.39]    [c.143]    [c.39]    [c.75]    [c.187]    [c.215]    [c.346]   
Физико-химическая кристаллография (1972) -- [ c.58 , c.62 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте