Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Получение пара

Повышение параметров пара определяется уровнем развития металлургии, поставляющей металлы для котлов и турбин. Получение пара с температурой 535—565 °С стало возможным лишь благодаря применению низколегированных сталей, из которых изготовляются  [c.65]

Практически все жидкие топлива пока получают путем переработки нефти. Сырую нефть нагревают до 300—370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре сжиженный газ (выход около ] %), бензиновую (около 15%, двигателей внутреннего сгорания и газотурбинных установок — бензина, керосина, дизельных топлив и т. д.  [c.120]


ГТУ с утилизацией теплоты уходящих газов. Теплоту уходящих из ГТУ газов можно использовать для получения пара и горячей воды в обычных теплообменниках, Так, установки ГТ-25-700 ЛМЗ снабжены подогревателями, нагревающими воду в системе отопления до 150— 160 °С,  [c.175]

Вместе с тем сравнительно высокий уровень коэффициента избытка воздуха в ГТУ позволяет сжигать достаточно большое количество дополнительного топлива в среде продуктов сгорания, В результате из дополнительной камеры сгорания после ГТУ выходят газы с достаточно высокой температурой, пригодные для получения пара энергетических параметров в специально устанавливаемом для этой цели парогенераторе. На Кармановской ГРЭС по такой схеме  [c.175]

Непрерывная продувка служит для удаления солей из контура циркуляции котла вместе с небольшим количеством воды. Соли накапливаются в котловой воде в процессе превращения воды в пар, практически не растворяющий солей и не уносящий их с собой. Поскольку продувка осуществляется отводом части котловой воды, то с ней уходит значительное количество теплоты. Поэтому вода продувки (т. е. часть котловой воды) отводится в сосуд с меньшим давлением (расширитель или сепаратор непрерывной продувки), где она оказывается перегретой по отношению к этому давлению и вскипает. Полученный пар не растворяет в себе солей и может быть использован как теплоноситель. Оставшаяся горячая вода уже с меньшей температурой, но с большим содержанием солей, также может быть использована как теплоноситель, например, для нагрева химически очищенной воды, идущей на подпитку котла.  [c.217]

До 70—80-х годов прошлого столетия единственным источником механической работы являлась паровая машина, в которой применялся пар низких температур и малых давлений. Газы с высокой температурой, получаемые при горении топлива, непосредственно в цилиндрах паровых машин не использовались. Они сначала направлялись в паровые котлы для получения пара низкого давления, который и являлся рабочим телом. Такое использование теплоты топлива приводило к низким к. п. д. паровых установок.  [c.259]

В паротурбинных установках процесс получения работы происходит следующим образом (рис. 19-1). Химическая энергия топлива при его сжигании превращается во внутреннюю энергию продуктов сгорания, которая затем в виде теплоты передается воде и пару в котле / и перегревателе 2. Полученный пар направляется в паровую турбину 3, где и происходит преобразование теплоты в механическую работу, а затем обычно в электрическую энергию в электрогенераторе Отработавший пар поступает в конденсатор 5, где отдает теплоту охлаждающей воде. Полученный конденсат конденсационным насосом б направляется в питательный бак 7, откуда питательная вода забирается питательным иасосом S, сжимается до давления, равного давлению в котле, и подается через подогреватель 9 в паровой котел I.  [c.296]


На рис. 19-4 изображен идеальный цикл Ренкина в pv-ma-грамме. Точка 4 характеризует состояние кипящей воды в котле при давлении pi. Линия 4-5 изображает процесс парообразования в котле затем пар подсушивается в перегревателе — процесс 5-6, 6-1 — процесс перегрева пара в перегревателе при давлении pi. Полученный пар по адиабате 1-2 расширяется в цилиндре парового двигателя до давления р2 в конденсаторе. В процессе 2-2 пар полностью конденсируется до состояния кипящей жидкости np>i давлении р2, отдавая теплоту парообразования охлаждающей воде. Процесс сжатия воды 2 -3 осуществляется в насосе получающееся при этом повышение температуры воды ничтожно мало, и им в исследованиях при давлениях до 30—40 бар пренебрегают. Линия 3-4 изображает изменение объема воды при нагревании от температуры в конденсаторе до температуры кипения. Работа насоса изображается заштрихованной площадью 032 7. Энтальпия пара при выходе из перегревателя в точке 1 равна h и в Ts-диаграмме (рис. 19-5) изображается пл. 92 34617109. Энтальпия пара при входе в конденсатор в точке 2 равна jg и в Ts-диаграмме изображается пл. 92 27109. Энтальпия воды при выходе из конденсатора в точке 2  [c.298]

Чтобы сложить все полученные пары, надо сложить векторы моментов этих пар. В результате система пар заменится одной парой, момент которой или, согласно равенствам (20),  [c.39]

Таким образом, пару Р, Р можно заменить парой Q, Q, имеющей момент такой же величины и такого же знака, как момент пары Р, Р. Так как при доказательстве произведены преобразования, указанные в аксиомах 2, 3, 4, то полученная пара Q, Q, эквивалентна заданной паре Р, Р, что и требовалось доказать.  [c.41]

Приложим в точке О два вектора То" = со и со = — со. Вектор со в точке А и вектор со в точке О образуют пару угловых скоростей. Вектор момента этой пары v, согласно 120, равен вектору поступательной скорости Vq. Проведем из центра приведения О в точку А радиус-вектор г и определим момент полученной пары угловых скоростей  [c.349]

Применяя теоремы 3.4 и 3.5, изложенные в 3.5, сложим полученные пары. Получим пару сил с вектором-моментом, равным геометрической сумме векторов-моментов пар. (Определение момента силы относительно точки пространства приведено в 3.1.) Момент этой пары равен  [c.67]

Производственное водопотребление еще более разнообразно. Вода расходуется на различные технические нужды получение пара в котельных агрегатах, охлаждение машин, промывку про-  [c.97]

В соответствии с (9.416) и (9.417) полученные пара.метры являются аэродинамическими производными заданного крыла при = 0. Кроме того, согласно (9.418) — — (9.420) и данным табл. 11.4 14], в случае = 0 ( = 1) получаем  [c.348]

Уравнение (11.14) показывает, что использование регенерации теплоты приводит к уменьшению удельной работы расширения в данном цикле по сравнению с циклом Ренкина без регенерации с теми же параметрами пара. Однако в цикле с регенерацией уменьшается количество теплоты, подводимой в паровом котле к питательной воде, т. е. уменьшается расход теплоты на получение пара, поэтому к. п. д. паросиловых установок с регенеративным подогревом в итоге выше, чем к. п. д. паросиловых установок без регенерации теплоты.  [c.171]

Водоаммиачная холодильная машина (рис. 12.3) работает по тому же циклу, что и парокомпрессионная, но в абсорбционной машине процесс сжатия заменен следующими процессами абсорбция пара водой в процессе растворения повыщение давления раствора в цикле получение пара при нагреве раствора. Таким образом, в абсорбционных мащинах нет компрессора, сжимающего пар холодильного агента, и в связи с этим нет затраты значительной работы на процесс сжатия. Повышение давления раствора в абсорбционных машинах осуществляется в насосе, затрачиваемая работа на привод которого пренебрежимо мала по сравнению с работой сжатия пара в компрессионных холодильных машинах. Вместе с тем в абсорбционных машинах расходуется теплота, подводимая к рабочему телу от внешних источников.  [c.179]


В уравнениях (2.1) и (2.2) QI — располагаемая теплота Gi Ч ) — теплота, полезно использованная в котлоагрегате на получение пара Qi (qi) — потери теплоты с уходящими газами бз ( з) — потери теплоты от химической неполноты сгорания топлива Q4 (q ) — потери теплоты от механической неполноты сгорания топлива Q% (qs) — потери теплоты в окружающую сре-ду Qe (qe) — потеря теплоты с физической теплотой шлака.  [c.31]

Непрерывная продувка паровых котлоагрегатов осуществляется для поддержания в допустимых пределах концентрации солей в котловой воде и получения пара надлежащей чистоты.  [c.103]

В отличие от рассмотренной ситуации изобарное превращение жидкости в пар является целенаправленным, запланированным процессом. Он используется в паровых котлах (парогенераторах) при получении пара для теплоснабжения, проведения технологических процессов,  [c.107]

Теплота, затраченная на получение пара заданных параметров в изобарном процессе, равна  [c.207]

Экономичность теплофикационных установок оценивается с помощью коэффициента использования теплоты к, определяемого как отношение суммы полезной работы цикла 1ц и теплоты Цо, отданной внешнему потребителю, к теплоте, затраченной на получение пара в парогенераторе  [c.212]

В химической технологии горючие газообразные и жидкие ВЭР сжигаются либо самостоятельно, либо в смеси с органическим топливом (когда они сильно забалластированы) в топочных устройствах. Получающиеся в них газообразные продукты сгорания высокой температуры в дальнейшем используются для обогрева технологических аппаратов, для получения пара в котлах-утилизаторах и, наконец, для получения холода в холодильных установках. Тепловые ВЭР используются для непосредственного обогрева технологических аппаратов и машин, для выработки пара в котлах-утилизаторах и холода в холодильных установках. ВЭР избыточного давления используются в расширительных машинах, предназначенных для привода компрессоров, насосов и электрических машин или в детандерах для охлаждения газов или получения холода.  [c.327]

Процесс получения пара из жидкости может осуществляться испарением и кипением. Испарением называется парообразование, происходящее только со свободной поверхности жидкости и при любой температуре кипением — интенсивное парообразование по всей массе жидкости, которое происходит при сообщении жидкости через стенку сосуда определенного количества теплоты. При этом образовавшиеся у стенок сосуда и внутри жидкости пузырьки пара, увеличиваясь в объеме, поднимаются на поверхность жидкости.  [c.61]

При отборе пара на подогрев конденсата, с одной стороны, уменьшается расход удельной теплоты 7] на получение пара, но с другой, одновременно и уменьшается удельная работа пара 1 в турбине. Несмотря на противоположный характер этих влияний, отбор всегда повышает л . Это объясняется тем, что при подогреве питательной воды за счет теплоты конденсации отобранного пара устраняется подвод теплоты от внешнего источника на участке 4-4 и таким образом средняя температура подвода теплоты от внешнего источника в регенеративном цикле увеличивается (подвод внешней теплоты осуществляется только на участке 4 -5-6-1).  [c.123]

Однако получение пара в котельном агрегате, в топке которого сжигается топливо с удельной теплотой сгорания Q", тоже связано с некоторыми потерями. Потери этого процесса учитываются к. п. д. котельного агрегата (т) = 0,8... 0,9 и достигает в мощных агрегатах специальных типов значений 0,94... 0,95).  [c.242]

Котельная установка представляет собой совокупность котла и вспомогательных устройств. Она предназначена для получения пара заданных параметров или для нагрева воды под давлением. Последовательность получения и использования пара и преобразования ОДНИХ ВИДОВ-энергии в другие можно проследить на примере технологической схемы ТЭС, работающей на твердом топливе (рис. 1, см. форзац).  [c.4]

В зависимости от назначения котельная установка состоит из котла соответствующего типа и вспомогательного оборудования, обеспечивающего его работу. Котел —это конструктивно объединенный в одно целое комплекс устройств для получения пара или для нагрева воды под давлением за счет теплоты сжигаемого топлива, при протекании технологического процесса или преобразовании электрической энергии в тепловую.  [c.8]

Получение пара, соответствующего по своей чистоте нормам (табл. 19), в барабанных котлах достигается благодаря осуществлению следующих мероприятий  [c.156]

Парогенератор АЭС — теплообменный аппарат рекуперативного типа — предназначен для производства пара. Нагрев теплоносителя, поступающего в парогенератор для передачи теплоты для получения пара, осуществляется в реакторе (при двухконтурной схеме АЭС) или в промежуточном теплообменнике (трехконтурная схема АЭС) от теплоносителя (жидкая или газообразная среда, используемая для осуществления процесса теплообмена) первого контура. В качестве теплоносителя используется вода, жидкие металлы или газ соответственно различают парогенераторы с водяным, жидкометаллическим или газовым теплоносителями.  [c.246]

Котельная установка, показанная на рис. 3.4, предназначена для получения пара. В топке I стационарного котла происходит сжигание топлива и образование высокотемпературных продуктов сгорания, которые отдают свою теплоту поверхностям нагрева. В воздухоподогревателе 5 осуществляется нагрев воздуха, подаваемого вентилятором 6 и направляемого затем в топку /. В экономайзере 4 котла происходит подогрев питательной воды, поступающей в барабан 2. Из барабана вода подводится к парообразующим поверхностям нагрева, где преобразуется в насыщенный пар. Поверхности нагрева располагаются как по внутренним стенкам топки (экраны), так и в газоходах котла. Сухой насыщенный пар из барабана 2 поступает в пароперегреватель 3, где перегревается до температуры, превышающей температуру насыщения, соответствующую давлению в котле.  [c.149]


Процесс парообразования. Основные понятия и определения. Рассмотрим процесс получения пара. Для этого 1 кг воды при температуре О С поместим в цилиндр с подвижным поршнем. Приложим к, поршню извне некоторую постоянную силу Р. Тогда при площади поршня Р давление будет постоянным и равным р=Р/Р. Будем изображать процесс парообразования, т. е. процесс превращения вещества из жидкого состояния в газообразное в р, о-диаграмме (рис. 4.6).  [c.36]

Комбинированные установки, в которых одновременно используются два рабочих тела газ и пар, называются п а-рогазовыми. Простейшая схема парогазовой установки показана на рис. 6.15, а цикл ее — на рис. 6.16. Горячие газы, уходящие из газовой турбины после совершения в ней работы, охлаждаются в подогревателе П, нагревая питательную воду, поступающую в па[ювой котел. В результате уменьшается р.чсход теплоты (топлива) на получение пара в котле, что приводит к повышению эффективности комбинированного цикла по  [c.67]

Так как энтальпия сухого пара при р = 15 бар равна г" = = 2791,8 кдж1кг (считая, что при 0° С. г о = 0), энтальпию полученного пара будем считать равной i = 2400 кдж1кг. Этот пар будет влажным, так как i" > 2400 кдж/кг.  [c.189]

Лиофобные или лиофильные свойства проницаемых материалов в сочетании с малым диаметром пор обеспечивают достаточно эффективную сепарацию парожидкостной смеси, что особенно важно, например, для забора топлива из баков в условиях невесомости. На этом же принципе основана работа трубчатого испарителя для получения паров ртути в ионном двигателе. Пористая вставка из вольфрама внутри молибденовой трубки нагревается размещенным на ее внешней поверхности электрическим нагревателем. Жидкая ртуть под давлением подается в пронш,аемую вставку и испаряется. Вставка одновременно выполняет роль парожидкостного сепаратора, препятствуя протоку сквозь нее жидкой ртути. В том случае, когда жидкость смачивает нагреваемую пористую матрицу, на ее выходную поверхность для исключения прорыва жидкости и получения сухого пара помещают слой проницаемого лиофобного материала, например фторопласта.  [c.16]

Доказывается эта теорема элегантно и просто с помощью одной из аксиом статики, позволяющей преобразовывать системы сил в эквивалентные системы - аксиош о том, что к СС можно добавить любую уравновешенную СС. Для доказательств леммы в центре приведения - т.О к телу добавляется уравновешенная система из двух сил, равных по модулю переносимой силе. Получается система Рис. 1.11 из трех сил, две из которых образуют пару сил, а третья приложена в т.О и очень похожа на ту силу, которую мы хотели перенести параллельно самой себе и которая не по своей вине стала теперь лишь одной из сил пары. Вот и получается, что сила, приложенная в точке А зквивалентна системе из такой же силы, приложенной в центре приведения (словно мы ее перенесли параллельно самой себе) и полученной пары сил, которую в дальнейшем мы будем называть ПРИСОЕДИНЕННОЙ ПАРОЙ.  [c.20]

Если мы имеем систему п пар сил, то заменим пары с моментами Ml и Ма парой = М, Мз, затем полученную пару М12 и пару Мз —парой сил М123 = Ми-Ь Мз= М -f Mj + Мз и т. д. В результате получим одну эквивалентную пару сил, момент которой равен  [c.161]

Простейшая схема абсорбционной холодильной установки показана на рис. 8.3. В кипятильнике (парогенераторе) ПГ, содержащем концентрированный водоаммиачный раствор, за счет затрачиваемой извне удельной теплоты происходит выпаривание из раствора аммиака (низкокипящий компонент) при постоянном давлении Pi. Полученный пар аммиака направляется в конденсатор К, где он, отдавая удельную теплоту q- охлаждающей воде, конденсируется при Pi = onst.  [c.136]

На рис. 9 приведена схема барабанного котла с естественной циркуляцией Еп-640 — 13,8—540/S40 ГМ. Котел предназначен для получения пара при сжигании газа и работы в блоке с турбиной-мощностью 200 МВт. Номинальная производительность 640 т/ч, рабочее давление пара на выходе из котла 13,8 МПа, температура свежего пара и пара промежуточного перегрева 540 °С. Котел включает топку 2, конвективную шахту 9 и горизонтальный газоход 6, соединяющий топку с конвективной шахтой. Топка призматической формы (в плане представляет прямоугольник 18,6 х X 7,35 м) экранирована трубами испарительной поверхности диаметром 60x6 мм. Все экраны 3 с помощью тяг подвешены к металлоконструкциям потолочного перекрытия и могут свободно расширяться вниз. Для уменьшения влияния неравномерности обогрева на циркуляцию экраны секционированы трубы с коллекторами выполнены в виде отдельных панелей, каждая из которых представляет собой отпрд нй пируул ционный контур.  [c.17]

Котел — конструктивно обьелииеитлй в одно ie io коми.i i., устройств .Ы1Я получения пара и.чи для nai рева волы ию лав 1еиием.  [c.149]

Преимуществами прямоточных котлов являются простота конструкции, малый расход металла на единицу паропроиз-водителыюсти котла, возможность получения пара высокого и сверхкритического давления недостатками — необходимость очень чистой питательной воды и полного автоматического регулирования процессов питания, горения и производительности.  [c.155]

В энерготехнологических установках технологические и энергетические элементы объединены так, что их раздельная работа невозможна. Энерготехнологические установки позволяют значительно повысить технологическую и энергетическую эффективность всего ко.мплекса переработки сырья. В качестве примера на рис. 3.15 показана схема энерготехнологической установки, предназначенной для обжига колчедана 2 в кипящем слое /. В кипящем слое обжигаемого материала установлены испарительные поверхности нагрева, которым передается избыточное количество теплоты, в результате чего обеспечивается безшлаковая работа слоя. Поверхности нагрева, работающие с высоким коэффициентом теплоотдачи [250 — 350 Вт/(м К)], объединены с котлом 5, использующим теплоту отходящих газов 3. Газы 6 поступают в технологические аппараты для дальнейшей переработки, а полученный пар 4 направляется в турбину 7 для выработки электроэнергии и на технологические нужды.  [c.157]

Теплоснабжение от паротурбинных ТЭЦ характеризуется ограничениями максимальной температуры теплоносителя (около 470 К), поэтому актуальной является разработка систем высокотемпературной теплофикации. Так, система, схема которой показана на рис. 12.8, предназначена для получения перегретого пара температурой оолее 770 К. Для получения пара служит котел 3, в топку которого направляются отходящие из газовой турбины I газы. Пар отдает теплоту в установке 5, и конденсат насосом 4 возвращается в котел. Электроэнергия вырабатывается генератором 2. Возможно осуществление схем, предусматривающих подачу отходящих из газовой турбины газов при температуре до 1770 К непосредственно в технологические установки.  [c.389]


Смотреть страницы где упоминается термин Получение пара : [c.66]    [c.387]    [c.341]    [c.36]    [c.183]    [c.160]    [c.288]    [c.16]   
Смотреть главы в:

Техническая термодинамика  -> Получение пара

Техническая термодинамика  -> Получение пара



ПОИСК



Анализ трех стадий получения перегретореальных газов (паров) го пара

Глава девятнадцатая. Получение пара на атомных электростанциях

Главапятая Методы получения чистого пара Пути поступления примесей в пар

Использование теплоты уходящих котельных и печных газов для получения горячей воды и пара

Методы получения чистого пара

Методы получения чистого пара и гидродинамика котлов

Пара винтовая второго класса 16 — Случаи образования 16, 17 — Условия получения

Параметры пара различного состояния и количество тепла, необходимого для его получения

Паровой объем барабана и получение чистого пара

Передвижные котельные установки для получения пара

Получение в котельных пара требуемых параметров

Получение пара в элементах технологических установок и его перегрев

Получение пара при постоянном давлении, р, и-диаграмма водяного пара

Получение чистого пара

Получение чистого пара р прямоточных котлах

Получение чистого пара. Внутрибарабанные устройства

Способы получения сухого и чистого пара. Ступенчатое испарение



© 2025 Mash-xxl.info Реклама на сайте