Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ИДЕАЛЬНАЯ ЖИДКОСТЬ Уравнения движения идеальной жидкости

Течения вязкой несжимаемой жидкости отличаются тем свойством, что теорема Гельмгольца о сохранении вихрей, справедливая для идеальной жидкости, не выполняется. В вязкой жидкости вихрь не может сохраняться бесконечно долго. За счет работы сил внутреннего трения вихрь диффундирует в объем жидкости. Уравнения движения вязкой жидкости обладают свойством выравнивания со временем значений завихренности в различных точках пространства. При обтекании тела потоком вязкой несжимаемой жидкости интеграл от завихренности по всему пространству остается постоянным во все моменты времени. Суммарный поток завихренности от границы тела постоянен и равен нулю.  [c.70]


Уравнение (7-1.6) представляет собой так называемое уравнение Эйлера или уравнение движения идеальной жидкости (т. е. жидкости с ц = О, у которой, следовательно, напряжение всегда изотропно, Т = —р1). Литература по решению краевых задач для уравнения (7-1.6) весьма обширна и составляет содержание классической гидромеханики. Одним из лучших руководств-по этому предмету является монография Ламба [1].  [c.255]

Уравнения движения идеальной несжимаемой жидкости. Для того чтобы получить уравнения движения идеальной несжимаемой жидкости, следует в (42) принять ц = 0. Получим  [c.576]

Уравнения движения идеального газа. Первые три уравнения движения идеального газа (или просто газа) совпадают с аналогичными уравнениями несжимаемой идеальной жидкости. При их выводе не использовалось условие несжимаемости. Таким образом.  [c.577]

Следует отметить, что уравнения движения вязкой жидкости обладают большой сложностью и замена их уравнениями движения идеальной жидкости значительно упрощает теоретическое исследование различных вопросов.  [c.247]

В случае вязкого газа полная система уравнений, характеризующая его движение и различные процессы в нем, сложная и уравнений много. В качестве примеров получим полную систему уравнений движения.вязкой несжимаемой жидкости, а также уравнения движения идеальной несжимаемой жидкости и идеального газа.  [c.557]

Уравнение движения идеальной жидкости в эйлеровых переменных получается подстановкой зависимости (1.193) в уравнение (1.155)  [c.41]

Реальная физическая задача об обтекании заданного тела, разумеется, однозначна. Дело в том, что в действительности не существует строго идеальных жидкостей всякая реальная жидкость обладает какой-то, хотя бы и малой, вязкостью. Эта вязкость может практически совсем не проявляться при движении жидкости почти во всем пространстве, но сколь бы она ни была мала, она будет играть существенную роль в тонком пристеночном слое жидкости. Именно свойства движения в этом (так называемом пограничном) слое и определят в действительности выбор одного из бесчисленного множества решений уравнений движения идеальной жидкости. При этом оказывается, что Е общем случае обтекания тел произвольной формы отбираются именно решения с отрывом струй (что фактически приводит к возникновению турбулентности).  [c.34]

Для того чтобы получить уравнения, описывающие движение вязкой жидкости, необходимо ввести дополнительные члены в уравнение движения идеальной жидкости. Что касается уравнения непрерывности, то, как явствует из самого его вывода, оно относится в равной мере к движению всякой жидкости, в том числе и вязкой. Уравнение н<е Эйлера должно быть изменено.  [c.71]


Поэтому уравнение движения вязкой жидкости можно получить, прибавив к идеальному потоку импульса (7,2) дополнительный член определяющий необратимый, вязкий , перенос импульса в жидкости. Таким образом, мы будем писать тензор плотности потока импульса в вязкой жидкости в виде  [c.71]

Поскольку пристеночный слой тонкий, то при решении ураВ нений (24,12] с целью определения движения в основной массе жидкости следовало бы взять в качестве граничных условий те условия, которые должны выполняться на поверхности тела, т. е. равенство скорости жидкости скорости тела. Однако решения уравнений движения идеальной жидкости не могут удовлетворить этим условиям. Мол<но потребовать лишь выполнения этого условия для нормальной к поверхности компоненты скорости жидкости.  [c.126]

Уравнения движения идеальной жидкости  [c.90]

В таком случае получим уравнения движения идеальной сжимаемой жидкости (идеального газа)  [c.90]

УРАВНЕНИЯ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ 91  [c.91]

Если потенциала скорости не существует, т. е. движение является вихревым, то уравнения движения идеальной жидкости (81) также можно проинтегрировать, но только вдоль линии тока и при условии установившегося движения.  [c.94]

В своем трактате Общие принципы движения жидкости (1755 г.) Эйлер впервые вывел систему дифференциальных уравнений движения идеальной, т. е. абстрактной, лишенной трения, жидкости, положив тем самым начало аналитической механике оплошной среды. Эйлеру механика жидкостей обязана введением понятия давления в точке движущейся или покоящейся жидкости, а также выводом уравнения сплошности или непрерывности жидкости формулировкой закона об изменении количества движения и момента количества движения применительно к жидким и газообразны.м средам выводом турбинного уравнения первоначальными основами теории корабля, а также выяснением вопроса о происхождении сопротивления жидкости движущимся в ней телам.  [c.10]

Граничные условия. Система уравнений движения идеальной жидкости (9.1), (9.5), (9.8), (9.9), (9.10) должна быть дополнена граничными условиями. На движение идеальной жидкости из-за отсутствия сил трения не оказывают влияния твердые стенки, расположенные по направлению течения жидкости. Поэтому на поверхности твердого тела тангенциальная составляющая скорости жидкости может иметь любое значение в отличие от вязкой жидкости, скорость которой на поверхности твердого тела всегда равняется нулю. Нормальная составляющая скорости идеальной жидкости на поверхности твердого тела обращается в нуль, т. е. = 0.  [c.289]

Уравнение (9.12) представляет собой общин интеграл уравнений движения идеальной жидкости, выражающий закон сохранения энергии. Это ясно из самого вывода этого уравнения кроме того, в этом можно убедиться и из сопоставления его с уравнением (2.8) первого начала термодинамики. Приращение кинетической энергии жидкости есть располагаемая полезная внешняя работа, которая может быть произведена потоком жидкости над внешним объектом работы согласно уравнению (2.8) полезная внешняя работа равняется убыли энтальпии, что и заключено в уравнении (9.12). Из этого ясно, что уравнение (9.12) справедливо и для теплоизолированного течения с трением, однако только для средних (например, усредненных по сечению канала) значений удельной кинетической энергии и энтальпии, а не иР .  [c.290]

Выше мы имели возможность убедиться, что в случае безвихревого движения жидкости значительное упрощение решений гидродинамических задач достигается введением потенциала скорости ф. Но эта функция существует только при отсутствии вихрей и потому при изучении течений вязкой жидкости важно выяснить, может ли существовать ее безвихревое движение, а следовательно, и потенциал скорости. Напомним, что уравнения движения вязкой жидкости отличаются от уравнений идеальной  [c.323]


Так как в идеальной жидкости вязкость отсутствует, а касательные напряжения равны нулю, то величина нормальных напряжений будет рхх = руу = P2J = —р. Поэтому уравнения движения идеальной жидкости в проекциях на оси координат имеют вид  [c.86]

Это уравнение движения идеальной жидкости часто называют уравнением Эйлера.  [c.86]

Уравнениям движения идеальной несжимаемой жидкости можно придать вид, отличный от уравнений Эйлера. Для этого формально преобразуем левую часть уравнения Эйлера.  [c.87]

Выпишем систему уравнений двухмерного движения идеального газа и соответствующую систему уравнений движения идеальной жидкости в прямоугольном канале малой глубины. Рассматривая эти две системы, можно найти условия, при соблюдении которых будет существовать аналогия между указанными движениями.  [c.479]

Из-за большого числа переменных величин, определяюш их движение жидкости, сложности наблюдаемых при этом явлений и трудности математического исследования действительное движение жидкости обычно заменяется некоторой условной, упрощенной схемой, расчленяющей движение на отдельные составные части. Такой схемой, лежащей в основе гидродинамики и логически наиболее хорошо отвечающей естественным представлениям о движении жидкости, является схема, рассматривающая поток жидкости состоящим из отдельных элементарных струек Иногда для упрощения жидкость полагают идеальной — лишенной вязкости и имеющей постоянную во всех точках плотность. Полученные таким образом уравнения движения идеальной жидкости затем исправляются введением соответствующих поправок и опытных коэффициентов, переносятся на реальные жидкости и применяются для решения конкретных практических задач.  [c.57]

Общие уравнения движения идеальной жидкости могут быть получены из дифференциальных уравнений равновесия той же жидкости, если, согласно принципу д Аламбера, к действующим силам присоединить силы инерции.  [c.73]

Распространим уравнение Бернулли для струйки невязкой (идеальной) жидкости на элементарную струйку вязкой (реальной) жидкости, полагая условно, что она находится во взаимодействии с соседними струйками и энергия от нее не передается другим струйкам. Такое уравнение необходимо -для получения практических решений, поскольку в действительности инженеру приходится обращаться с жидкостью вязкой, обладающей рядом свойств, которые не учитываются при использовании понятия об идеальной жидкости. В первую очередь следует отметить вязкость реальной жидкости, которая обусловливает сопротивление движению и, как следствие, вызывает потерю части энергии движущейся жидкости. При движении идеальной жидкости, в которой вязкость, следовательно, и сопротивления движению отсутствуют, полный напор по длине струйки постоянен.  [c.81]

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ИДЕАЛЬНОЙ ЖИДКОСТИ  [c.107]

В более ранних исследованиях [981 применили иной подход к решению задачи течени.я жидкости через неподвижный насыпной слой. Используя уравнение движения идеальной жидкости и закон Дарси, связывающий давление в слое и скорость фильтрации через него, они получили зависимость между распределением скоростей в слое, состоянием потока вне его и условиями подвода потока к слою и отвода от него. Несмотря на сложность полученной связи, анализ ее позволил сделать ряд качественных выводов о влиянии геометрических параметров аппарата на распределение скоростей. Таким образом, сделана также попытка количественно оценить вызванную пристеночным эффектом неравномерность распределения скоростей по сечению слоя для случая, когда ширина пристеночной области с повышенной проницаемостью намного меньше ширины сечения канала.  [c.278]

Первые три уравнения (44) называются уравнениями движения идеальной несжимаемой жидкости или уравнениями Эйлера. Начальные условия п этом случае задаются так же, как и в случае вязкой жидкости. Существенно изменяются граничные условия. Вместо условия прилипания вязкой жидкости используется условие отсутствия проникания жидкости через поверхность твердого тела, при котором обращаются в нуль нормальные составляющие скоростей в точках поверхности неподвижного тела, т. е. принимается, что вектор скорости направлен по касательной к поверхности обтекаемого тела.  [c.559]

Уравнения движения идеального газа. Первые три уравнения двиитения идеального газа (или просто газа) совпадают с аналогичными уравнениями несжимаемой пдеалыюГг жидкости, т. е.  [c.559]

В действительности, однако, все эти заключения имеют лишь весьма ограниченную применимость. Дело в том, что приведенное выше доказательство сохранения равенства rotv = 0 вдоль линии тока, строго говоря, неприменимо для линии, проходящей вдоль поверхности обтекаемого жидкостью твердого тела, уже просто потому, что ввиду наличия стенки нельзя провести в жидкости замкнутый контур, который охватывал бы собой такую линию тока. С этим обстоятельством связан тот факт, что уравнения движения идеальной жидкости допускают решения, в которых на поверхности обтекаемого жидкостью твердого тела происходит, как говорят, отрыв струй линии тока, следовавшие вдоль поверхности, в некотором месте отрываются от нее, уходя в глубь жидкости. В результате возникает картина течения, характеризующаяся наличием отходящей от тела поверхности тангенциального разрыва , на которой скорость жидкости (будучи направлена в каждой точке по касательной к поверхности) терпит разрыв непрерывности. Другими словами, вдоль этой поверхности один слой жидкости как бы скользит по другому (на рис. 1 изображено обтекание с поверхностью разрыва, отделяющей движущуюся жидкость от образующейся позади тела застойной области неподвижной жидкости). С математической точки зрения скачок тангенциальной составляющей скорости представляет собой, как известно, поверхностный ротор скорости.  [c.33]


По поводу полученных в этом н предыдущем параграфах решений уравнений движения вязкой жидкости можно сделать следующее общее замечание. Во всех этих случаях нелинейный член (vV)v тождественно исчезает из уравнений, определяющих распределение скоростей, так что фактически приходится решать линейные уравнения, что крайне облегчает задачу. По этой же причине все эти решения тождественно удовлетворяют также и уравнениям движения идеальной 11есжимаемой жидкости, написанным, например, в виде (10,2—3). С этим связано то обстоятельство, что формулы (17,1) и (18,3) не содержат вовсе коэффициента вязкости жидкости. Коэффициент вязкости содержится только в таких формулах, как (17,9), которые связывают скорость с градиентом давления в жидкости, поскольку самое наличие градиента давления связано с вязкостью жидкости идеальная жидкость могла бы течь по трубе и при отсутствии градиента давления.  [c.86]

Форма турбулентной области определяется свойствами движения в основном объеме жидкости (т. е. не в непосредственной близости от поверхности тела). Не существующая пока полная теория турбулентности должна была бы дать принципиальную возмол<ность определения этой формы с помощью уравнений движения идеальной жидкости, если задано положение линии отрыва иа поверхности тела. Действительное же положение линии отрыва определяется свойствами движения в непосредственной близости поверхности тела (в так называемом иограинчном слое), где существенную роль играет вязкость жидкости (см. 40).  [c.209]

Систематическое и последовательное применение методов анализа бесконечно малых к задачам механики было осуществлено впервые великим математиком и механиком Леонардом Эйлером (1707—1783), который большую часть своей творческой жизни провел в России, будучи членом открытой по указу Петра I в 1725 г. в Петербурге Российской Академии наук. В России механика начала развиваться со времен Эйлера. Творческая сила Эйлера и разносторонность его научной деятельности были поразительны. В работе Теория двилщния твердых тел Эйлер вывел в общем виде дифференциальные уравнения движения твердого тела вокруг неподвижной точки. В гидродинамике ему принадлежит вывод дифференциальных уравнений движения идеальной жидкости. Применяя метод анализа бесконечно малых, Эйлер развивает полную теорию свободного и несвободного движения точки и впервые дает дифференциальные уравнения движения точки в естественной форме. Им дана формулировка теоремы об изменении кинетической энергии, близкая к современной. Эйлером было положено начало понятию потенциальной энергии. Ему принадлелщт первые работы по основам теории корабля, по исследованию реактивного действия струи жидкости, что послужило основанием для развития теории турбин.  [c.15]

В случае, если жидкость является идеальной и несжимаемой (р = onst), задача интегрирования уравнении движения (81) сильно упрощается. На это указал впервые еще Эйлер, чье имя носят уравнения движения (81). Аналитические методы решения уравнений движения идеальной жидкости получили большое развитие, и в настоящее время изучено множество случаев обтекания тел (крылья, решетки крыльев, тела осесимметричной формы, всевозможные каналы и т. п.). Из совокупности работ этого направления образовалось важное направление современной механики — классическая гидродинамика.  [c.91]

Например, в случае обтекания тела плавной формы при больших значениях числа Рейнольдса пограничный слой настолько тонок, что распределение давлений по поверхности тела определяется в первом приближении из уравнений движения идеальной жидкости. Далее, как будет показано в гл. VI, по известному распределению давлений можно рассчитать пограничный слой и найти напряжения треипя у поверхности. При необходимости можно во втором приближении рассчитать влияние пограничного слоя на внешнее обтекание тела (за пределами слоя) и затем определить более точно напряжения трения. Но  [c.91]

Следующий этап в развитии механик жидкости относится к XVni в. и связан с именами членов Петербургской академии наук Даниила Бернулли (1700—1782 гг.) и Леонарда Эйлера (1707—1783 гг.), разработавших общие уравнения движения идеальной жидкости и тем самым положивших начало теоретической гидроаэродинамике. Однако применение этих уравнений (так же как и разработанных несколько позже уравнений движения вязкой жид-  [c.5]

Преобразуя аналогично остальные уравнения Эйлера, запишем уравнения движения идеальной жидкости в форме Громека  [c.88]


Смотреть страницы где упоминается термин ИДЕАЛЬНАЯ ЖИДКОСТЬ Уравнения движения идеальной жидкости : [c.577]    [c.694]    [c.597]    [c.371]   
Смотреть главы в:

Курс теоретической механики для физиков Изд3  -> ИДЕАЛЬНАЯ ЖИДКОСТЬ Уравнения движения идеальной жидкости



ПОИСК



283 — Уравнения жидкости

Вариационный принцип ДАламбера-Лагранжа в задаче о движении идеальной несжимаемой жидкости Поле реакций связей. Уравнение Эйлера

Вывод дифференциальных уравнений движения идеальной жидкости и их интегрирование

Геометрическая интерпретация уравнения Бернулли для элементарной струйки идеальной жидкости при установившемся движении. Полный напор для элементарной струйки

Гидравлическое уравнение кинетической энергии. Уравнение Бернулли для элементарной струйки идеальной жидкости при установившемся движении

Движение твердого тела в идеальной несжимаемой жидкости (уравнения Кирхгофа)

Двумерные уравнения движения идеальной жидкости

Динамика идеальной жидкости и газа. Основные уравнения и общие теоремы Идеальная жидкость. Основные уравнения движения

Дифференциальное уравнение движения идеальной (невязкой) жидкости

Дифференциальные уравнения движения идеальной (невязкой) жидкости (уравнения Эйлера)

Дифференциальные уравнения движения идеальной жидкоСвойство давлений в идеальной жидкости

Дифференциальные уравнения движения идеальной жидкости

Дифференциальные уравнения движения идеальной жидкости (уравнения Л. Эйлера)

Дифференциальные уравнения движения идеальной жидкости в форме Громеко

Жидкость идеальная

Идеальной жидкости движение

Идеальный газ в движении

Интеграл Лагранжа — Коши уравнений безвихревого движеТеорема Бернулли. Некоторые общие свойства безвихревого движения идеальной несжимаемой жидкости в односвязной области

Интегралы уравнений движения идеальной жидкости

Модель идеальной жидкости. Уравнения движения Эйлера

Определения, основные уравнения движения и свойства цилиндрических потоков идеальной жидкости

Основные уравнения движения идеальной жидкости. Уравнение Гельмгольца — Фридмана и теорема сохранения вихрей

Основные уравнения и задачи движения идеальной жидкости

Основы гидродинамики идеальной жидкости Дифференциальные уравнения движения идеальной жидкости в форме Эйлера

Простейшие вопросы механики идеальной жидкости Уравнения движения в криволинейных координатах

Уравнение Бернулли движения идеальной жидкости

Уравнение Бернулли для установившегося движения идеальной, несжимаемой жидкости

Уравнение Бернулли для элементарной струйки идеальной жидкости при установившемся движении

Уравнение Д. Бернулли для идеальной я реальной капельной жидкости в относительном установившемся движении

Уравнение Д. Бернулли для установившегося движения идеальной, сжимаемой жидкости. Критическая скорость газа

Уравнение Д. Бернулли для элементарной струйки идеальной капельной жидкости при неустановившемся и установившемся движения

Уравнение Эйлера движения идеальной жидкости

Уравнение движения идеальной жидкости в форме Эйлера

Уравнение движения идеальной жидкости общее

Уравнение импульсов для установившегося движения идеальной жидкости

Уравнения движения Л. Эйлера для идеальной (вязкой) жидкости

Уравнения движения вязкой жидкости идеально упругого тела

Уравнения движения вязкой жидкости идеальной жидкости

Уравнения движения жидкости

Уравнения движения идеальной баротропной сжимаемой жидкости или газа

Уравнения движения идеальной жидкости

Уравнения движения идеальной жидкости

Уравнения движения идеальной жидкости в сплошной среды

Уравнения движения идеальной жидкости в форме Громеко

Уравнения движения идеальной жидкости в цилиндрической и сферической

Уравнения движения идеальной жидкости в цилиндрической и сферической малых деформаций (полная система

Уравнения движения идеальной жидкости в цилиндрической и сферической намагниченных телах

Уравнения движения идеальной жидкости в цилиндрической и сферической пустоте

Уравнения движения идеальной жидкости в цилиндрической и сферической с бесконечной проводимостью

Уравнения движения идеальной жидкости в цилиндрической и сферической системах

Уравнения движения идеальной жидкости в цилиндрической и сферической скоростей деформаций

Уравнения движения идеальной жидкости в цилиндрической и уравнения Эйлера)

Уравнения движения идеальной жидкости полная система

Уравнения движения идеальной жидкости при баротропных процессах (полная система)

Уравнения движения идеальной жидкости. Закон j сохранения энергии

Уравнения движения идеальной несжимаемой жидкости в произвольной криволинейной системе координат

Уравнения движения идеальных (не вязких) жидкостей и газов

Уравнения движения потоков идеальной жидкости

Уравнения плоскопараллельных движений идеальной жидкости

Эйлера уравнения движения идеальной сжимаемой жидкости

Энергетическая интерпретация уравнения Бернулли для элементарной струйки идеальной жидкости при установившемся движении



© 2025 Mash-xxl.info Реклама на сайте