Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость трансзвуковая

Рассматривается газовый поток, имеющий скорость звука на прямой О А в меридиональной плоскости течения (рис. П1), и параллельный оси симметрии X. Если вниз по потоку канал расширяется и его образующая САВ имеет излом в точке А, то скорость течения становится сверхзвуковой и из точки излома выходит пучок характеристик с номерами х-Вне окрестности прямой О А течение без труда можно рассчитать, например, методом характеристик. Для этого предварительно необходимо определить трансзвуковое течение в окрестности О А.  [c.224]


Правило площадей применяют для получения такой компоновки летательного аппарата, которая обусловливает наименьшее сопротивление в области трансзвуковых скоростей. Для этого, определив очертания тела вращения с минимальным сопротивлением подбирают стреловидность крыльев, оперения и вместе с тем соответственно уменьшают поперечные размеры корпуса так, чтобы закон распределения поперечных сечений летательного аппарата был таким же, как у эквивалентного тела.  [c.637]

Из сказанного можно сделать вывод, что при соответствующем выборе формы оперения в плане можно обеспечить необходимые аэродинамические характеристики. При этом разные формы могут быть получены путем соответствующего преобразования треугольного оперения (рис. 1.8.8,а). Положительные качества треугольного оперения определяются стреловидным характером его передних кромок. Исследованиями установлено, что в трансзвуковой области полета центр давления оперения перемещается незначительно, что облегчает стабилизацию. Подъемная сила, а следовательно, и стабилизирующий момент треугольного оперения при той же площади, что-и у обычного стреловидного (рис. 1.8.8,6), будет выше при сверхзвуковых скоростях, так как отсутствует отрицательное воздействие концевых кромок.  [c.66]

Широкое применение на летательных аппаратах различного назначения в большом диапазоне скоростей находят прямоугольные стабилизаторы малого удлинения (рис. 1.8.8,ж). Они обеспечивают большой стабилизирующий момент, что в известной мере объясняется благоприятной интерференцией с корпусом. К числу недостатков таких стабилизаторов относятся их большое аэродинамическое сопротивление, резко возрастающее уже при сравнительно небольших числах М <<Л, а также значительное перемещение центра давления в трансзвуковой области полета. Аэродинамические исследования выявили целесообразность использования на летательных аппаратах со сверхзвуковой скоростью неподвижных стабилизаторов, поворотного оперения (крыльев) или несущих поверхностей (играющих одновременно роль хвостового оперения), имеющих сложную форму в плане (рис. 1.8.8, зл-ж). Для такой формы характерны не одна прямая кромка, а наличие нескольких изломов по передней и задней кромкам, а также кри-  [c.67]

Крыло с изменяющейся в полете стреловидностью — одно из средств механизации летательного аппарата (рис. 1.12.10), использование которого благоприятно сказывается на аэродинамических характеристиках летательного аппарата, движущегося в широком диапазоне скоростей (от дозвуковых до больших сверхзвуковых). При этом в зоне трансзвуковых скоростей снижение сопротивления и предотвращение флаттера достигается приданием крылу наибольшего угла стреловидности. В области больших до- и сверхзвуковых скоростей крыло выводят в положение, соответствующее меньшему углу стреловидности.  [c.109]


В трансзвуковой области линеаризация уравнений, представленная выше, оказывается неправомерной. Предполагая, что скорость газа близка к скорости звука, а угол между направлением скорости и осью X мал в трансзвуковой области, можно получить следующее уравнение для потенциала возмущенного течения  [c.36]

Важно отметить, что уравнениями газовой динамики в стационарном случае являются уравнения эллиптического типа при дозвуковых скоростях (Afd), уравнениями гиперболического типа при сверхзвуковых скоростях (М>1) и уравнениями параболического типа при трансзвуковых скоростях (М 1). Нестационарные уравнения газовой динамики при всех М являются уравнениями гиперболического типа. Таким образом, при решении уравнений газовой динамики приходится иметь дело с основными типами уравнений математической физики.  [c.36]

Обратная задача теории сопла состоит в определении параметров течения и линий тока в окрестности оси симметрии по заданному на оси симметрии (il) = 0) распределению скорости u = Uo x), которое.в общем случае задается в дозвуковой, трансзвуковой и сверхзвуковой областях сопла. Уравнения газовой динамики (2.31) — (2.35) имеют н этих областях эллиптический, параболический и гиперболический тип соответственно.  [c.188]

С помощью метода крупных частиц исследованы широкие классы задач, в том числе выполнен расчет в областях переменной формы сверхзвуковое обтекание тел с отошедшей и присоединенной ударными волнами и внутренними скачками уплотнения дозвуковые и трансзвуковые течения с переходом через скорость звука и образованием локальных сверхзвуковых зон.  [c.196]

В [55] показано, что уже при М > 0,5 сжимаемость оказывает определяющее влияние на гидродинамику течения двухфазной смеси в не-обогреваемых длинных трубах. При сравнительно низких скоростях, реализуемых в замкнутых контурах циркуляции, происходит уменьшение коэффициента сопротивления трения двухфазной смеси, который стремится к нулю в трансзвуковой области течения.  [c.95]

Д. С. артиллерийских снарядов, корпусов ракет, фюзеляжей самолётов, спускаемых в атмосфере кос-мич. летат. аппаратов и боевых частей ракет может составлять значит, часть полного аэродинамич. сопротивления, достигающую 70% его при трансзвуковых скоростях полёта хорошо обтекаемых тел. При расположении на дне тела или вблизи донного среза сопел двигательных установок ракет струи, вытекающие из сопел, усиливают отсасывание воздуха и Д, с. возрастает. Теоретич. предельная величина Д. с. (максимальная) отвечает возникновению полного вакуума на дне тела (рд = 0).  [c.14]

ОКОЛОЗВУКОВОЕ ТЕЧЕНИЕ — течение газа в области, в к-рой скорость потока и мало отличается от местной скорости распространения звука а(и яц а). О. т. может быть дозвуковым (к < а), сверхзвуковым (у > а) и смешанным (или трансзвуковым), когда внутри рассматриваемой области совершается переход от дозвукового к сверхзвуковому течению. Характерными случаями О. т. являются течение в области критического (наиб, узкого) сечения сопел ракетных двигателей и аэродинамич. труб, течение вблизи горловины сверхзвуковых воздухозаборников реактивных двигателей, в межлопаточных каналах нек-рых турбомашин, обтекание тел (самолётов, снарядов, ракет), летящих со скоростью, близкой к скорости звука или преодолевающих звуковой барьер , когда на обтекаемом теле возникают местные сверхзвуковые зоны, замыкающиеся ударными волнами.  [c.402]

Таким образом, создание и эксплуатация турбоустановок на АЭС требует также решения ряда сложных проблем газодинамики двухфазных потоков. К этим проблемам относятся возникновение влаги при дозвуковых и трансзвуковых скоростях течения образование жидких пленок и крупных капель движение влаги в проточных частях турбин и процессы взаимодействия влаги с рабочими лопатками влияние жидкой фазы на основные характеристики проточных частей турбин и влияние концентраций примесей в жидкой фазе на коррозию металла, особенно в зоне Вильсона. Решение этих проблем позволит оптимизировать проточную часть турбин, работающих во влажном паре, повысив их экономичность и надежность. В этой и следующей главах рассматриваются лишь наиболее характерные особенности течения влажного пара в] турбоустановках АЗС и методы удаления влаги в них. Исследования и расчеты турбин АЭС наиболее полно рассмотрены в [7.1—7.3].  [c.265]


Особенностью спонтанного образования влаги при трансзвуковых скоростях М < 1,1 1,3 является то, что скачок конденсации пара может быть неустойчивым. Нестационарность скачка конденсации наблюдается в одиночных соплах Лаваля в суживающихся и расширяющихся каналах турбинных решеток. На рис. 7.2 показаны экспериментальные  [c.266]

На основании всего вышеизложенного можно сделать вывод о том, что во многих интересующих практику случаях двухфазный поток в трансзвуковой области течения представляет собой однородную гомогенную среду, критическую скорость истечения которой можно отождествлять с такой скоростью звуковой волны, за время распространения которой из всех возможных обменных процессов завершается лишь обмен количеством движения, а остальные обменные процессы полностью заморожены . При этом и сама скорость звука, и критическая скорость истечения, и кри-тический расход, и необходимые для определения последних критические параметры смеси могут быть найдены с помощью предложенного здесь показателя адиабаты двухфазной смеси.  [c.174]

Полученные уравнения (5.42), (5.44), (5.46) эквивалентны и выбор их должен определяться только простотой получения решения. Прежде чем приступить к решению уравнений, сделаем некоторые общие замечания об их свойствах. Все полученные уравнения нелинейны, так как в них искомые функции входят не в первой степени, что, как известно, чрезвычайно затрудняет получение решений. Кроме того, напомним, что согласно определению (5.39) на звуковой линии 5 = О, з < О соответствует дозвуковому, а 5 > О — сверхзвуковому потоку. Тогда легко заметить, что все основные уравнения [например (5.44) ] в дозвуковой области эллиптического типа, а в сверхзвуковой — гиперболического. Это также осложняет решение, так как методы его получения различны для эллиптических и гиперболических уравнений. Следует отметить, что задача о трансзвуковом потоке даже после упрощений остается одной из самых сложных в газовой динамике. Эти замечания касаются сложности решения краевых задач. Некоторые частные решения, имеющие практическую ценность, строятся достаточно просто. Рассмотрим два таких решения, которые позволяют выяснить особенность перехода через скорость звука в сопле Лаваля.  [c.133]

В аэродинамических трубах трансзвуковых скоростей при приближении скорости потока к скорости звука возникает так называемое запирание трубы, при котором дальнейшее увеличение скорости потока становится невозможным даже при существенном увеличении мощности привода. Устранение указанного недостатка достигается за счет перфорации стенок рабочей части трубы, причем степень перфорации, в зависимости от потребного числа Маха, составляет до 20% [10.4]. Проницаемость стенок трубы позволяет ликвидировать запирание и проводить испытания на трансзвуковых режимах, соответствующих числам Маха М = 0,6 - 1,3.  [c.232]

Трансзвуковой " эффект для вихря скорости  [c.56]

Теперь рассмотрим вязкоупругий аналог трансзвукового явления, связанного с переменой типа уравнения распространения завихренности. Пусть и, и и. - значения поперечных скоростей на "звуковой" линии в потоках 1 и 2. В результате вычислений находим  [c.62]

На рис. 1 представлены кривые для четырех самолетов различных типов. Кривая 1 относится к самолету, скорость которого меньше скорости звука, кривая 2 — к самолету, максимальная скорость которого немного превышает скорость звука (М примерно 1,3—1,4). Назовем эти скорости трансзвуковыми. Кривая 4 относится к современному истребителю типа F-104 Старфайтер , основной диапазон скоростей которого сверхзвуковой. Кривая 3 относится к самолету с промежуточными характеристиками.  [c.17]

Холст Т. Л. Ускоренный численный метод решения уравнения для полного потенциала скорости трансзвукового потока на основе консервативной схемы, и Ракент. техн. и космонавтика.— 1980.— № 12.— С. 29—  [c.362]

Поперечный вдув струй в сносящий поток представляет практический интерес в связи с разнообразными приложениями, начиная от разбавления продуктов сгорания воздухом в камерах сгорания (КС) газовых турбин и заканчивая аэродинамикой реактивной струи при переходе самолета вертикального или укороченного взлета и посадки с режима подъема на крейсерский режим. При вдуве струи в сносящий поток наблюдается сложная картина течения [1, 87]. Поперечное сечение струи принимает почкообразную форму и состоит из двух вихрей, закрученных в противоположные стороны. Основной поток, обтекая струю, формирует зону обратных токов. Возникающие зоны возвратных течений могут быть использованы для стабилизации фронта пламени в прямоточных КС авиационных двигателей. Генератором стабилизирующей струи служит вихревой воспламенитель [141] (см. п.7.1). Преимущества этих систем — высокая надежность запуска и устойчивая работа в щироком диапазоне изменения физических и климатических условий. В этом случае стабилизация осуществляется на высокотемпературном факеле — закрученном потоке продуктов сгорания, истекающих из сопла-диафрагмы с трансзвуковой скоростью, что может быть использовано для воспламенения сносящего потока топливо-воздушной смеси. При  [c.359]

Число Маха Ма = Wq/ является мерой сжимаемости газа при больших скоростях течения. При достаточно малых значениях числа Маха изменение плотнбсти газа настолько мало, что газ можно рассматривать как несжимаемую жидкость. При Ма > 1 поток газа существенно отличается от потока газа при Ма < 1 в сверхзвуковом потоке газа возможно образование ударных волн, в дозвуковом потоке ударные волны никогда не образуются. Равным образом существенные отличия имеют трансзвуковой (Ма  [c.369]


Отрыв потока представляет собой одно из характерных явлений, сопровождающих движение лсидкости или газа. При отрыве происходит перераспределение давления на поверхности летательного аппарата, вследствие чего изменяются аэродинамическое сопротивление и подъемная сила. В диапазоне трансзвуковых скоростей отрыв усложняет управляемость, так как вызывает увеличение нестационарных нагрузок. При высоких сверхзвуковых скоростях он приводит к большим тепловым потокам на отдельных участках обтекаемой поверхности.  [c.97]

Наряду с широко распространенными в энергетике паровоздупшыми эжекторами в последнее время все чаще применяются водовоздушные эжекторы, работа которых еще мало изучена, а главное, отсутствует полное описание процессов, происходящих при смешении эжектируемого и рабочего потоков. Двухфазная смесь, образующаяся в результате их смешения, если она достаточно однородна, обладает свойствами, существенно отличными от свойств каждого из смешивающихся потоков. Наиболее важным является резкое снижение скорости звука в гомогенной двухфазной смеси, отмеченное в [55], что может привести к возникновению трансзвукового режима течения даже при относительно небольших скоростях (10-50 м/с). Описание процессов, происходящих в водовоздушных эжекторах, и методика их расчета должны учитывать возможность реализащш критического течения в камере смешения эжектора.  [c.99]

Ранее [17] установлено, что при критическом истечении однофазной жидкости влияние сжимаемости ок ывается определяющим при протекании процесса в области, автомодельной по числу Рейнольдса (Re), при этом влияние диссипативных сил в околозвуковой области течения становится исчезающе малым вследствие вырождения турбулентности. Однако практическое использование этого эффекта в трубах при движении в них однофазных сред проблематично, прежде всего, из-за большой скорости звука в таких средах. Кроме того, влияние этого эффекта при движении однофазной среды реализуется лишь на очень коротком участке трубы, примыкающем к выходному сечению трубы, так как скорость звука в адиабатном канале постоянного сечения при движении в нем однофазной среды достигается лишь один раз на выходе из канала. Иначе обстоит дело со скоростью звука в двухфазном потоке как показано в [55], при одних и тех же параметрах торможения в зависимости от структуры двухфазного потока и степени термического и механического равновесия фаз в нем скорость звука может меняться в очень широких пределах. Кроме того, в настоящее время теоретически обоснован и экспериментально подтвержден тот факт, что скорость звука в двухфазном потоке при определенном соотношении фаз может оказаться на два порядка ниже, чем в жидкой фазе. Таким образом, трансзвуковой режим течения может быть достигнут на конечном участке длины трубопровода при умеренных значениях скорости звука (несколько десятков и даже несколько метров в секунду). В этом случае коэффициент сопротивления является функцией не только вязкости потока, но и его сжимаемости, определяемой числом Маха. Более того, при движении с околозвуковой скоростью влияние wi nnaTHBHbLX сил становится исчезающее малым вследствие вырождения турбулентности. Уменьшение потерь на трение при больших массовых расходах отмечалось в опытах при движении двухфазной смеси в замкнутых контурах циркуляции [32]. Таким образом, при критическом истечении влияние сжимаемости  [c.119]

Принципиальное различие между размерными и безразмерными величинами закл счается в том, что, оперируя с размерными величинами, мы применяем для численного определения данной размерной величины в самых разнообразных явлениях один и тот же по существу произвольный масштаб (эталон метра, эталон килограмма и т. п.), а при численном определении данной безразмерной величины применяется некоторый внутренний масштаб, органически связанный с рассматриваемым явлением. Так, например, любое течение газа можно численно характеризовать скоростью, выраженной в метрах в секунду. Характеризуя же скорость течения безразмерным числом М, г. е. отношением скорости течения к скорости распространения звука в данной среде, ср азу получаем представление об области течения (дозвуковая, трансзвуковая, сверхзвуковая) и о ряде явлений, возникающих в этой области (влияниесжимаемости, аэродинамический нагрев, вероятность появления скачков уплотнения и т. п.).  [c.5]

Околозвуковыми (трансзвуковыми) обычно называют такие ступени, в которых число М изменяется по высоте лопатки от повышенных дозвуковых значений до умеренных сверхзвуковых (Ml < 1,15. .. 1,2). В сверхзвуковых ступенях поток воздуха, обтекаюш,ий лопатки, имеет сверхзвуковую скорость по всей их высоте.  [c.70]

Как видно из рассмотренного, добиться снижения радиальных и продольных габаритов компрессора можно только путем перехода к околозвуковым (трансзвуковым) и сверхзвуковым ступеням. В таких ступенях снимаются или уменьшаются ограничения по числам Мда1, Мс2, Мса и и, характерные для дозвуковых ступеней. Основанием для перехода к трансзвуковым и сверхзвуковым ступеням послужило то, что при относительно небольших сверхзвуковых скоростях потока Mj < 1,35. .. 1,4 в скачках уплотнения происходит существенное повышение статического давления при высоком КПД.  [c.71]

По уровню чисел М набегающего на лопатки потока осевые ступени принято разделять на дозвуковые, в которых значения M i и Мс2 на расчетном режиме ни на одном радиусе не превышают единицу, све/ л звг/ковбге, в которых по всей высоте лопатки Мгс1>1 или Мс2>1, и трансзвуковые (околозвуковые), в которых скорость Wy (или Сг) изменяется по радиусу от сверхзвуковой до дозвуковой.  [c.59]

Рассмотрим теперь некоторые особенности течения воздуха через решетку рабочего колеса при Ma,i>l. Для большинства трансзвуковых ступеней характерно наличие дозвукового потока на выходе из колеса (Мш2<1), т. е. торможение потока в рабочем колесе с переходом через скорость звука. Типичная для этого случая схема течения воздуха в решетке колеса показана на рис. 2.44. Как известно, при обтекании сверхзвуковым потоком изолированного профиля, имеющего хотя бы незначительное скругление передней кромки, перед ним возникает криволинейный скачок уплотнения — головная волна. Аналогичная картина имеет место при обтекании свемзвуковым набегающим потоком компрессорной решетки рассматриваемого типа. Перед каждой лопаткой возникает головная волна AB . На участке АВ фронт волны почти перпендикулярен вектору скорости, т. е. этот участок можно рассматривать как прямой скачок уплотнения. На участке ВС скачок становится косым, интенсивность его ослабевает по мере удаления от вызвавшего его профиля и на некотором расстоянии оказывается исчезающе малой. В области, лежащей за прямым скачком, скорость становится дозвуковой и уменьшается до нуля в передней критической точке К. Затем на спинке профи-  [c.95]

В остальном параметры, треугольники скоростей и способы изменения закрутки потока по радиусу в трансзвуковых и сверхзвуковых ступенях не имеют существенных отличий от описанных выше для дозвуковых ступеней. Обычно используют осевой вход, но может применяться также и предварительная закрутка воздуха перед рабочим колесом. Работа L принимается постоянной вдоль радиуса или при малых d может несколько уменьшаться к втулке, что характерно для ступеней вентиляторов ряда ДТРД. Хотя у втулки в ступенях рассматриваемого типа набегающий на лопатки поток может быть дозвуковым, для всех сечеиий рабочего колеса часто применяют однотипные профили, поскольку решетки, рассчитанные на обычно хорошо работают и при больших до-  [c.97]


В целом трансзвуковые ступени благодаря повышенным значениям коэффициента нагрузки и высоким окружным скоростям при использовании их в качестве первых ступеней компрессора могут обеспечить адиабатическую работу сжатия воздуха Н —30. .. 60 кДж/кг, что соответствует Лр. = 1,41.. 1,8 при равных илп более высоких значениях осевой скорости воздуха, чем у дозвуковых ступеней. Кроме того, применение высоких окружных скоростей uk > 400. .. 450 м/с) в ступенях вентилятора ДТРД облегчает задачу согласования параметров вентилятора и приводящей его во вращение турбины. Экспериментальные исследования не показали никаких особенностей в работе трансзвуковых ступеней при плавном увеличении (при увеличении частоты вращения) от дозвуковых до сверх-  [c.97]

Такое распределение работы характерно для компрессоров, состоящих из достаточно большого числа однотипных ступеней (г= = 5—6 и более). В некоторых случаях для увеличения степени повышения давления и производительности уже спроектированного осевого компрессора к нему добавляется опереди еще одна ( нулевая ) ступень. Если в качестве такой ступени используется трансзвуковая ступень, а остальные ступени дозвуковые, то модифициро--ванный компрессор будет иметь ступени смешанного типа. В эток случае распределение работы сжатия по ступеням будет иметь иной характер. Трансзвуковую ступень для получения хороших значений КПД обычно выполняют довольно сильно нагруженной. В дозвуковой части компрессора распределение работы остается прежним. Но вследствие повышения температуры воздуха при сжатии его в трансзвуковой ступени окружные скорости в дозвуковых ступенях при сохранении прежнего уровня чисел М могут быть несколько увеличены. Если эта возможность может быть реализована по условиям прочности лопаток, то адиабатическая работа сжатия в каждой из дозвуковых ступеней будет соответственно увеличена. На рис. 3. 9 этот случай представлен кривой 2.  [c.111]

Проектирование вентиляторов и компрессоров низкого и высокого давления современных ГТД сопровождается трудностями, присущими созданию авиационного осевого компрессора с высокой степенью повышения давления в ступени при высоком КПД и необходимом запасе устойчивости при работе в напорной системе двигателя. При этом одним из основных путей снижения массы и габаритных размеров авиационного компрессора является уменьшение его внешнего диаметра и числа ступеней. Применение трансзвуковых и сверхзвуковых ступеней позволяет при увеличенных значениях осевой скорости и относительной скорости потока (Мш1 = набегающего на рабочие лопатки, существенно увеличить удельную производительность, т. е. расход воздуха через площадь проходного сечения колеса, или увеличить степень повышения давления в ступени, т. е. уменьшить число ступеней. Специальным профилированием лопаток и рациональной организацией течения в межлопаточных каналах, а также применением повышенных по сравнению с дозвуковыми ступенями коэффициентов нагрузки можно достигнуть высоких значений КПД таких ступеней. В целом трансзвуковые и сверхзвуковые компрессорные ступени благодаря повышенным значениям коэффициентов нагрузки, специально спроектированным профилям и высоким окружным скоростям при использовании их в качестве первых ступеней вентилятора ДТРД или компрессора низкого давления ТРД могут обеспечить степень повышения давления = 1,4-ь1,8.  [c.45]

Примером такой трансзвуковой ступени является одноступенчатый вентилятор, типичный для ДТРД с большой степенью двухконтурности (рис. 19). Такая ступень должна обеспечивать максимальный расход воздуха при минимальном внешнем диаметре, что достигается применением высокой осевой скорости на входе в вентилятор и малым относительным диаметром втулки. Существуют известные ограничения, препятствующие получению высокой нагрузки ступени допустимая (по условиям прочности) окружная скорость, число М набегающего потока и относительное повышение статического давления у втулки (особенно при относительно длинных лопатках), которые определяют возможное повышение давления в ступени, а также число N[wi на периферии лопаток рабочего колеса.  [c.45]

Вследствие того что СПС эксплуатируется в очень широком диапазоне скоростей и высот полета, американские специалисты считают невозможным создание легкого и эффективного на всех режимах полета одноконтурного или двухконтурного двигателя обычной схемы, особенно при условии ограничений по уровню шума. Действительно, ДТРД с большой степенью двухконтурности обеспечивает потребную взлетную тягу при низком уровне шума и имеет хорошую экономичность на дозвуковых скоростях полета. Для трансзвукового разгона целесообразен ТРДФ, а для сверхзвукового полета — ТРД или ДТРД с низкой степенью двухконтурности при высокой температуре газа перед турбиной. Двига-  [c.230]

Трансзвуковыми пли смешанными течениями называют течения, в которых имеются области как с довзуковымн, так и со сверхзвуковыми скоростями. Границу между областями называют звуковой поверхностью или, если течение двухмерное, — звуковой линией. В разд. 3.4 рассматривалась простейшая одномерная задача о переходе потока через скорость звука в сопле Лаваля. В этом случае звуковая линия была прямой и располагалась точно в горле сопла. Сейчас рассмотрим значительно более сложную задачу о переходе через скорость звука в двухмерном потоке.  [c.131]

В главе 2 исследованы нелинейные физические эффекты, обусловленные вязкоупругими свойствами жидкости. Отличительная черта большинства рассмотренных задач - наличие в потоке сильного разрыва гидродинамических параметров. Получено новое точное решение полных уравнений движения жидкости выполнен анализ релаксационных свойств вязкого касательного напряжения и завихренности. Изучены условия, в которых изотермическая жидкость Максвелла проявляет гиетерезисную нелинейность, Представлены закономерности поведения вихря скорости под воздействием вязкоуирзтости, переменной плотности, зависимости теплофизических параметров жидкости от температуры. Подробно изучен "трансзвуковой" эффект для вихря скорости на линии сильного гидродинамического разрыва. Проанализированы условия движения, при которых диссипативная функция отрицательна,  [c.4]


Смотреть страницы где упоминается термин Скорость трансзвуковая : [c.332]    [c.24]    [c.139]    [c.71]    [c.95]    [c.163]    [c.174]    [c.493]    [c.94]    [c.59]    [c.137]    [c.236]   
Теория упругости и пластичности (2002) -- [ c.323 , c.330 ]



ПОИСК



АСИМПТОТИКА ВЕРХНЕЙ ВЕТВИ НЕЙТРАЛЬНОЙ КРИВОЙ ПРИ ДО- И ТРАНСЗВУКОВЫХ СКОРОСТЯХ ВНЕШНЕГО ПОТОКА Исходные предположения

Дисперсионное соотношение в случае трансзвуковых скоростей набегающего потока

НЕЛИНЕЙНЫЕ ВОЗМУЩЕНИЯ, ИНДУЦИРУЮЩИЕ СОБСТВЕННЫЙ ГРАДИЕНТ ДАВЛЕНИЯ В ПОГРАНИЧНОМ СЛОЕ НА ПЛАСТИНЕ В ТРАНСЗВУКОВОМ ПОТОКЕ Асимптотическая структура основной части пограничного слоя для трансзвукового диапазона скоростей

Трансзвуковой эффект для вихря скорости



© 2025 Mash-xxl.info Реклама на сайте