Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конденсация скачки

Экспериментальная кривая 2 для того же значения Хо и еа=0,53 показывает возникновение на некотором расстоянии за скачком конденсации скачка уплотнения так, что е7,= Еа. Таким образом, наблюдаются явления, характерные для сверхзвукового течения.  [c.263]

На рис. 12-3 приведены значения скачка температуры tu— —t-noB в зависимости от давления конденсирующегося водяного пара и значения коэффициента конденсации k при 29 ООО Вт/м [Л. 6]. Как следует из графиков, при малом коэффициенте конденсации скачок может быть значительным, особенно при нрз- ких давлениях. В последнем случае сопротивление 7 ф может быть сопоставимым с термическим сопротивлением пленки конденсата Rk и даже значительно большим последнего. Скачок температуры увеличивается и с увеличением q.  [c.266]


Как следует из графиков на рис. 12-3, при коэффициенте конденсации, равном или близком к единице, скачок температуры сравнительно невелик. При малом же коэффициенте конденсации скачок может быть значительным, особенно при низких давлениях. В последнем случае сопротивление Яф может быть  [c.261]

Истечение влажного пара из сопл турбины обычно сопровождается большой степенью переохлаждения в критическом участке сопла и скачком конденсации в сверхзвуковой части. Нарушение пересыщенного состояния происходит вследствие спонтанного возникновения собственных ядер конденсации. Скачок конденсации сопровождается локальным ростом давления. Кроме того, из-за переохлаждения пара действительный расход влажного пара всегда больше теоретического, вычисленного для изоэнтропического равновесного процесса (увеличение коэффициента расхода i = 2- 3%).  [c.228]

Автором недостаточно полно рассмотрены особенности движения двухфазной или двухкомпонентной среды с большими скоростями при высоких концентрациях жидкой (твердой) фазы. Особенно сложной и вместе с тем практически и теоретически важной является проблема течений двухфазных сред при больших скоростях, так как при таких течениях возникают различные структурные изменения, кардинально влияющие на гидромеханические, тепловые и акустические свойства среды. Хорошо известен, например, факт резкого снижения скорости звука при переходе потока парожидкостной смеси к пробковой, пенообразной и пузырьковой структурам. Известно также, что переход от пузырьковой структуры к чистой жидкости в потоках больших скоростей, как правило, сопровождается мощными скачками уплотнения (конденсации). К числу весьма важных вопросов необходимо отнести проблемы устойчивости упомянутых структур, условий и критериев перехода от одной структуры к другой.  [c.7]

Исследования конденсации в сверхзвуковых соплах проводились в связи с проблемами образования зародышей при конденсации и скачками конденсации. В работе [52] исследовалась конденсация пара, в работе [213] — конденсация азота, в работе [866] — конденсация влажного воздуха в сверхзвуковых соплах, в работе [1741 — конденсация углекислого газа.  [c.331]

Теоретический и измеренный профили давления, свидетельствующие о появлении скачка конденсации, представлены на фиг. 7.21. Расчетная скорость образования зародышей приведена на фиг. 7.22, откуда видно, что для получения данной скорости образования зародышей при более низких температурах требуется большее пересыщение. Степень пересыщения непрерывно увеличивается до наступления конденсации, происходящей с большой скоростью.  [c.332]


Формальным сходством с детонационными волнами обладают конденсационные скачки, возникающие при движении газа, содержащего, например, пересыщенный водяной нар ). Эти скачки представляют собой результат внезапной конденса[(ии паров, причем процесс конденсации происходит очень быстро в узкой зоне, которую можно рассматривать как некоторую поверхность разрыва, отделяющую исходный газ от тумана — газа, содержащего конденсированные пары. Подчеркнем, что конденсационные скачки представляют собой самостоятельное физическое явление, а не результат сжатия газа в обычной ударной волне последнее вообще не может привести к конденсации паров, так как эффект увеличения давления в ударной волне перекрывается в смысле его влияния на степень пересыщения обратным эффектом повышения температуры.  [c.689]

И конденсация сопровождается в них сжатием вещества 2) дозвуковые скачки (отрезок А О адиабаты), на которых  [c.691]

Значение потока / (скорости конденсации) монотонно возрастает вдоль отрезка А О от точки А (в которой / = 0) к точке О, а вдоль отрезка АО — монотонно падает от А (где j — оо) к О. Интервал же значений / (а с ним и соответствующий интервал значений скорости ui = jV[) между теми, которые / принимает в точках О и О, является запрещенным и не может быть осуществлен в конденсационных скачках. Общее количество (масса) конденсирующегося пара обычно весьма мало по сравнению с количеством основного газа. Поэтому мон<но с одинаковым правом рассматривать оба газа / и 2 как идеальные по этой же причине можно считать одинаковыми теплоемкости обоих газов. Тогда значение в точке О определится формулой  [c.691]

В отличие от электронов, имеющих полуцелый спин, куперов-ская пара — это, по существу, новая частица, имеющая спин, равный нулю. Такие частицы подчиняются статистики Бозе — Эйнштейна. Для них не существует запрета Паули. Бозе-частицы обладают замечательным свойством они в сколь угодно большом количестве могут занимать одно состояние, причем, чем больше их оказывается в этом состоянии, тем труднее какой-либо из частиц выйти из данного состояния. Происходит так называемая бозе-конденсация.  [c.269]

Если при постоянном объеме конденсация идеального газа Бозе—Эйнштейна происходит без разрыва как энергии, так п теплоемкости [как видно из формулы (42.17), только производная теплоемкости по температуре претерпевает здесь разрыв], то этот процесс при постоянном давлении становится переходом первого рода. Из формулы (42.13) следует, что на (Р, 7 )-диаграмме имеется линия переходов с критическими значениями давления, определяемыми этой формулой. При давлениях, больше критических, объем скачком уменьшается от до нуля [см. формулу (42.3)]. Этому  [c.875]

Ниже будет показано, что в адиабатических (без подвода тепла) скачках сжатия происходит увеличение энтропии газа,, а в адиабатических скачках разрежения, если бы они существовали, энтропия должна была бы уменьшаться. Этим доказывается законность существования адиабатических скачков давления и одновременно невозможность возникновения адиабатических скачков разрежения (как известно из термодинамики, в конечной замкнутой системе энтропия убывать не может). В полном соответствии с этим находится тот известный факт, что наблюдаемые иногда в действительности скачки разрежения (скачок конденсации, фронт пламени) получаются только при подводе тепла в область скачка, т. е. в таких условиях, когда и при скачке разрежения энтропия газа растет. Нужно заметить, что возникновение скачков разрежения при подводе тепла к газу отнюдь не противоречит процессу, изображенному на рис. 3.1, В самом деле, если в области пониженных давлений В за счет подвода тепла получается температура выше, чем в области 8  [c.115]

Нетрудно убедиться, что теплоемкость v меняется в точке бозе-конденсации непрерывно ( ). Кривая зависимости теплоемкости от температуры в этой точке имеет излом (рис. 38), а производная теплоемкости по температуре претерпевает скачок.  [c.243]

Фазовые переходы первого рода характеризуются скачкообразным изменением ряда свойств вещества. Скачкообразно изменяются при переходе через кривую фазового равновесия объем и энтропия и, как следствие этого, внутренняя энергия, энтальпия и теплоемкость некоторые из свойств, например энергия Гиббса, при фазовом переходе первого рода скачка не испытывают. К фазовым переходам первого рода относятся испарение и конденсация, плавление и кристаллизация, многие переходы из одной кристаллической модификации в другую.  [c.141]


Сделаем несколько замечаний, относящихся к истечению насыщенных водяных паров через сопла. Как показывает опыт, пар, находящийся перед соплом в насыщенном состоянии, конденсируется при течении с некоторым запозданием, т. е. переходит сначала в пересыщенное состояние. Конденсация водяного пара, в результате которой степень сухости достигает равновесного при данных условиях значения, происходит обычно (при не очень больших начальных давлениях) за минимальным сечением сопла, т. е. после того, как достигнута критическая скорость, и притом очень быстро, с образованием конденсационного скачка уплотнения. Поэтому при расчетах сопел Лаваля для водяного пара необходимо принимать во внимание, что пар в суживающейся части и в- начале расширяющейся части сопла является пересыщенным (переохлажденным).  [c.320]

Данные таблицы хорошо согласуются с результатами, полученными в двух других научных группах (см. [18]) при использовании иных методов анализа. Как следует из этих данных, при высокой интенсивности испарения скачки температуры и плотности пара у межфазной границы становятся соизмеримыми с абсолютными значениями температуры и плотности. При (5 = 1 (данные табл. 1.3 приводятся для этого значения коэффициента испарения-конденсации) степень пересыщения пара столь высока, что вблизи межфазной поверхности еще прежде достижения предельной интенсивности испарения неизбежна объемная конденсация пара (так называемые скачки конденсации). Степень пересыщения пара очень сильно зависит  [c.74]

Так как в исходной гипотезе Нуссельта пренебрегают температурным скачком на границе раздела фаз, а движение пленки предполагается ламинарным, то теплоотдача при конденсации будет целиком определяться теплопроводностью через пленку жидкости. Поэтому температура слоев пленки изменяется линейно от температуры стенки при О до температуры конденсации при у = (рис. 17.17). Перенос теплоты теплопроводностью через пленку конденсата толщиной описывается уравнением Фурье  [c.210]

Из (6.10.5) и (6.10.6) легко получить выражение, связывающее изменение скорости п давления в скачке конденсации  [c.120]

Фазовые переходы, сопровождающиеся поглощением или выделением тепла, называются фазовыми переходами первого рода. Фазовые переходы первого рода характеризуются скачкообразным изменением ряда свойств вещества. Скачком изменяются при переходе через кривую фазового равновесия объем и энтропия и, как следствие этого, внутренняя энергия, энтальпия и теплоемкость некоторые из свойств, например изобарный потенциал, при фазовом переходе первого рода скачка не испытывают. К фазовым переходам первого рода относятся испарение и конденсация, плавление и кристаллизация, многие переходы из одной кристаллической модификации в другую.  [c.137]

При течении насыщенного водяного пара в соплах кроме скачков уплотнения, определяемых условиями (7-41), могут образовываться еще так называемые конденсационные скачки (рис. 7-13). Эти скачки связаны с возможностью пересыщения водяного пара при расширении его в сопле (которое с большой степенью приближения может считаться адиабатическим) и возникают в результате конденсации пересыщенного пара.  [c.283]

Рассмотрим физическую природу скачка температур. Видимая конденсация является результирующим эффектом процессов конденсации совокупности молекул, ударяющихся о поверхность жидкости и захватываемых ею (конденсирующихся) и испарения молекул, отрывающихся за то же время с той же поверхности. Превышение количества захватываемых молекул над количеством испускаемых и приводит к видимому процессу конденсации Не все молекулы, достигающие поверхности жидкости, могут быть захвачены ею. Часть молекул может отразиться от поверхности и возвратиться в пар. Энергия отраженных молекул в общем случае может быть меньше энергии падающих (см. 11-5).  [c.265]

Чем больше молекул, падающих на жидкость, отражается, не конденсируясь, тем больше скачок температуры. Это учитывается коэффициентом конденсации. Коэффициент конденсации представляет собой отношение числа захватываемых молекул к общему числу молекул пара, ударяющихся о поверхность конденсата. В общем случае коэффициент конденсации может изменяться от нуля до единицы.  [c.265]

Из ряда экспериментальных исследований вытекает, что при конденсации чистого водяного пара с давлением примерно р> >10 Па с достаточным приближением можно считать, что температурный скачок на границе раздела, фаз отсутствует и, как следует из уравнения (12-2),  [c.266]

Для осуществления видимой конденсации, т. е. для сохранения направленного движения пара к поверхности конденсата необходимо, чтобы температура этой поверхности была несколько ниже температуры пара. Вследствие этого на границе раздела фаз имеется скачок температур, соответствующий некоторому термическому сопротивлению Нгр. При конденсации паров металлов, как уже отмечалось, роль гр в общей сумме термических сопротивлений значительно возрастает.  [c.225]

Если начинающий расширяться пар содержит относительно малое количество центров формирования жидкой фазы, то конденсация задерживается и пар в процессе расширения переохлаждается. Однако существуют пределы возможной степени переохлаждения, зависящие, по-видимому, от физических свойств расширяющейся среды, параметров ее состояния и скорости процесса. Когда предел перенасыщения достигнут, происходит скачкообразное выпадение конденсата (так называемый скачок конденсации ) и, как следствие,— восстановление термодинамического равновесия системы. Считается, что причиной нарушения метастабильного состояния расширяющегося пара и возникновения скачка конденсации является образование в больших количествах собственных ядер конденсации. Ряд опытов показал, что число капель жидкости, выпадающих в скачке конденсации, достаточно для сохранения термодинамического равновесия в процессе дальнейшего расширения среды за фронтом скачка перенасыщение пара либо вовсе не наблюдалось, либо же оказывалось весьма малым [Л. 10].  [c.93]


Изменение числа Ма при постоянных начальных нарамет1рах пара приводит к перераспределению зон конденсации. При малых числах Ма конденсация в основном наблюдается в кромочных следах. При больших Ма, когда величина переохлаждения потока АГм — ЗО - -ЗЗ С, в косом срезе решеток возникает зона спонтанной конденсации ( скачок конденсации), при этом эпюры размеров капель и влажностей существенно выравниваются. С ростом числа. Ма и соответственно переохлаждения пара размер капель влаги уменьшается как в кромочных следах, так и в ядре потока. Это связано с уменьшением диаметра ядер конденсации и ростом общего числа капель. На рис. 2-18 представлено изменение радиусов капель в некоторых характб рных точках пространства за решеткой (рис. 2-17) в зави-  [c.48]

Как показали исследования, отрицательное влияние влажности увеличивается с ростом длины камеры энергетического разделения, что равносильно увеличению времени пребывания капельной влаги в вихревой трубе до момента выноса ее с периферийными подогретыми массами газа. Последнее обстоятельство способствует повышению степени испаренности влаги за скачком конденсации, следовательно, оно связано с ростом интенсивности циркуляции влаги между периферийным и приосевым потоками, что приводит к уменьшению эффектов энергоразделения. Отрицательное воздействие влажности исходного сжатого газа на процесс энергоразделения возрастает при использовании  [c.65]

Прежде всего возникаег вопрос об эволюционности конденсационных скачков. В этом отношении их свойства полностью аналогичны свойствам разрывов, представляющих зону горения. Мы видели ( 131), что отличие устойчивости последних от устойчивости обычных ударных волн связано с наличием одного дополнительного условия (заданное значение потока / ), которое должно выполняться на их поверхности. В данном случае тоже имеется одно дополнительное условие — термодинамическое состояние газа / перед скачком должно быть как раз тем, которое соответствует началу быстрой конденсации пара (это условие представляет собой определенное соотношение между давлением и температурой газа /). Поэтому сразу можно заключить, что весь участок адиабаты под точкой О, на котором vi < Сь V2 > С2, исключается как не соответствующий устойчивым скачкам.  [c.690]

Леко видеть, что не могут реально осуществляться также и качки, соответствующие участку над точкой О (vi > С], 2 < s). Такой скачок перемещался бы относительно находящегося перед ним газа со сверхзвуковой скоростью, а потому его возникновение никак не отражалось бы на состоянии этого газа. Это значит, что скачок должен был бы возникнуть вдоль поверхности, заранее определяемой условиями обтекания (поверхность, на которой при непрерывном течении достигались бы необходимые условия начала быстрой конденсации). С другой стороны, скорость скачка относительно остаюндегося позади него газа в данном случае была бы дозвуковой. Но уравнения дозвукового движения не имеют, вообще говоря, решений, в которых все величины принимают заранее определенные значения на произвольно заданной поверхности ).  [c.690]

Для пароводяной смеси независимо от содержания влаги Ма, сразу за скачком происходит конденсация в условиях Га < Га < перегретый, а капли недогретые), когда за счет во много раз большей теплопроводности жидкости по сравнению с наром капли поглощают все тепло из пара и конден-  [c.348]

Волна конденсации. В связи со сказанным постановка задач для пузырьковых жидкостей, в которых пузырьки могут исчезать, должна предусматривать выделепве объемов пли зон Г/ и где реализуются соответственно о цюфазпая и двухфазная жидкости, и поверхностей или границ которые разделяют эти зоны и которые можно назвать скачками конденсации, причем на поверхностях необходимо поставить граничные условия, аналогичные условиям на поверхностях разрыва.  [c.119]

Распределение давления в потоке с большой начальной влажностью (уо = 0,70) имеет существенно другой характер. При малом противодавлении (ва = 0,15, кривая 3) давление вдоль сопла снижается монотонно и всюду больше, чем при расширении более сухой смеси. Поток дозвуковой и скачка конденсации и уп-лотненпя не наблюдается. При значительном противодавлении (8а = 0,53, кривая 4), возмущение из выхлопного бака распространяется вверх но соилу и давление всюду возрастает еще больше по сравнению с течением пара, а расход падает.  [c.263]

Рис. 12-3. Влияние величины коэффициента конденсации и давления пара на скачок температуры t-a—inoB." Рис. 12-3. Влияние величины <a href="/info/33736">коэффициента конденсации</a> и <a href="/info/93592">давления пара</a> на <a href="/info/408236">скачок температуры</a> t-a—inoB."
Обычно ставят знак равенства между коэффициентами конденсации и испарения и -большей частью пренебрегают температурным скачком, исключая из рассмотрения термическое сопротивление фазового перехода. Давление пара в слое неразреженной парогазовой смеси у поверхности жидкости считают давлением насыщения при температуре поверхности жидкости.  [c.344]

Следует отметить, что тепло- и массообмен во влажном газе при определенных условиях сопровождается туманообразова-нием — объемной конденсацией пара, связанной с появлением мельчайших капель жидкости, взвешенных в газопаровой смеси [2, 8, 9 . Это происходит тогда, когда парциальное давление Р пара в смеси становится больше давления насыщения Ps, то есть когда пар становится пересыщенным. Процесс объемной конденсации пара происходит скачком, с очень большой скоростью. Поскольку в аппаратах технических систем всегда есть центры конденсации (мелкие твердые частицы, газовые ионы и др.), то критическая степень пересыщения близка к единице и конденсация может начаться практически по достижении состояния насыщения газа. Туман плохо осаждается на поверхностях и является стоком пара и одновременно источником теплоты, которая выделяется при конденсации пара и расходуется на нагрев прилегающих слоев холодного газа. Более того, над поверхностью жидкости всегда есть слой насыщенного газа, в котором при переменной температуре слоя и наличии центров конденсации тумано-образование является неизбежным, так как зависимость Р = = /( ), определяемая кинетикой переноса массы и энергии, и зависимость Ps — f t), определяемая физическими свойствами жидкости, не совпадают. Совпадение давлений (Рп =Ps) имеет место только на верхней и нижней границах слоя, а между границами избыток пара переходит в туман.  [c.24]


Смотреть страницы где упоминается термин Конденсация скачки : [c.11]    [c.19]    [c.164]    [c.64]    [c.131]    [c.875]    [c.229]    [c.351]    [c.125]    [c.262]    [c.94]   
Гидродинамика многофазных систем (1971) -- [ c.331 , c.332 ]



ПОИСК



Возникновение скачков уплотнения в соплах при конденсации пара

Конденсация

Коэффициент массоотдачи при конденсации пар скачке

Некоторые результаты экспериментального исследования скачков конденсации

Пленочная конденсация скачок толщины пленки

Расчет скачков конденсации

Скачки конденсации (тепловые скачки)

Скачок

Скачок конденсации

Скачок конденсации

Скачок конденсации в двухфазном потоке

Скачок конденсации косой

Скачок конденсации криволинейный

Скачок температуры при конденсации

Спонтанная конденсация и конденсационные скачки при сверхзвуковых скоростях



© 2025 Mash-xxl.info Реклама на сайте