Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электролитические покрытия условия получения

При нанесении гальванических покрытий стремятся к получению мелкокристаллических, плотных, гладких и светлых осадков, достаточно твердых, равномерных по толщине, хорошо покрывающих рельефные поверхности, не хрупких и имеющих прочное сцепление с основным покрываемым металлом. Процесс образования электролитических осадков и получение той или иной структуры осадка зависят от различных условий работы, при которых происходит осаждение металлов. Для того чтобы технически правильно вести процессы гальванических покрытий, нужно знать основные факторы, влияющие на работу, и уметь их регулировать для получения хороших результатов.  [c.14]


Микроструктура аналогична получаемой прн использовании метода распыления. Иногда покрытия содержат следы раствора активатора. Этим до некоторой степени объясняется хорошая стойкость к потускнению и коррозии. Испытания путем экспозиции в ряде промышленных атмосфер, содержащих сернистые газы, показали, что стойкость цинковых покрытий на стали, полученных электроосаждением, горячим погружением и механическим методом, примерно одинакова. В других условиях, например в морских атмосферах, механические покрытия показали наилучшие результаты, н этот метод был рекомендован для некоторых применений. Пассивация оцинкованной стали в хромате оказывает более положительное влияние на покрытие, полученное механическим методом, чем на электролитическое покрытие.  [c.389]

Основные принципы получения электролитических покрытий. В противоположность методу погружения в расплавленный металл гальванические методы обычно позволяют получать покрытия из одного металла без промежуточного слоя сплава, хотя при некоторых обстоятельствах может наблюдаться медленная обменная диффузия между основным и покрывающий металлом. Иногда осажденный металл чище, чем применяемый анод. Деталь, подвергающаяся покрытию, является катодом в ванне, содержащей соединения металла, подлежащего осаждению. Ток подводится от внешнего источника э. д. с. Если анод содержит металл, который должен быть осажден на катоде, ванна автоматически пополняется им при условии, что выход по току на аноде равен выходу по току на катоде на практике, однако, это не всегда имеет место и иногда необходимы некоторые меры, как добавление солей, кислот и (или) воды. Выход по току на аноде и катоде обычно высок, но не обязательно равен 100%.  [c.553]

Известно, что никелевые покрытия технического назначения наносятся в основном электролитическим и химическим способами и используются для улучшения свойств стали в условиях агрессивных сред, в том числе под нагрузкой и при эрозионном воздействии, а также для защиты от фреттинг-коррозии. Покрытия типа никель—бор, никель-фосфор, полученные химическим осаждением в восстановительных средах, обладают поляризационными характеристиками, несколько отличными от гальванически осажденных покрытий. Коррозионная стойкость покрытия, полученного химическим никелированием, с увеличением содержания фосфора и бора возрастает.  [c.95]

Значительное влияние на схватывание оказывают дисперсность и форма частиц, что подтверждают исследования с серебряными порошками, полученными электролитическим способом (частицы имеют форму дендритов) и химическим восстановлением (частицы плоской формы толщиной около 0,1 мкм). Повышение дисперсности, порошка облегчает сцепление частиц, поскольку создание достаточной площади истинного контакта при прочих равных условиях и возможность сохранения возникшего сцепления у более мелких частиц выше, чем у крупных (рис. 27). Существенно сказывается на схватывании частиц их форма. При сближении с твердой поверхностью наибольшая площадь контакта (в случае приложения одинаковой нагрузки) будет у частиц плоской формы. Возникающие в таких частицах после снятия нагрузки внутренние напряжения меньше, чем в частицах иной формы. Как видно из рис. 27, скорость процесса образования покрытия в результате схватывания плоских частиц (кривые 3, 4) превышает скорость образования  [c.66]


Описанный метод исследования металлов на заедание-дает возможность точно определять площади контакта и удельные нагрузки при заедании, оценивать влияние на заедание тонких оксидных покрытий и электролитически нанесенных слоев металлов, а также влияние на схватывание и заедание различных факторов, как-то смазок, температуры и других. При этом методе не воспроизводятся условия работы деталей машин, поэтому следует считать, что полученные результаты могут служить лишь для сравнительной оценки поведения металлов при данных условиях.  [c.60]

Покрытия, полученные химическим никелированием, представляют собой сплав никеля с 10—15% фосфора и отличаются рядом преимуществ по сравнению с гальваническими никелевыми покрытиями, в частности равномерностью с.тоя на деталях любой сложной конфигурации, отсутствием пор, высокими защитными, свойствами в условиях атмосферной и высокотемпературной газовой коррозии, твердостью до НРс 50—55 и износостойкостью, сравнимой с износостойкостью электролитических слоев хрома.  [c.228]

В гальванотехнике изучаются вопросы получения не просто электролитически осажденных металлов, а создания металлических осадков в виде покрытий, обладающих определенными защитными и декоративными свойствами. Поэтому структура электролитических осадков имеет очень большое значение в гальванотехнике. Все условия процесса получения покрытий подбираются такими, чтобы обеспечить получение плотных, мелкокристаллических, а иногда блестящих осадков.  [c.153]

Электролитическое осаждение металлов, как известно, явл яет-ся кристаллизационным процессом, начинающимся на определенных участках поверхности металла. Чем тоньше осаждение, тем больше в нем вакансий и тем оно пористей. Очень тонкое покрытие не может быть достаточно коррозионностойким. Стойкость против коррозии повыщается с увеличением толщины наносимого слоя. На рис. 12.9 кривая 1 показывает результаты измерений пористости никелевых покрытий, полученных при оптимальном составе электролита и режиме осаждения. Кривая 2 характеризует пористость покрытий, которые изготовлены в обычных условиях.  [c.603]

В. И. Лайнер [1 ] показал возможность замены никелевых покрытий для защиты деталей от коррозии железоникелевыми, при условии, что последние не содержат более 40% Ре. Железоникелевый сплав может быть использован и для покрытия катодов при электролитическом получении едкого натра.  [c.229]

Полученное при нормальных условиях электролитическое цинковое покрытие отличается значительно меньшей хрупкостью, чем покрытия цинком, наносимые другими способами оно обладает большей пластичностью и хорошей сцепляемостью с основным металлом.  [c.134]

Широко применяется электролитическое хромирование для защиты от коррозии и с целью декоративной отделки поверхности изделий. Так как хромовое покрытие трудно полируется, то в этом случае процесс хромирования проводят в условиях, обеспечивающих получение блестящих осадков небольшой толщины (0,5—  [c.305]

Кривые потенциала, которые имеют покрытия сплавами, образующимися из электролита при температуре 50° С, лежат значительно ближе к кривым потенциала чистого никеля, осаждаемого при температуре 20°С (кривые 3—5). Даже в спокойном электролите поляризационные кривые протекают почти одинаково. Несмотря на это при высоких температурах электролита (50° С) и при прочих равных условиях осаждения покрытие имеет большее содержание цинка, че.м покрытие, полученное при 20°С. Согласно известному правилу, более положительный в условиях электролиза ион металла разряжается с тем большим преимуществом, чем ограниченнее поляризация при осаждении. Все факторы, которые повышают поляризацию при электролитическом осаждении металлов, сдвигают соотношение осажденного сплава в пользу более электроотрицательного металла.  [c.41]

Как показали многие исследователи, физико-механические свойства электролитических металлов могут значительно изменяться в зависимости от условий их электроосаждения, в частности, от природы и состава электролита, наличия в нем поверхностно-активных веществ, режима электролиза (температуры, плотности тока, характера поляризации — постоянным или реверсированным током) и других факторов [2, 3]. Интересно отметить, что, как правило, механические свойства электролитически осажденных металлов в значительной степени отличаются от свойств металлов, полученных другими способами. Например, полученная при определенных условиях электролитическая медь может значительно превосходить по твердости тянутую и прокатанную медь. Таким образом, электролитический способ позволяет получать металлические покрытия с очень разнообразными и заранее заданными свойствами.  [c.273]


Весьма широко распространены в практике цинковые покрытия на сталях, полученные методами горячей металлизации и электролитического осаждения. Они предназначены к службе преимущественно в атмосферных условиях. Однако, после термообработки  [c.96]

Процесс электролитического осаждения хрома значительно отличается от других процессов гальваностегии как по составу электролита, так и по условиям протекания процесса. Отличием является также и применение нерастворимых (свинцовых) анодов. Электролиты для хромирования состоят в основном из хромового ангидрида (хромовая кислота). Получение удовлетворительных хромовых покрытий из такого электролита возможно только при добавлении в малых количествах определенных анионов — обычно анионов серной кислоты. Для осаждения хрома в таких электро-, литах требуется значительно более высокая плотность тока, чем  [c.160]

Как известно, обычное хромирование не всегда эффективно для предохранения тяжело нагруженных деталей машин от механического износа. В тяжелых условиях эксплуатации при недостаточном обеспечении смазкой поверхность хрома покрывается глубокими рисками. Так, например, это наблюдалось на хромированных гильзах цилиндров авиационных двигателей. Причиной такого разрушения хромового покрытия служит плохая смачиваемость его поверхности маслом. Этот существенный недостаток хрома оказалось возможным устранить посредством введения дополнительной обработки покрытия. Сущность этой обработки состоит в электролитическом (анодном) травлении ранее полученного хромового покрытия с целью расширения и углубления тончайших трещин, возникающих в хромовом покрытии при его осаждении в обычных условиях электролиза. Такие трещины образуются в осадке электролитического хрома вследствие возникающих в нем растягивающих напряжений [1, 2].  [c.175]

Рассматриваемые металлы представляют интерес для гальванотехники прежде всего благодаря своей высокой химической стойкости. Широко известна способность титана противостоять коррозии в жестких климатических условиях, включая длительную эксплуатацию в морской воде. Цирконий устойчив на воздухе и в среде кислот, кроме концентрированных плавиковой, фосфорной, серной и царской водки. Германий также весьма стоек на воздухе и растворяется лишь в азотной, концентрированной серной кислотах и царской водке. Он обладает полупроводниковыми свойствами, что значительно расширяет области его использования. Получение покрытий достаточной толщины и сплошности позволило бы эффективно использовать эти металлы в антикоррозионной технике. Однако решение такой задачи связано с большими трудностями, обусловленными специфическими свойствами указанных материалов. Электролитическое выделение из водных растворов существенно затрудняется склонностью металлов к пассивации, низким перенапряжение.м выделения водорода, высоким отрицательным потенциалом.  [c.144]

При покрытии химическим никелем деталей с целью повышения их износостойкости термообработка также является обязательной операцией, так как в отсутствие ее покрытие претерпевает разрушение и может отслаиваться от металла основы. Нагревание при оптимальных условиях с учетом состава сплава N1—Р, приводящее к изменению его структуры, увеличивает стойкость против фрикционного износа. Износостойкость сплава N1—Р после его термообработки значительно выше, чем никеля, полученного электролитическим путем, и почти такая же, как твердого хромового покрытия. Относительно лучшие результаты дает применение сплава, содержащего 6—7 % Р, подвергнутого термообработке в течение 1 ч при 400—600 °С. Весьма существенное повышение износостойкости достигается применительно к алюминиевым сплавам. Износ в условиях смазки образца Д1Т в паре со сплавом Д1Т в 26 раз меньше, чем при трении с образцом без покрытия. Износ никелированного образца при этом в 20 раз ниже. Суммарная потеря массы пары трения Д1Т—N1—Р в 24 раза меньше, чем пары Д1Т—Д1Т [141, с. 78].  [c.208]

Защитная способность химических никелевых покрытий значительно выше, чем электролитического никеля и даже сплава Ni—Р, полученного гальваническим способом, что позволяет при одинаковых условиях эксплуатации в первом случае применять меньшую толщину покрытий. Наиболее хорошими антикоррозионными свойствами характеризуются покрытия, содержащие 8— 12 % фосфора. Они хорошо защищают перлитную сталь от коррозии при 600—700 °С в атмосфере воздуха и перегретого пара [142, с. 46], толщина покрытия в этих случаях 25—30 мкм.  [c.209]

Окраска оксидных покрытий, полученных в процессе их обработки переменным током в растворах некоторых минеральных солей, характеризуется наибольшей светопрочностью и стойкостью против коррозии. Несколько более сложная и трудоемкая технология ее выполнения явилась причиной того, что указанный способ окрашивания применяют главным образом для крупногабаритных деталей строительных конструкций, предназначенных для многолетней эксплуатации в условиях открытой атмосферы. Для электролитического окрашивания предложено довольно много растворов, но практическое применение находят преимущественно те из них, которые содержат сульфат меди, никеля, кобальта, олова, перманганат калия. Исследования показывают, что в катодный полупериод происходит восстановление ионов металлов, а иона МпО — до диоксида марганца, которые осаждаются на дне пор пленки. Получаемая при этом окраска определяется преимущественно количеством металла или его соединений в порах. На скорость осаждения влияют напряжение на ванне, кислотность электролита. Изменяя электрический режим процесса, в одном и том же электролите можно изменять окраску пленки.  [c.248]

При отсутствии необычно больших количеств загрязнений в атмосфере (таких, как сернистый газ или хлориды) в течение нескольких дней непрерывного увлажнения на покрытой оловом стали ржавчина не образуется. Даже в случае присутствия тонких пор в покрытиях, полученных электролитическим способом, покрытия остаются блестящими и без темных пятен в течение периода, включающего обращение консервных банок в торговой сети, хранения, а также домашнего использования. Когда увлажнение продолжается длительное время, особенно если банки попадают в воду, в порах появляется ржавчина. Такая ситуация может легко возникнуть при перевозке в трюмах кораблей через тропики, если не приняты меры предосторожности. Путем использования на кораблях специальных контейнеров можно избежать этого [8]. Условия, которые необходимы для обеспечения полного отсутствия в порах ржавчины, подобны условиям защиты незащищенной стали, хотя стали, покрытые оловом, в которых образуется ржавчина, применяют более длительное время, несмотря на испорченный внешний вид.  [c.422]


В условиях морского климата и атмосферы промыш- ленного района были проведены сравнительные испытания Ni—Р покрытий с 10% и 7% Р, полученных из растворов I, И, III и IV (табл. 45), а также электролитических никелевых покрытий из электролита I и электролитических Ni—Р покрытий из электролитов II и III (табл. 46). Последние два вида покрытий содержали соответственно 3 и 9% Р. Результаты испытаний приведены в табл. 47. Как видно и в данных условиях испытаний Ni—Р покрытия из кислых растворов обладают большей защитной способностью, чем электролитический никель.  [c.103]

Существенное влияние на особенности разрушения материалов с покрытиями и на характеристики контактной усталости оказывают условия деформирования, толщина покрытий и другие факторы. Для электролитических покрытий, по данным В. С. Калмуцкого, количество таких факторов достигает 15. Для газотермических покрытий их, вероятно, значительно больше. В. С. Калмуцкий предлагает решать задачу повышения контактной прочности металлов с покрытиями с учетом вероятностно-статистического характера реальных условий получения и нагружения покрытий [53, 54, 75, 76]. Оптимизация условий формирования и последующих обработок некоторых электролитических покрытий позволила повысить ресурс покрытий при контактном нагружении на 15—20%. Работоспособность деталей с покрытиями оценивалась по вероятности разрушения композиции сталь — покрытие или покрытия при Заданном уровне контактного нагружения.  [c.43]

Иные результаты получены на образцах с покрытием горячего цинкования (70 мкм), а также с покрытием, полученным методом металлизации (200 мкм). Образцы с такими покрытиями через 2 года имели лишь слабое потускнение. Наиболее эффективным оказалась металлизация цинком толщиной 200 мкм. Через 2 года в открытой атмосфере были обнаружены точечные продукты коррозии сероголубоватого цвета диаметром 0,5—1 мм, а на образцах, размещенных в атмосферном павильоне, никаких изменений на поверхности обнаружено не было. Аналогичное положение наблюдалось в отношении металлизации алюминием (200 мкм). Таким образом, в условиях влажного субтропического климата цинковые покрытия, полученные методом горячего цинкования или металлизацией, являются более надежными, чем электролитические покрытия.  [c.79]

Защитные свойства покрытий. В зависимости от условий осаждения никелевые покрытия имеют различную пористость и коррозионную стойкость. Так, П. П. Беляев, М. И. Зильберфарб и М. Л. Гаретовская [392] нашли, что пористость никелевых покрытий, полученных химическим путем, такая же, как и у электролитических покрытий, и может быть уменьшена при многократном никелировании. Напротив, К- М. Горбунова и А. А. Никифорова [380] установили, что при одинаковой толщине число пор в химических никелевых покрытиях в 2 раза меньше, чем в электролитических. О более низкой пористости химических никелевых покрытий сообщают С. А. Вишенков [178], Гутцейт [393] и другие авторы. А. И. Липин, С. А. Вишенков, М. М. Лившиц [387] показали, что покрытия, полученные в щелочных растворах, более пористые (в 1,5—2 раза), чем полученные в кислых растворах. Н. А. Соловьев [386] в растворе с добавкой  [c.111]

Являясь главным образом защитно-декоративным покрытием, никель способен надежно защитить железо от коррозии лишь при условии его беспористости. Поэтому никелирование как защитно-декоративное покрытие применяют обычно с подслоем меди. Электролитические покрытия всегда обладают некоторой пористостью, и для получения беспористых покрытий используют попеременное осаждение нескольких слоев металлов. У таких многослойных покрытий поры каждого слоя обычно не совпадают, как это показано на рис. 30. Кроме того, многослойные покрытия позволяют снизить удельный расход никеля за счет более дешевой меди.  [c.126]

Пористость похрытий. Ко р роз и-он ные методы намерения пористости электролитических покрытий заключаются в том, что для выявления пор испытуемый образец обрабатывают спе-цнальным раствором, который, не действуя на металл покрытия, реагирует через поры с металлом основы и образует хорошо видимые продукты реакции. Полученные таким образом точки коррозии подсчитывают, наблюдая их невооруженным глазом илн при увеличении (через лупу либо микроскоп). Точки коррозии на поверхности могут регистрироваться и при испытаниях в атмосферных условиях, или п камерах влажности, либо солевого тумана.  [c.100]

Механические свойства покрытия Ваттса из обычных чистых растворов зависят от состава, pH, плотности тока и температуры раствора. При промышленном применении эти параметры специально варьируют для того, чтобы получить определенное качество покрытий твердость, прочность, пластичность и внутренние напряжения. pH раствора имеет незначительное влияние на свойства покрытия в пределах значений 1,0—5,0. Однако при увеличении pH выше 5,5 твердость, прочность и внутренние напряжения резко возрастают, а пластичность падает при рН = = 3 получается пластичное покрытие с минимальными внутренними напряжениями при температуре 50—60° С и плотности тока 3—8 Л/дм2 в растворе хлорида никеля с 25 /о иона никеля. Такой осадок имеет грубозернистую структуру в то время, как более твердые и прочные осадки, полученные при других условиях процесса, имеют более тонкое зерно. Широкое изучение взаимосвязи параметров процесса со свойствами покрытий было проведено в американском Обществе по электролитическим покрытиям и результаты для раствора Ваттса и др, сообщались в 1952 г, [3, 4],  [c.439]

Для получения электролитического покрытия оловом пригодны различные электролиты. Особые условия ускоренного метода нанесения оловянного покрытия на быстро вращающейся полосе связаны с появлением специально разработанных ванн, на которые взяты патенты. Примерами является ферроостаннатная ванна (Регго 1ап), основанная на сульфате двухвалентного олова и фенолсуль новой кислоте, галогенная ванна ,, основанная на хлориде олова с щелочным фторидом. Две кислые ванны требуют органических добавок [133].  [c.588]

Для медленного нанесения покрытия в основном используются три типа растворов 1) кислая сульфатная ванна, содержащая сульфат 5п +,. свободную серную кислоту и техническую крезолсульфоновую кислоту с желатиной и -нафтолом в качестве добавок 2) щелочная ванна, содержащая олово в виде станната и 3) кислая фторборатная ванна, содержащая органические добавки. При нанесении покрытия из щелочной станнатной ванны удваивается количество ампер-часов для того, чтобы получить осадок той же толщины, какая требуется из ванны, содержащей соль 5п +. Щелочная ванна обладает, однако, тем преимуществом, что в нее не требуется вводить добавки и требуется менее тщательная предварительная очистка металла,, подлежащего покрытию. Станнат калия и КОН имеют некоторое преимущество перед соединениями натрия, так как высокая растворимость станната калия позволяет осаждать олово при высокой плотности тока. Более низкая стоимость соединения натрия, однако, стимулирует их использование в тех случаях, когда не требуется более высокая скорость осаждения. Станнит должен быть исключен, так как он является причиной образования губчатых осадков, поэтому растворение анодов должно контролироваться, чтобы избежать образования станнита. Для анодов из олова требуемые условия получаются либо тем, что они подвергаются первоначально в течение одной минуты действию плотности тока, значительно более высокой, чем используемая при нормальной работе, либо медленным погружением оловянных анодов, через которые идет ток, в ванну. Слишком высокая плотность тока может привести к полной пассивации, поэтому существуют специальные сплавы для анодов, позволяющие расширить верхний предел возможных плотностей тока последние обычно используются в ваннах со станнатом калия, вследствие их более высокой скорости осаждения. Электролитические покрытия используются в электрическом оборудовании и для различных целей, для которых также используются и покрытия, полученные горячим методом. Они имеют те преимущества перед горячим погружением, что позволяют значительно увеличивать область толщин. В электрооборудовании покрытия из олова имеют преимущество легкой спаиваемости, таким образом, устраняется использование коррозионно-активных флюсов эти покрытия хорошо-противостоят парам из древесины, изоляционных материалов и пластиков, которые могут быть пагубны для цинка и кадмия (стр. 453).  [c.588]


Известен опыт применения боридных покрытий для защиты от коррозии и наводороживания теплообменников. Теплообменники, изготовленные из стали 10, эксплуатировались в условиях воздействия конденсации паров серной кислоты, образующихся из продуктов сгорания сернистого топлива. Боридное покрытие, состоящее из двух слоев FeB и FeBj, наносили при температуре 950 °С в виде порошкообразной смеси, содержащей 98 % В4С, 1,5 % AIF3 и 0,5 % парафина. Такое покрытие позволяет повысить в 10 раз коррозионную стойкость стали в наводороживающей сероводородсодержащей среде и одновременно повысить ее циклическую прочность. Испытания теплообменников, проведенные на стенде с переменным внутренним давлением при Ртах = 0>7 МПа с частотой 0,12 Гц показали, что без покрытия теплообменники вьщерживают от 20 до 160 тыс. циклов, с боридным покрытием - не менее 400 тыс. циклов Сб . В слабокислых минерализованных растворах в условиях периодического Смачивания цинковые покрытия, полученные электрохимическим и горячим способом, менее устойчивы, чем диффузионные слои из порошковой смеси. Оцинкованные диффузионным способом трубы в 25 раз устойчивее труб с цинковыми покрытиями из расплава и в 15 раз - с покрытиями, полученными электролитическим осаждением.  [c.64]

Магнитные свойства Наличие фосфора в никелевом покрытии сильно сказывается на магнитных свойствах покрытия Магнитные свойства осадков никеля, полученных из кислых и щелочных растворов, определяются технологией их получения химическим составом и структурным состоянием Например магнитные свой ства покрытия с 3 %-ным содержанием фосфора приближаются к магнитным свойствам электролитического никеля в то время как покрытие с II %-ным содержанием его немагнитно Термообработанные покрытия при прочих равных условиях более магнитны чем нетермообработанные  [c.18]

Рис. 7.36. Влияние некоторых полученных электролитическим путем покрытий на кривую усталости низколегированной стали при комнатной температуре в условиях растяжения при / =0,02. J — без покрытия (172 300 фунт/дюйм ) 2 — без покрытия, выдержка перед испытанием при низкой температуре 3 — покрытие никель — олово (177 700 фунт/дюйм ) 4—твердое никелевое покрытие (176 100 фунт/дюйм ) 5 — никелевое покрытие (182 100 фунт/дюйм ) 6 — твердое хромовое покрытие (162 400 фунт/дюйм ). (Числа в скобках соответствуют статическому пределу прочности.) (Данные из работы [16] адаптировано с разрешения John Wiley Sons, In .) Рис. 7.36. Влияние некоторых полученных электролитическим путем покрытий на <a href="/info/23942">кривую усталости</a> <a href="/info/58326">низколегированной стали</a> при комнатной температуре в <a href="/info/377023">условиях растяжения</a> при / =0,02. J — без покрытия (172 300 фунт/дюйм ) 2 — без покрытия, выдержка перед испытанием при <a href="/info/46753">низкой температуре</a> 3 — <a href="/info/593367">покрытие никель</a> — олово (177 700 фунт/дюйм ) 4—твердое <a href="/info/6714">никелевое покрытие</a> (176 100 фунт/дюйм ) 5 — <a href="/info/6714">никелевое покрытие</a> (182 100 фунт/дюйм ) 6 — твердое <a href="/info/6718">хромовое покрытие</a> (162 400 фунт/дюйм ). (Числа в скобках соответствуют статическому <a href="/info/1682">пределу прочности</a>.) (Данные из работы [16] адаптировано с разрешения John Wiley Sons, In .)
Другой способ получения оксидных покрытий заключается в нанесении слоя алюминия на исследуемые участки поверхности деталей и узлов из любых материалов и в последующем оксидировании этих участков. Слой алюминия может быть нанесен на поверхность детали приклеиванием алюминиевой фольги, электролитическим методом, методом шоонирования п другими способами. При этом необходимо, обратить внимание на обеспечение подвода тока к слою алюминия при оксидировании. Такой путь также требует специальной отработки конкретных режимов и условий оксидирования для различных материалов деталей, способов получения слоя алюминия на их поверхности и др.  [c.11]

Коррозия луженых консервных банок — сложный процесс, опеределяемый многими факторами, важность которых зависит от условий. Так, например, соединения серы реагируют с оловом и создают пленки, препятствующие проявлению защитного действия полуды. Важным моментом является образование железооловян ного соединения FeSng в процессе оплавления электролитически полученного оловянного покрытия либо при горячем лужении. Это соединение инертно в условиях, существующих внутри луженной консервной банки. Ионы двухвалентного олова в растворе замедляют растворение стали, воздействуя на эффективность анодного ингибирования. Имеются и другие важные факторы. Их совместное влияние оценивается различными испытаниями луженых консервных банок, связывающими- длительность хранения с характером содержимого.  [c.152]

Латунирование. Латунь представляет собой сплав двух металлов меди 60—80 7о и цинка 40—20%. Удельный вес латуни около 8,5, она тверже меди. Латунирование применяется обычно как подслой при никелировании, серебрении и золочении, а также как декоративное покрытие (с последуюшим лакированием бесцветным лаком). Этот сплав может быть получен электролитическим путем, если условия электролиза подобраны так, что допускают совместное осаждение двух металлов с образованием сплава.  [c.213]

В атмосферных условиях термообработанные никелевые покрытия менее коррозионностойки, чем не прошедшие термическую обработку. Однако данные о влиянии термообработки на коррозионную стойкость противоречивы и требуют дальнейшего выяснения. Следовательно, никелевые покрытия, полученные в кислых растворах, имеют меньшую пористость и более высокую коррозионную стойкость, чем электролитически осажденные или химические покрытия, полученные в щелочных ваннах. Как отмечалось ранее, покрытие при химическом процессе распределяется. на поверхности изделия равномерно по толщине, поэтому на профилированные изделия можно наносить слой меньшей толщины, чем при электролитическом способе никелирования. А. И. Липин, С. А. Вишенков и М. М. Лившиц [387] полагают, что двухслойное химическое никелевое покрытие толщиной 20 мк может удовлетворять требованиям эксплуатации в жестких условиях. Никелевые покрытия, полученные химическим путем, защищают от газовой коррозии до температуры 350° при температуре 400—500° на поверхности покрытия появляются цвета побежалости, а при 500—600° — темные пятна.  [c.112]

Если во время электролиза ток прерывается, то прекращается и расширение слоев роста. При включении тока слои продолжают расти, если отсутствуют какие-либо препятствия. Напротив, в электролитах с соответствующими добавками края слоев пассивируются в период прерывания тока. При повторном включении тока образуются новые центры роста. Пассивные края первых слоев хорошо видны на рис. 11. При внезапном повышении силы тока возникают даже новые слои роста, если при этом имеется высокая поляризация. Напротив, при увеличении силы тока и ограниченной поляризации слои растут соответственно быстрее. Спиралеобразный рост кристаллов возникает при существовании винтового смещения (рис. 12). Такие спирали вначале наблюдались при осаждении титана и з расплава. На рис. 13 представлены кр исталлизационные спирали электролитически осажденного покрытия серебро — индий. При осаждении чистого металла также может встретиться при определенных условиях спиралеобразный рост кристаллов. Медные покрытия, полученные из сернокислых электролитов, имеют спиральный рост (рис. 14), если они получены с импульсом постоянного тока (прямоугольный импульс). Расстояние между витками спиралей зависит от пересыщения, которое устанавливается в результате влияния состава электролита, плотности тока и прозе -  [c.30]

В практике широко развито никелирование железа с промежуточным подслоем меди. Иногда применяют комбинированное покрытие никель—медь из меднокислой ванны — никель. Лишь в некоторых случаях необходимо покрывать железо никелем без подслоев меди (например, таким способом никелируют хирургический инструмент, клише и стереотипы для полиграфического производства с целью получения повышенной поверхностной твердости). Для защиты никелевых покрытий от механических повреждений и сохранения декоративного вида на более длительный срок поверх никеля электролитически осаждают тонкий слой (1—1,5 мк) хрома. Для защиты от коррозии в атмосферных условиях суммарная толщина комбинированного покрытия при никелировании должна составлять 25—-30 мк, а для изделий, работающих в жестких условиях, 45 мк. Толщина наружного слоя никеля должна быть не менее 12—15 мк.  [c.172]

Защитные свойства Ni—P покрытий изучали и в других, отличных от атмосферных, условиях. При переменном погружении образцов с покрытиями, содержащими 10% Р в керосин при 75—80° С в аппарате Пинкевича выявлена потеря ими веса, очевидно за счет коррозионных процессов. Никелированные в щелочном растворе образцы из бронзы БрАДН-10-4-4 и ВБ-24 при испытаниях в термостате при 55—50° С с продуванием воздухом также с течением времени теряли в весе, но меньше, чем образцы без покрытия. С увеличением толщины покрытия убыль в весе уменьшается. Было проведено сравнительное определение коррозионной стойкости в водопроводной воде при комнатной температуре стальных образцов с гальваническим покрытием — медным подслоем толщиной 9 мкм и слоем электролитического никеля толщиной 25 мкм— со стойкостью таких же образцов с Ni—Р покрытием толщиной 10 мкм, полученным из кислой ванны. Первые уже через 1 сут имели несколько очагов коррозии, а через 3 сут были покрыты сплошным слоем коррозии. На вторых незначительная точечная коррозия обнаружилась лишь через 20 сут. Последующие 20 сут не изменили внешнего вида этих образцов. Ni—P покрытия толщиной 50 мкм показали высокую коррозионную стойкость в растворе щелочи (400 г/л) при 180° С. На никелированных выпарных трубах из стали 20, проработавших в указанных условиях более 100 сут, не обнаружено никаких повреждений, тогда как такие же трубы без покрытия через 30— 40 сут эксплуатации из-за коррозионных поражений полностью выходили из строя. В 72%-м растворе едкого натра при 115° С покрытие из кислого раствора  [c.106]


Магнитные характеристики N1—Р покрытий. Коэрцитивная сила (Яс), остаточная индукция (В ), максимальная индукция (Вт) покрытий опредбляются технологией их получения, химическим составом и структурным состоянием. Так, если магнитные свойства покрытий с 3% Р близки к магнитным свойствам электролитического никеля, то покрытие с 11% Р немагнитно. Термообработанные N1—Р покрытия при прочих равных условиях более магнитны, чем нетермообработанные. Как видно из табл. 58, нетермообработанные, полученные из кислого раствора и содержащие более 8% Р покрытия неферромагнитны после 1 ч термообработки при 400° С они становятся магнитными. Что касается покрытий, полученных из щелочного раствора и содержащих до 5% Р, то они и в нетермо-обработанном состоянии ферромагнитны. Измерения показали также, что восприимчивость насыщения электролитического никеля, рассчитанная на 1 г, составила 14,9-10" (при толщине покрытия 60 мкм), а химически восстановленного никеля — 1,6-10 (толщина слоя 42 мкм). Относительная магнитная восприимчивость электролитического никеля (литой никель взят в качестве эталона) оказалась равной 37,3%, в то время как для химически осажденного никеля эта величина составляла всего 4%,  [c.119]


Смотреть страницы где упоминается термин Электролитические покрытия условия получения : [c.351]    [c.449]    [c.65]    [c.184]    [c.258]    [c.61]    [c.651]    [c.102]    [c.713]   
Электролитические покрытия металлов (1979) -- [ c.20 ]



ПОИСК



Покрытие условий

Покрытие электролитическое

Получение покрытий



© 2025 Mash-xxl.info Реклама на сайте