Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пассивирующие слои

Поляризация переменным током металлов, склонных к пассивированию, как правило, затрудняет процесс пассивации вследствие периодического восстановления пассивирующих слоев на этих металлах в катодный полупериод тока.  [c.367]

Пассивирующий слой - пленка на поверхности металла, защищающая металл от коррозии в условиях, когда металл термодинамически реакционно-способен. Обусловлен образованием защитных поверхностных соединений при взаимодействии металла с компонентами среды. По составу пассивирующие слои различают на оксидные и солевые, возможны слои более сложного состава.  [c.151]


Потенциалы d- и d-Ti-покрытия без пассивирующего слоя равны соответственно —682 мВ и -675 мВ, что практически мало отличается от потенциала стали в этой среде (—680 мВ).  [c.93]

Результаты исследований строения пассивирующего слоя на сплавах показывают, что картина формирования пассив-  [c.40]

При выявлении фигур травления необходимо быть уверенным в том, что травление сопровождается неравномерным съемом материала. Для этого полированные образцы выдерживают перед травлением в течение длительного времени. Образующийся при этом пассивирующий слой позволяет проводить локальное травление. Специальные методы искусственного и тем самым ускоренного получения такого поверхностного слоя до сих пор не применялись. Следовало бы ожидать, что все растворяющие феррит реактивы должны способствовать выявлению фигур травления. Как правило, в настоящее время применяются травители, самопроизвольно растворяющие феррит.  [c.76]

Более сложной задачей является предотвраш,ение коррозионного растворения минералов, не участвующих в технологическом процессе механического разрушения, но присутствующих в области действия кислотного раствора (например, выбуриваемого шлама или готового продукта помола), с тем чтобы предотвратить излишний расход реагентов. Здесь следует выбирать раствор такого состава, который обеспечивал бы относительно пассивное состояние твердой фазы при отсутствии деформации и ее активное растворение при механическом воздействии, т. е. добиваться сочетания механохимического и хемомеханического эффектов в локальных областях механического воздействия. Для кальцита таким раствором является раствор серной кислоты, которая образует пассивирующий слой гипса на поверхности минерала, не растворяющийся без механического воздействия. Исследование зависимости устойчивости пассивного состояния от концентрации кислоты показало, что в 10%-ном ее растворе быстро происходит устойчивая пассивация поверхности кальцита, обеспечивающая экономное расходование реагентов.  [c.131]

Электрохимическое поведение пассивных сплавов железа с хромом и никелем коррелирует с поведением составляющих их металлов. Так, для хромистых сталей установлено снижение количества электричества, необходимого для пассивации, с ростом содержания в них хрома до некоторой критической величины (12-14%) [70,114], Аналогичные результаты были получены для сплавов железо-никель, критическое содержание никеля в которых соответствует 30% [114]. Эти результаты согласуются с заключением о более тонких пассивирующих слоях на хроме и никеле по сравнению с железом.  [c.26]


Механизм коррозионного растрескивания под напряжением нержавеющих сталей был объектом многих исследований, но до сих пор не до конца ясен. Скорость - определяющая стадия реакции может сильно меняться в зависимости от условий. Однако во многих случаях важную роль играет, по-видимому, местное ослабление пассивирующего слоя. Таким образом опасность коррозионного растрескивания под напряжением особенно велика в том интервале потенциалов, который соответствует неустойчивости пассивного состояния на поляризационной анодной кривой (рис. 110).  [c.121]

Коррозия обычно производит на поверхности металла изменения, в виде коррозионных повреждений, отложения продуктов коррозии или пассивирующего слоя. Для исследования этих изменений существует много физических методов, например металлографическая  [c.145]

Существенное влияние на потенциал растворения оказывает содержание в электролите растворенных газов и скорость перемещения электролита относительно металлической стенки, так как это определяет стойкость пассивирующих слоев и процессы поляризации электродов.  [c.29]

Срок службы (ресурс) ТЭ определяется в первую очередь способностью электродов сохранять свои характеристики во времени и химической стойкостью ионного проводника. Ухудшение характеристик электродов может быть следствием коррозии и отравления их каталитическими ядами (соединениями серы, мышьяка, ртути и др.), попадающими в ТЭ с реагентами и из конструкционных материалов. С течением времени может изменяться и площадь активной поверхности электродов из-за их рекристаллизации или растворения, а также образования оксидных пассивирующих слоев. Для повышения срока службы проводят очистку реагентов от вредных компонентов, поддерживают температуру и концентрацию электролита в оптимальных пределах, обеспечивающих длительную и эффективную работу, применяют коррозионно-стойкие конструкционные материалы и химически стойкие прокладки.  [c.532]

Молибден и вольфрам имеют ОЦК кристаллическую решетку и обладают ограниченной растворимостью в железе. Увеличение устойчивости пассивного состояния хромоникельмолибденовых сталей объясняется вхождением молибдена в состав пассивирующих слоев. Предполагается, что при потенциалах пассивной области сталей, где молибден подвергается перепассивации, то есть растворяется с образованием молибдат-ионов, происходит образование смешанных оксидов хрома и молибдена, обладающих более высокими защитными свойствами, чем оксид хрома.  [c.189]

Анализ данных, приведенных в табл. 2.9 и на рис. 2.9 [31], свидетельствует о том, что процессы образования оксидов и пассивации титана непросты. В частности, нельзя строить модель пассивации титана на предположении об образовании пассивирующего слоя оксидов в результате взаимодействия атомов титана и молекул воды, поскольку нормальные потенциалы для всех известных оксидов титана значительно отрицательнее наблюдаемого потенциала пассивации титана. Причина этого состоит в том, что поверхность титана всегда покрыта гидрид-ным слоем и во взаимодействии с водой участвует гидрид титана ТШг.  [c.52]

При пуске машины степень износа предварительно прокорродировавших поверхностей существенно повышается даже при отсутствии на них визуально обнаруживаемых следов коррозии. В свою очередь, съем поверхностного пассивирующего слоя окисла при трении интенсифицирует последующий коррозионный процесс как химической, так и электрохимической природы, а износ в результате воздействия коррозионного и механического факторов, как правило, значительно превышает сумму вкладов каждого из факторов, взятых в отдельности. Другими словами, процессы коррозионного и механического разрушения металла как бы взаимно усиливают друг друга.  [c.4]

При соприкосновении металла с кислородом последний может либо адсорбироваться на металлической поверхности, образуя пассивирующие слои, либо энергично реагировать с ней, образуя химические соединения. Для того чтобы решить вопрос о том, будет ли кислород реагировать с металлической поверхностью, надо знать, что легче электрону покинуть металлическую решетку и образовать адсорбированный ион кислорода, или атому металла оставить решетку и образовать металлический окисел. Тенденция к протеканию того или иного процесса зависит от отношения рабочей функции к теплоте сублимации [22]. Если это отношение (выраженное, например, в Электронвольтах) больше единицы, то металл-иону с термодинамической точки зрения легче покинуть металлическую решетку. Если оно меньше единицы, то электрону легче покинуть решетку, и в этом случае имеет место адсорбция кислорода и пассивирование поверхности.  [c.8]


Когда ингибирование коррозионных сред осуществляется с помощью соединений, изменяющих преимущественно кинетику анодной реакции, а этот механизм является в нейтральных электролитах наиболее эффективным, то ингибирование тесно связано с пассивацией. Оба эти процесса зависят от природы пассивирующих слоев, возникающих на поверхности металла, а также характера и кинетики катодного процесса, обеспечивающего перевод металла в пассивное состояние.  [c.9]

ПРИРОДА ПАССИВИРУЮЩИХ СЛОЕВ  [c.17]

Как видно, здесь реализуется принципиально новый путь создания ингибиторов, основанный не на традиционном принципе торможения электрохимических реакций, а на принципе увеличения эффективности катодного процесса, приводящий к смещению потенциала к значениям, яри которых становится возможным формирование пассивирующего слоя.  [c.42]

В связи с этим авторы предполагают два различных типа пассивации пассивация первого типа, зависящая от pH, связана с образованием фазового окисла или кислородного слоя, возникающего в результате взаимодействия железа с водой. Этот вид пассивации затрудняют прочно адсорбированные ионы. Пассивация же второго типа, не зависящая от pH, связана с непосредственным участием анионов в процессе формирования пассивирующего слоя. При этом допускается, что анионы SOi и СЮ могут ускорять реакцию образования пассивирующего слоя посредством, например, передачи кислорода от молекулы воды к металлу. Этот механизм не совсем ясен.  [c.49]

Изучение возможности восстановления этих же ингибиторов в более широкой области потенциалов на платине показало, что ни один из них не восстанавливается при потенциалах коррозии. Более того, реакция восстановления кислорода, растворенного в электролите, в присутствии, например, хромата даже замедляется. Иногда в продуктах коррозии, а также на поверхности электрода обнаруживаются соединения трехвалентного хрома. Однако их происхождение является, очевидно, результатом окисления двухвалентных ионов железа, перешедших в раствор, В тех же случаях, когда достигается полная защита, соединения трехвалентного хрома не обнаруживаются на электроде. Это свидетельствует о том, что хромат-ионы адсорбируются поверхностью и не претерпевают химических превращений. Отсюда напрашивается вывод, что реакция восстановления ингибиторов с общим анионом типа МО не может быть ответственной ни за увеличение скорости растворения стали, находящейся частично в активном состоянии, ни за образование пассивирующего слоя, переводящего металл в пассивное состояние.  [c.60]

Учитывая рассмотренные выше закономерности, можно полагать. что при внутренней анодной поляризации стали ингибиторами с общим анионом типа М0 природа пассивирующих слоев остается такой же, как и при внешней анодной поляризации. Специфическое действие ингибиторов проявляется в том, что, адсорбируясь на поверхности металла, они понижают общую свободную энергию системы и повышают стабильность пассивных пленок. В зависимости от природы адсорбированных частиц, их концентрации на поверхности и прочности связи меняется скорость растворения, поляризуемость и плотность тока, необходимая для пассивации, а также потенциал пассивации. В таких условиях пассивация может наступить и без большого внутреннего тока окислительно-восстановительной реакции ингибитора лишь за счет небольших плотностей тока реакции восстановления кислорода, растворенного в электролите.  [c.63]

ПРИРОДА ПАССИВИРУЮЩИХ СЛОЕВ И МОЛЕКУЛЯРНЫЙ МЕХАНИЗМ ДЕЙСТВИЯ ИНГИБИТОРОВ  [c.65]

Природа пассивирующих слоев, возникающих на металлах в средах, содержащих ингибиторы окислительного типа, которые восстанавливаются с малым перенапряжением, частично уже об-  [c.65]

Как известно, пассивирование, обусловленное возникновением оксидного пассивирующего слоя, который защищает металл от дальнейшего коррозионного разрушения, сопровождается депротонированием и заменой молекул воды меньшими по размеру ионами кислорода. При этом происходит переход от водородных связей в структуре воды к ионной связи в окисном слое металла. Депротонирование может  [c.72]

Рассмотренные вь(ше процессы могут протекать не только на гладких поверхностях, но И в вершине трещины с учетом ряда особенностей образования пассивирующих слоев. Термодинамические и кинетические условия образования пассивирующих слоев в вершине растущей трещины существенно отличаются от условий образования пассивной пленки на гладкой поверхности. Эти отличия определяются главным образом изменением в "щели" трещины состава и кислотности электролита, соответственно влияющих на величину потенциала и плотность анодного тока в вершине трещины. Авторы работы [65], применив методику замораживания и последующего анализа 3,5 %-ного раствора МаС1 в вершине растущей трещины, определили, что за счет гидролиза, протекающего в ограниченном объеме  [c.62]

Получены и прямые доказательства такой сложной структуры пассивирующего слоя как злектронографическими методами, так и специальными. Существуют также и несколько иные предположения относительно механизма возникновения пассивного состояния. Например, существует точка зрения, что пассивное состояние может наступать при наличии на поверхности одного гидратированного слоя РезОз 0,39 Нз О или РеОСЮН.  [c.165]

Для исследования стали с 18% Сг и 8% Ni на склонность к интеркристалл итной коррозии Шафмейстер [79] считает пригодным электролитическое травление. Он предполагал, что наиболее благоприятные условия для выявления карбидов, помимо действия электролитов, могут быть достигнуты путем изменения силы тока и длительности травления. Наряду со степенью диссоциации своеобразие травления нержавеющих сталей в различных электролитах зависит в значительной степени от образования и разрушения пассивирующего слоя. Шафмейстер применял в качестве катода при электролизе (комнатная температура) пластину из стали 18/8, закаленной в воде с температуры 1100° С, площадью 5000 мм .  [c.132]


Следует указать, что никель, обладающий высокой энергией дефектов упаковки и поэтому облегченным поперечным скольжением дислокаций при деформации, не образует плоских скоплений дислокаций и поэтому не может считаться подходящим объектом для изучения закономерностей механохимического поведения деформируемого металла в смысле влияния степени деформации на его электрохимические свойства. В то же время, ячеистую субструктуру слабо взаимодействующих дислокаций в никеле можно было бы использовать для изучения адсорбционной и пассивационной способности дислокационных центров , не осложненной их взаимодействием. Однако монотонная зависимость адсорбционных и электрохимических свойств пассивной поверхности от плотности дислокаций (и степени деформации) может искажаться механическими нарушениями пассивирующего слоя в местах выхода линий и полос скольжения, плотность и топография, которых зависят от стадий кривой упрочнения.  [c.73]

Сг207 на растворение металла в серной кислоте и неизменность скорости этого процесса при других потенциалах в той же области [ 105]. Снижение скорости растворения пассивного железа в присутствии окислителей может быть связано с их участием в образовании пассивирующего слоя на металле. В[ 106], например, с применением радиометрического метода было показано, что хром  [c.24]

Известно, что некоторые анионы, в первую очередь, ионы С С, В Г и J , способны вызывать разрушение пассивирующих слоев на отдельных сравнительно небольших участках пассивной поверхности, что нередко приводит к развитию локальной коррозии. Это легко обнаруживается по появлению на потенциостатической поляризационной кривой в области потенциалов между потенциалом паосивации (ср .) и потенциалом перепассивации ( Фдп ) нового активационного участка, характеризующегося очень сильной зависимостью скорости растворюния от потенциала (рис. 14).  [c.29]

Скачкообразное увеличение коррозионной стойкости сплавов Fe- r при достижении 12% Сг обусловлено происходящими при этой концентрации изменениями состава и свойств пассивирующей пленки. Так, пассивирующие слои сплавов с низким содержанием хрома состоят из оксидов железа. Они близки по своему составу к оксидам, образующимся на поверхности чистого железа. В сплавах, содержащих более 12% Сг, внешние (контактирующие с раствором) слои пассивирующей пленки обогащены хромом, входящим в состав оксида СГ2О3.  [c.186]

Уже в XVIII в. было известно, что хром практически не разоряется в кислотах и что коррозионная стойкость его обусловлена так зываемым пассивирующим слоем, который образуется на поверхнос-металла при воздействии окислительной среды. Гипотеза, объясняю-ш пассивность металла, была предложена в 1907 г. В. А. Кистяковским, торый, изучая степень устойчивости железа в химических реагентах, наружил, что на поверхности железа образуется тонкая невидимая екловидная пленка оксида железа, которая и защищает металл от эрозионного воздействия той или иной среды.  [c.345]

Развитие локальных повреждений пассивирующих слоев на поверхности стали, обусловленное образованием питтингов, инициировали гальваностатической анодной поляризацией образцов стали с плотностью тока 10 мА/см . Растворение стал з происходило с накоплезшем в питтингах хрома. Скорости растворения железа и хрома стабилизировались через 30-40 шн.  [c.20]

Описанным выше действием отталкивающих сил, наряду с образованием пассивирующих слоев, объясняется, очевидно, почему многие анионы (НОз", NO2", СгаО, ) требуют для своего восстановления больших энергий активации, что часто не дает им возможности проявлять себя в качестве катодных деполяризаторов при стационарных потенциалах металлов.  [c.58]

В частности, Эванс, который является сторонником фазовой теории пассивности, считает (если предположить, что переход железа в раствор возможен только на участках с дефектной структурой), что для пассивации достаточно менее одного монослоя кислорода. Однако природа пассивирующего слоя не изменится. Для полной пассивации, по Эвансу, необходимо, чтобы на поверхности металла возникла трехмерная пленка [25]. Аналогичную точку зрения высказал недавно Хор [26]. По его мнению, одного монослоя кислорода может и достаточно для временного уменьшения реакционной способности металла, но для того чтобы металл остался в пассивном состоянии при изменении внешних условий (например, при переносе железа из концентрированного раствора азотной кислоты в разбавленный, которое наблюдали Фарадей и Шенбейн), необходима более толстая окисная пленка.  [c.24]

Наметившееся сближение между адсорбционной и фазовой теориями пассивности можно усмотреть и в трактовке природы пассивирующего слоя, которая дается в работах других авторов. В частности, Мансфельд и Улиг [30] хотя и утверждают, что пассивная пленка, возникающая на сплавах элементов с незаполненными d-подуровнями, состоит главным образом из хемосорбированного кислорода, но отмечают, что она может содержать определенную фракцию металлических ионов, но не в обычных стехиометрических соотношениях. Здесь уже трудно провести грань между понятиями хемосорбционный слой кислорода и фазовая пленка.  [c.25]

Наблюдающееся и в присутствии нитрита натрия влияние нитрит-ионов на пассивацию можно объяснить их адсорбцией, которая уменьшает свободную энергию системы и затрудняет переход ион-атомов металла из решетки в раствор. Вероятность того, что нит-рит-ионы изменяют характер пассивирующего слоя, мала. На это, в частности, указывает прямолинейная зависимость между потенциалом пассивации и pH, которая обычно характерна для электрохимической реакции возникновения окисного слоя. По-видимому, при высоких концентрациях нитрита натрия скорость катодного процесса возрастает настолько, что становится возможной пасси-  [c.35]

Анализ экспериментального материала показывает, что в области активного растворения смещение потенциала в положительную сторону обусловлено восстановлением нитробензоата амина и увеличением благодаря этому эффективности катодного процесса. На границе активно-пассивного состояния потенциал смешается в положительном направлении преимущественно благодаря торможению анодной реакции устанавливающееся в пассивной области значение потенциала определяется процессом окисления металла кислородом воды, участвующим в формировании пассивирующего слоя.  [c.44]

Следует иметь в виду, что действие рассматриваемых ингибиторов заключается не только в увеличении концентрации гидроксил-ионов, необходимых Мдля 0бра130вания пассивирующих слоев. Здесь проявляется ще 1и специфическое действие амих анионов. На это, например, указывает зависимость потенциалов пассивации и токов пассивации от природы аниона, а та кже то, что защитные концентрации ингибиторов При одинаковом значении pH различны. Изменение состава защитных пленок также свидетельствует о специфическом Рис. 2.13. Влияние концентрации водород-влиянии самих анионов. Майн  [c.46]


Смотреть страницы где упоминается термин Пассивирующие слои : [c.165]    [c.41]    [c.68]    [c.13]    [c.80]    [c.82]    [c.18]    [c.36]    [c.37]    [c.65]   
Ингибиторы коррозии (1977) -- [ c.0 ]



ПОИСК



Исследование природы и структуры пассивирующих слоев

Пассивирующие слои полупроводниковые свойств

Пассивирующие слои при анодной поляризации

Пассивирующие слои при защите ингибиторами

Пассивирующие слои природа

Пассивирующие слои степень заполнения поверхност

Попова, Н. А. Симонова. Исследование состава пассивирующих слоев на металлах потенциогальваностатическим методом

Природа. пассивирующих слоев и молекулярный механизм дейст8ИЯ ингибиторо

Слой пассивирующий

Слой пассивирующий

Хемосорбционные слои и пассивирующая пленка



© 2025 Mash-xxl.info Реклама на сайте