Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гидродинамическое время

Гипотеза подобия — 214 Гидродинамическое время — 215 Газ Лоренца — 150  [c.239]

Другими временными масштабами являются время нагрева боковой поверхности Xf, и гидродинамическое время х = Re, обусловленное вязкостной релаксацией среды.  [c.147]

Конкретная реализация того или иного подхода зависит от метода исследования. Для рассматриваемых систем, видимо, наибольшую ценность в настоящее время представляют полуэмпирические методы, основанные на теории подобия. Приложение общей теории подобия к сквозным дисперсным потокам во всем диапазоне концентраций, а гидродинамической теории теплообмена— к потокам газовзвеси, предпринятое в [Л. 98] и развиваемое в данном издании, нуждается в дальнейшей доработке. Не меиее актуально развитие аналитических методов. Однако их применение ограничено недостаточностью знаний о проточных дисперсных системах. В области теплопереноса аналитические решения, как правило, не учитывают реальную структуру системы, взаимовлияние компонентов и поэтому имеют пока вспомогательное значение (гл. 6, 10).  [c.27]


Указания по подбору подшипников качения. В настоящее время в СССР разработана и принята методика расчета и выбора подшипников качения по динамической и статической грузоподъемности, а также проверки предельной скорости вращения и наличия гидродинамического режима смазки подшипников.  [c.439]

Нас будет интересовать движение и распределение частиц в поле гидродинамического потока и взаимодействие многофазной системы с границей. Эти процессы характерны для пылеуловителей и эжекторных скрубберов, а также для явлений испарения с разбрызгиванием, абляции, псевдоожижения, кипения. Хотя в настоящее время могут быть исследованы только некоторые простейшие нетривиальные решения, вначале будут рассмотрены случаи, для которых можно осуществить точные расчеты,— потенциальное и ламинарное движения, а в дальнейшем с введением полуэмпирических методов область исследования будет распространена на другие случаи течения. Важным вопросом, излагаемым в данной главе, является обоснование подобных решений в гидромеханике многофазных систем.  [c.338]

В условиях движущейся сварочной ванны (во время сварки) возникают дополнительные гидродинамические силы, вызванные перемещением расплавленного металла в хвостовую часть ванны..  [c.23]

Рассмотрим пример расчетного проектирования синхронных генераторов (СГ) с принудительным охлаждением. Проектирование таких генераторов требует выполнения большого комплекса расчетов (электромагнитных, механических, тепловых, а(эро- и гидродинамических) в различных режимах работы. Большой объем вычислений при многократном повторении в процессе оптимального проектирования недопустимо увеличивает машиносчетное время. Поэтому, используя специфику проектируемых СГ, надо не только провести разделение расчетов на быстрые и медленные, но и осуществить дополнительную декомпозицию задачи оптимального проектирования на подзадачи меньшей размерности.  [c.119]

Не включена в книгу также и теория нелинейных волн в диспергирующих средах, составляющая в настоящее время значительную главу математической физики. Чисто гидродинамическим объектом этой теории являются волны большой амплитуды на поверхности жидкости. Основные же ее физические применения связаны с физикой плазмы, нелинейной оптикой, различными электродинамическими задачами и др. в этом смысле она относится к другим томам.  [c.9]

Принадлежащие странному аттрактору сложные, запутанные траектории расположены в ограниченном объеме пространства состояний. Классификация возможных типов странных аттракторов, которые могут встретиться в реальных гидродинамических задачах, в настоящее время неизвестна неясны даже критерии, па которых должна была бы основываться такая классификация. Существующие знания о структуре странных аттракторов основаны в основном лишь на изучении примеров, возникающих при  [c.165]


Для типичных жидкостей уравнения Навье—Стокса применимы до тех пор, пока периоды движения велики по сравнению с молекулярными временами. Это, однако, не относится к очень вязким жидкостям. Для таких жидкостей обычные гидродинамические уравнения становятся неприменимыми уже при гораздо больших периодах движения. Существуют вязкие жидкости, которые в течение достаточно малых (но в то же время больших ito сравнению с молекулярными) промежутков времени ведут себя, как твердые тела (например, глицерин, канифоль). Аморфные твердые тела (например, стекло) можно рассматривать как предельный случай таких жидкостей с весьма большой вязкостью.  [c.188]

Вторым членом соотношения (12), учитывающим температурный крип, чаще всего можно пренебречь, так как при высоких продольных градиентах температуры и очень больших разрежениях, когда этот член особенно существен, обычно реализуется свободно-молекулярное течение газа без гидродинамического пограничного слоя. Однако в некоторых специальных случаях (например, обтекание головной части ракеты во время входа ее в сравнительно плотные слои атмосферы) условие (12) используется в полном виде.  [c.137]

Н. Н. Боголюбовым впервые предложен и осуществлен общий метод получения кинетических уравнений [11]. Он основан на предположении, что за время порядка длительности соударения многочастичные функции распределения становятся функционалами одночастичных функций, которые удовлетворяют в свою очередь кинетическому уравнению. На следующем этапе за время порядка гидродинамического времени одночастичная функция становится функционалом макроскопических величин, которые удовлетворяют уравнениям гидродинамики. В дальнейшем это направление интенсивно развивалось [46—49].  [c.215]

В настоящее время наиболее широкое распространение получили методы электрического моделирования. В них исследование тепловых, гидродинамических, гидравлических, магнитных, электромагнитных, акустических и других неэлектрических полей заменяется изучением полей электрических. Преимущества электрического моделирования состоят в том, что электрические измерения осуществляются сравнительно просто и быстро и обладают высокой точностью и надежностью, а сами электрические модели отличаются универсальностью, стабильностью свойств, компактностью и простотой эксплуатации.  [c.75]

Совокупность параметров, определяющих какой-либо гидродинамический процесс, можно рассматривать как конкретное решение дифференциальных уравнений этого процесса. Ему соответствуют вполне определенные начальные и граничные условия. Они представляют собой зависимости или константы, определяющие физические параметры в начальный момент и на границах во время движения. Следовательно, не только уравнения процесса, но также безразмерные формы начальных и граничных  [c.121]

Формулы (8-18) и (8-19) первоначально использовались для расчетов трения в подшипниках скольжения, пока не была разработана более точная гидродинамическая теория смазки, учитывающая эксцентричность расположения вала в подшипнике. Основы этой теории будут рассмотрены ниже. Тем не менее формулы (8-18) [и (8-19), предложенные Н. П. Петровым в 1883 г., сохраняют свое значение и в наше время, поскольку во многих конструкциях машин приходится встречаться со случаями вращения соосных цилиндров. Кроме того, эти формулы описывают предельный случай вращения вала в подшипнике при больших скоростях.  [c.335]

О. Рейнольдс установили принципы и критерии гидродинамического подобия и многие другие. Результаты экспериментов позволили уточнить теоретические уравнения гидродинамики введением поправочных коэффициентов. Долгое время развитие гидравлики и гидродинамики шло различными путями. Сближение между этими направлениями в науке произошло в начале XX в. благодаря работам Л. Прандтля (1875—1953). Им исследованы гидравлические сопротивления в трубах, создана теория турбулентности, разработана теория пограничного слоя. В настоящее время в гидравлике как науке опыт и теория тесно связаны и взаимно дополняют друг друга.  [c.259]


Весьма интересна иллюстрация уравнения Бернулли на приборе, представленном на рис. 61, на котором можно наблюдать явление, известное под названием гидродинамического парадокса. В горизонтальной трубе ВС с жесткими стенками на участке Ьс имеется вставка Е из тонкостенной резиновой трубки. Этот участок заключен в стеклянную камеру А, в которую через трубку D может нагнетаться воздух под давлением, в то время как по трубе ВС течет жидкость.  [c.83]

Представляется правдоподобным, что взрыв звезды обусловлен развитием в ее недрах либо тепловой, либо гидродинамической неустойчивости. В первом случае может произойти сильный перегрев звезды и, как следствие, термоядерный взрыв, во втором — развивается имплозия — катастрофическое сжатие звезды со скоростью порядка скорости свободного падения. В результате звезда за время гидр. называемое гидродинамическим временем,  [c.617]

В последнее время с появлением ЭВМ весьма успешно развиваются методы численного решения дифференциальных уравнений, описывающих теплоотдачу (гл. 7). Исследование теплоотдачи методом численного решения соответствующих дифференциальных уравнений, при достаточно точной постановке гидродинамической задачи, можно считать эквивалентным экспериментальному исследованию. Результаты численного решения точны настолько, насколько точно исходные уравнения описывают изучаемое физическое явление.  [c.185]

В настоящее время имеются значительные успехи в создании и практике использования гидродинамических передач, однако остается еще много вопросов, которые необходимо решать. Для выявления особенностей гидродинамических передач и улучшения их предстоит большая исследовательская работа, она обусловлена большим разнообразием гидродинамических передач и сложностью процессов, происходящих в них.  [c.4]

Применения теории пространственного потока к расчету лопастных систем гидродинамических передач. С расчетом потока в гидромашинах связаны прямая и обратная задачи. Прямая задача формулируется следующим образом по известной (заданной) геометрии лопастной системы найти распределение скоростей и давлений (поле скоростей и давлений) на поверхности лопасти. Обратная задача сводится к определению геометрии лопастной системы по заданным полям скоростей и давлений на поверхности лопасти. В настоящее время применительно к гидротрансформаторам решена прямая задача.  [c.88]

Вследствие неравномерности распределения давлений по меридиональному сечению рабочей полости в гидродинамических передачах во время работы возникают осевые усилия, направление и величина которых зависят также от давления подводимой жидкости, конструкции колес и расхода в рабочей полости. Последнее обстоятельство обусловливает конструкцию опор (подшипников), которые должны выбираться с учетом разгрузки валов от этих усилий.  [c.236]

Если образование паровых пузырьков возможно, они возникают в жидкости в больших количествах, а так как суммарная поверхность их во много раз превосходит свободную поверхность жидкости, то испарение внутрь паровых пузырьков приобретает преобладающее значение. Паровые пузырьки образуются преимущественно на стенках поверхности нагрева, где имеются выступы или впадины шероховатости (рис. 6-14). Раз образовавшись, паровой пузырек становится центром испарения жидкости. Размеры парового пузырька по мере испарения в него жидкости растут, вследствие чего увеличивается пропорциональная объему пузырька подъемная сила, под действием которой пузырек по достижении определенного размера, характеризуемого так называемым отрывным диаметром, отрывается от стенки и, преодолевая силы гидродинамического сопротивления окружающей жидкости, всплывает наверх, на поверхность жидкости и лопается. Вместо всплывшего пузырька на том же месте сразу или через некоторое время образуется новый паровой пузырек. Путем движения паровых пузырьков из нижних слоев жидкости к поверхности ее осуществляется непрерывный транспорт образующихся внутри жидкости паров в пространство над жидкостью.  [c.213]

В настоящее время на всех турбинах большой мощности применяют более совершенную гидродинамическую систему регулирования. В СССР такая система регулирования разработана Всесоюзным теплотехническим институтом (ВТИ) и ЛМЗ. В этой системе скоростной центробежный регулятор заменен масляным центробежным насосом, связанным с валом турбины, что позволяет отказаться от применения для системы регулирования червячной пары. В системе регулирования использовано для получения импульса то обстоятельство, что напор, создаваемый центробежным насосом, пропорционален квадрату числа оборотов. На рис. 31-18 представлена принципиальная схема гидродинамического ре-  [c.360]

Многие исследователи (их в настоящее время, по-видимому, большинство) рассматривают кризис теплообмена при кипении ак явление, имеющее в своей основе гидродинамическую природу. В пользу этой концепции говорят теоретические исследования и опытные данные ряда авторов, в соответствии с которыми резкое ухудшение теплоотдачи наступает еще до слияния паровых пузырей. При достижении критической плотности теплового потока под воздействием динамического напора образующегося пара пленки жидкости между пузырями теряют устойчивость и жидкая фаза вытесняется из пристенного слоя. Между греющей стенкой и жидкостью образуется паровая подушка.  [c.270]

Теплоотдача при ламинарном режиме. При ламинарном течении перенос тепла от одного слоя жидкости к другому в направлении нормали к стенке осуществляется путем теплопроводности. В то же время каждый слой имеет в общем случае различную скорость продольного движения. Поэтому наряду с поперечным переносом тепла путем теплопроводности происходит также конвективный перенос тепла в продольном направлении. Вследствие этого теплообмен при ламинарном режиме течения зависит от гидродинамической картины движения.  [c.76]


Последовательность настройки систем следующая Сначала проводят наладку гидродинамического, а затем бойкового автоматов безопасности ТНД. При испытании бойкового автомата закрывают вентиль на подводе масла предельной защиты к гидродинамическому автомату. Прежде чем разогнать вал турбины для испытания автоматов безопасности, необходимо по образцовым приборам проверить и отрегулировать показания щитовых тахометров. Во время разгона один из машинистов должен постоянно находиться около кнопки, ,Аварийный стоп" и в случае необходимости (самопроизвольное увеличение частоты вращения) остановить турбоагрегат, не дожидаясь когда сработает автомат безопасности.  [c.91]

Кривые 2 относятся к износу при уменьшении шероховатости с сохранением острых выступов. На графике изменения dh/ds от д соответствующая кривая отклоняется от кривой 1 в сторону повышающихся давлений (д увеличивается от 0,14 до 0,2 кгс/мм ), а время достижения режима гидродинамической смазки падает от 3000 до 1000 мин.  [c.65]

Зависимости /г = / (г), приведенные на рис. 43, а, показывают величину износа. Они могут быть использованы для вывода, был ли достигнут режим гидродинамической смазки за время испытания. При недостаточном времени испытания нельзя сделать вывода о том, проявилась ли при принятых условиях испытания несущая способность смазочного масла (<7/, 0) или не проявилась (Чк = 0).  [c.66]

Кинетическое уравнение (7.15) можно трактовать и с позиций механизма рождения-гибели ламелл, блокирующих газовые каналы (Holm, 1968). Действительно, уравнение (7.16) выражает баланс сил в движущемся пенонесущем газе. Вязкие силы уравновешены градиентом давления и распределенными по образцу блокирующими силами со стороны ламелл пены. В первом приближении блокирующая сила пропорциональна концентрации ламелл пены. Поэтому концентрация может быть выражена через Z/, и, считая, что ламеллы после своей гибели не восстанавливаются, можно трактовать уравнение (7.15) как кинетическое ура внение для концентрации ламелл пены. При такой трактовке параметр можно рассматривать как время жизни блокирующей ламеллы и он может быть выражен через собственно термодинамическое время жизни и гидродинамическое время устойчивого дрейфа ламеллы как  [c.155]

Определим далее гидродинамическое время Тгидр из соотношения  [c.369]

В настоящее время еще недостаточно широко исследована передача тепла излучением к движущимся множествам частиц. Известны исследования излучения, передаваемого движущейся среде, выполненные Висканта и Грошем [852], а также Сессом [100], которые рассматривали течение в пограничном слое, а также Тьеном и Абу-Ромия [810], которые изучали течение в донной области ракет. В гл. 8 будут рассмотрены гидродинамические системы, в которых излучение играет существенную роль.  [c.253]

Исчерпывающей теории возникновения турбулентности в различных типах гидродинамических течений в настоящее время еще не существует. Был выдвинут, однако, ряд возможных сценариев процесса хаотизации движения, основанных главным образом на компьютерном исследовании модельных систем дифференциальных уравнений, и частично подтвержденных реальными гидродинамическими экспериментами. Дальнейшее изложение в этом и следующем параграфах имеет своей целью лишь дать представление об этих идеях, не входя в обсуждение соответствующих компьютерных и эксперимеитальпых результатов. Отметим лишь, что экспериментальные данные относятся к гидродинамическим движениям в ограниченных объемах имеппо такие движения мы и будем иметь в виду ниже ).  [c.162]

При выводе уравнений равновесия и уравнений движения нематиков наличие у них центра инверсии не использовалось. Поэтому те же уравнения в их общем виде справедливы и для холестериков. В то же время имеется и ряд отличий. Прежде всего, меняется выражение Fa, с которым должно вычисляться, согласно определению (36,5), молекулярное поле h. Далее, наличие линейного по производным члена в свободной энергии приводит к появлению различия между изотермическими и адиабатическими значениями модуля /Са (ср. конец 36). В сформулированной в 40, 41 системе гидродинамических уравнений основными термодинамическими переменными являются плотность и энтропия. Соответственно этому должны использоваться адиабатические значения (как функции р и S) модуля упругости.  [c.225]

Паровые пузырьки образуются прежде всего на стенках поверхности нагрева, где имеются выступы или впадины шероховатости (рис. 8.3, 8.4). Раз образовавшись, паровой пузырек становится центром испарения жидкости. Размеры парового пузырька по мере испарения в него жидкости растут, вследствие чего увеличивается пропорциональная объему пузырька подъемная сила, под действием которой пузырек после того, как достигнет определенного размера, характеризуемого так называемым отрывным диаметром, отрывается от стенки и, преодолевая силы гидродинамического сопротивления окружающей жидкости, всплывает наверх, на поверхность жидкости, и лопается. Вместо всплывшего пузырька на том же месте сразу или через некоторое время образуется новый паровой пузырек. Путем движения паро-  [c.223]

Эксперименты показывают, что в действительности коэффициент теплоотдачи к гравитационной неиспаряющейся пленке в ла-минарно-волновом режиме изменяется по высоте обогреваемой поверхности в общем случае достаточно сложно [5]. В большинстве случаев естественное снижение коэффициента теплоотдачи на начальном участке гидродинамической и тепловой стабилизации сменяется его увеличением по мере развития волнового движения при этом во многих случаях полной стабилизации теплоотдачи не происходит на длинах, превышающих 2 м. Теоретически обоснованных методов расчета коэффициента теплоотдачи, отражающих указанную его немонотонность в направлении течения, в настоящее время не создано. В инженерной практике при ламинарно-волновом режиме течения (Re , < 1600) можно приближенно принять для расчета среднего значения а  [c.180]

Конечное время, необходимое для фазового перехода, и образующаяся многоволновая структура ударной волны также приводят к тому, что волна, на которой закапчивается переход Fe< )- -Fe начинает затухать раньше, чем это следует из простейших соображений, связанных с анализом только ударной адиабаты. В частности, сдвиговая прочность, определяемая девиа-тором т, приводит i более раннему началу ослабления ударной волны, чем это следует из чисто гидродинамической модели, так как упругая волна разгрузки имеет большую скорость, чем пластическая волна разгрузки.  [c.280]

Кроме того, рассматриваемый объем обладает также потенциальной энергией давления, для определения которой представим, что в сечении 1—1 площадью ах имеется поршень, движущийся со скоростью Д01 в направлении сечения 2—2 и проходящий за время Д путь ь А1. Сила гидродинамического давления жидкости на этот поршень равна рхйх (см. рис. 3.3, а). Тогда выполненная поршнем работа будет равна  [c.34]

Гидродинамический режим распространения волны поглощения, вызванной ионизацией за ударной волной, со скоростью, превышающей скорость нормальной детонации (5.34), невозможен. Такому случаю соответствовало бы сжатие за ударной волной до состояния А на ударной адиабате с последующим расширением газа во время поглощения лазерного излучения вдоль отрезка прямой А 1 до точки В на ударной адиабате волны поглощения. Но в состоянии В скорость распространения волны по нагретому газу О оказывается дозвуковой. Расширение нагретого газа за такой волной тотчас бы ослабило и замедлило волну, переводя ее в режим нормальной детонации (из точки В в точку 2). Такой режим аналогичен пересжатбй детонации. Для того чтобы светодетонационная волна распространялась со скоростью большей, чем это может обеспечить поглощение лазерного излучения, должно быть дополнительное выделение энергии. Однако в условиях опытов таких дополнительных факторов нет, и, следовательно, отклонения от режима нормальной детонации невозможны.  [c.110]


В настоящее время в качестве паропромывочного устройства в испарителях обычно используют паропромывочный дырчатый лист, над которым с помощью переливов поддерживается требуемый уровень промывочной воды (см. рис. 3.13 и рис. 1.П). Гидродинамическая устойчивость барботажного слоя (беспровальный режим) обеспечивается здесь соответствующим выбором скоростей пара в отверстиях дырчатого листа. Как было показано в гл. 3, в беспро-вальном режиме средняя скорость пара в отверстиях должна быть не ниже значения, определяемого выражением (3.32)  [c.385]

Как отмечалось в 8-1, длины начальных гидродинамического и теплового участков зависят от ряда факторов, например, от числа Рейнольдса, степени турбулентности потока на входе, начального распределения скорости, тепловых граничных условий и т. п. От этих же факторов зависят и поправочные коэффициенты е и ег. Поэтому исполь-зуемые в настоящее время в расчетной практике значения поправочных коэффициентов не являются универсальными и отражают специфику опытных исследований, в результате которых они были получены. Чем меньще l/d (или x/d), тем больше может быть различие поправочных коэффициентов и тем больше может быть ошибка расчета.  [c.215]

Индивидуальная система маслоснабжения (рис. 25) предназначена для смазки подшипников газоперекачивающего агрегата и создания герметичных уплотнений нагнетателя, а также для смазки систем гидравлического уплотнения и регулирования установки [11]. Масляная система состоит из маслобака, пускового 3 и резервного 4 масляных насосов, инжекторных насосов 5, 6. Подачу масла к деталям обеспечивает главный масляный насос /, во время пуска и остановки — пусковой масляный насос 3. Через сдвоенный обратный клапан 2 часть масла поступает к инжекторному насосу 5 для создания подпора во всасывающем патрубке главного масляного насоса и обеспечения его надежной работы, а часть масла — к инжекторному насосу 6 для подачи масла под давлением 0,02—0,08 МПа на смазку подшипников агрегата и зацепления редуктора. Масло после насосов подается в гидродинамическую систему регулирования агрегата, давление в которой поддерживает регулятор 9. Часть масла после регулятора, пройдя три маслоохладителя 10, подается на смазку ради ьно-упорного подшипника нагнетателя. При аварийном снижении давления в системе смазки установлены два резервных насоса 4 и 7 с электродвигателями постоянного тока. Причем насос 4 подключен к маслопроводу смазки турбин, компрессора и редуктора, а насос 7 — к линии смазки радиально-упорного подшипника. В системе маслоснабжения имеется специальный центробежный насос — импеллер 12, служащий для выдачи импульсов гидродинамическому регулятору скорости при изменении частоты вращения вала турбины низкого давления. Частота вращения импел-  [c.114]


Смотреть страницы где упоминается термин Гидродинамическое время : [c.424]    [c.77]    [c.88]    [c.247]    [c.717]    [c.374]    [c.21]   
Неравновесная термодинамика и физическая кинетика (1989) -- [ c.215 ]



ПОИСК



Время релаксации. Гидродинамические уравнения с поправкой на внутреннее трение. Вычисление Въ с помощью шаровых функций

Да гидродинамическое



© 2025 Mash-xxl.info Реклама на сайте