Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Статистическое распределение неравновесное

Цепочка уравнений Боголюбова (6.10) для неравновесных функций распределения лежит в основе статистической теории неравновесных процессов. Найдем частное решение этой цепочки уравнений для кинетической стадии эволюции неравновесной системы, определяемой кинетическим уравнением вида (6.12)  [c.108]

Квазиравновесные статистические распределения. Ясно, что величины РтУ не определяют однозначно неравновесное статистическое распределение g t). Поэтому, вообще говоря, существует много различных распределений, которые дают одни и те же значения для наблюдаемых. В дальнейшем особую роль будут играть статистические распределения, которые соответствуют максимуму информационной энтропии при заданных РтУ  [c.85]


Энтропия и термодинамические соотношения в квазиравновесных ансамблях. Важно отметить, что с помощью квазиравновесно-го ансамбля и соответствующего статистического распределения можно распространить термодинамические соотношения на неравновесные системы. Как и в равновесном случае, естественно отождествить максимальное значение информационной энтропии (при заданных значениях наблюдаемых) с термодинамической энтропией. Информационная энтропия квазиравновесного распределения (2.1.20) равна  [c.86]

Для термодинамического описания неравновесного состояния всей системы построим квазиравновесный ансамбль, который характеризуется средними значениями гамильтонианов подсистем Я и дополнительных медленных переменных m. Очевидно, что статистическое распределение для этого ансамбля может быть записано в виде  [c.102]

Источник в (2.3.13) нарушает симметрию уравнения Лиувилля относительно обращения времени, так как при обращении времени левая часть меняет знак, а правая часть остается неизменной, если г / 0. Хотя в конце концов источник стремится к нулю, он отбирает запаздывающие решения уравнения Лиувилля, описывающие необратимую эволюцию системы. В связи с этим поучительно привести отрывок из лекции Р. Пайерлса [134] по теории процессов переноса В каждом теоретическом исследовании процессов переноса нужно ясно понимать, в каком месте введена необратимость. Если она не введена, теория неверна. Подход, в котором сохранена симметрия относительно обращения времени, неизбежно дает нулевые или бесконечные значения для коэффициентов переноса. Если мы не видим, где была введена необратимость, то мы не понимаем, что мы делаем. Можно сказать, что уравнение (2.3.13) вводит необратимость в компактной и весьма общей форме. Отметим, что идея нарушения симметрии уравнения Лиувилля относительно обращения времени сама может служить основой для построения неравновесных статистических распределений [19]. Более подробно этот аспект теории мы обсудим в разделе 2.3.6  [c.106]

Теория возмущений для неравновесного статистического распределения. Мы видели в разделе 2.3.2, что формально точное решение уравнения Лиувилля приводит к довольно сложным выражениям для кинетических коэффициентов. Поэтому полезно сформулировать приближенные методы построения неравновесных распределений, которые позволяют вывести более простые обобщенные уравнения переноса. Мы рассмотрим две типичные ситуации, в которых неравновесное распределение может быть получено последовательными приближениями по малому параметру.  [c.113]


Рассмотрим другую ситуацию, в которой удается использовать теорию возмущений для построения неравновесного статистического распределения. Предположим, что гамильтониан системы можно представить в виде суммы Я = Я + Я, где Я — главная часть гамильтониана, а Я — малое возмущение ). Для определенности рассмотрим квантовый случай, когда оператор Лиувилля L выражается через квантовые скобки Пуассона, и запишем уравнение (2.3.13) для статистического оператора в виде  [c.115]

Благодаря соотношению (2.1.25), это условие на противоречит условию (2.3.2) для неравновесного статистического распределения. Формальное интегрирование уравнения (2.3.65) дает  [c.116]

В этом параграфе мы получили два представления (2.3.10) и (2.3.72) для неравновесного статистического распределения. Возникает естественный вопрос — эквивалентны ли они друг другу Этот вопрос подробно обсуждается в приложении 2Д. Здесь мы докажем эквивалентность двух представлений, предполагая для простоты, что потоки Pjn базисных переменных — малые величины и поэтому достаточно найти статистическое распределение (2.3.72) в первом приближении по оператору производства энтропии. Мы рассмотрим более общее квантовое описание, когда оператор энтропии не коммутирует с интегральным членом в (2.3.63).  [c.117]

Мы хотим обсудить вопрос об эквивалентности неравновесных статистических распределений, полученных в разделах 2.3.1 и 2.3.5 Для простоты ограничимся классических системами [50], поскольку обобщение на квантовый случай не приводит к каким-либо принципиальным различиям [5].  [c.159]

В ЭТОЙ главе метод неравновесного статистического оператора применяется к теории гидродинамических процессов. Основное внимание мы уделим построению статистических распределений, соответствующих гидродинамической стадии эволюции, и выводу уравнений переноса на основе микроскопического подхода ).  [c.158]

Уравнение Гиббса связано с общим вопросом определения термодинамических параметров системы в неравновесном состоянии. Установлено, что обоснование таких понятий, как, например, температура или энтропия, требует разложения функции статистического распределения скоростей в быстро сходящийся ряд  [c.96]

Использование статистической теории неравновесных процессов в качестве основы синергетики позволяет существенно расши-)ить класс уравнений, описывающих процессы самоорганизации. Наряду с уравнениями (1.11.13), которые соответствуют в статистической теории уравнениям химической кинетики с учетом диффузии, теперь становятся возможны более общие и существенно более богатые но содержанию уравнения. Первый шаг к обобщению — переход от уравнений (1.11.13) к уравнениям гидродинамики химически реагирующих систем. Переход на следующий, более высокий уровень обобщения — это переход к кинетическим уравнениям для функций распределения в 6-мерном пространстве координат и импульсов. Такое расширение онисания имеет во многих случаях принципиальное значение, поскольку позволяет не только выявить область применимости уравнений типа (1.11.13), на которых в настоящее время базируется теория самоорганизации, но и описывать многие другие явления.  [c.7]

При построении этого метода Боголюбовым была предложена единая концепция сокращенного описания неравновесных макроскопических систем. Согласно этой концепции меняется характер вероятностного описания с течением времени. Структура его постепенно упрощается, и вероятностное распределение зависит от меньшего числа параметров. Таким образом, происходит переход от описания с помощью многочастичных функций распределения к одночастичной функции распределения, удовлетворяющей кинетическому уравнению, и затем к гидродинамической стадии процесса. Эта концепция положена в основу нашего изложения курса неравновесной статистической физики.  [c.36]

Такое построение курса обусловлено также тем, что метод неравновесных функций распределения комплексов частиц является перенесением в статистическую физику идей стохастической теории брауновского движения. В дополнение к феноменологической теории строгий микроскопический метод Боголюбова позволяет выразить описывающие систему параметры через молекулярные характеристики.  [c.36]


Метод решения цепочки уравнений (6.10) для неравновесных функций распределения был развит Боголюбовым на основе существования различных временных масштабов, характеризующих релаксационные процессы в статистических системах. При этом на каждом этапе в процессе приближения системы к равновесию ее состояние определяется различным числом параметров и описывается детерминированным уравнением для соответствующей функции от этих параметров. Действительно, в любом реальном газе существуют три резко разграниченных масштаба времени.  [c.100]

Заметим, что хотя взаимодействие спинов не вносит заметного вклада в выражение энергии, оно имеет существенное значение в том смысле, что может привести и удержать на некоторое время систему с указанным выше распределением спинов-, благодаря чему рассматриваемое состояние может считаться статистически равновесным, а следовательно,и подчиняющимся соотношениям статистической термодинамики. Указанный вывод вытекает из соотношения времен спин—спиновой и спин — решеточной релаксации первое имеет порядок 10 сек, а второе 10 сек. Соответственно этому система спинов в промежутке времени от 10 до 10 сек после перемены направления магнитного поля может рассматриваться как находящаяся в статистическом равновесии. Вообще же состояние спинов, ориентированных против поля, является, конечно, неравновесным и через 10 сек разрушается, т. е. переходит в полностью равновесное.  [c.92]

К оценке роли взаимодействия между частицами в эволюции состояния можно подойти и с несколько иной точки зрения. Важнейшей характеристикой равновесного состояния замкнутой системы является равновероятность любых равновеликих площадей на гиперповерхности постоянной энергии. Именно этим свойством мы руководствовались при выводе микроскопического распределения Гиббса в 61. Для системы, погруженной в термостат, аналогичное утверждение заключается в равновероятности любых равновеликих фазовых объемов, заключенных в тонком энергетическом слое, толщина которого определяется флуктуацией энергии. Справедливость всех равновесных распределений статистической физики (канонического, большого канонического и т. д.) основана на этом фундаментальном свойстве. Между тем в произвольном неравновесном состоянии такая равновероятность равновеликих фазовых объемов отсутствует. Например, в рассмотрен-  [c.547]

Предлагаемый первый том автор начинает с подробного обсуждения основных идей статистической механики, которые относятся в равной мере как к равновесному, так и к неравновесному случаю методов динамики Гамильтона в классическом и квантовом случае, метода статистических ансамблей и метода частичных функций распределения (гл. 1—3).  [c.5]

Кроме этих прагматических соображений, есть и другое, гораздо более глубокое обоснование целесообразности разработки метода функций распределения. Метод статистических сумм, хотя он и весьма изящен, является совершенно замкнутым. При выводе выражений с помощью статистической суммы используется определенная функциональная форма равновесного ансамбля. Невозможно определить, скажем, неравновесную статистическую сумму. Напротив, представление о частичных функциях распределения применимо как для равновесных, так и для неравновесных систем. Следовательно, это единственная универсальная формулировка, устанавливающая связь между равновесной и неравновесной теориями. В развитии такой универсальной теории должна заключаться и заключается основная цель современной статистической механики.  [c.255]

Второй способ изучения неравновесных процессов представляет собой дальнейшее развитие и обобщение идей статистической физики. Часто оказывается полезным следующий метод. Вводится функция распределения вероятностей для различных состояний частиц. Она обычно не совпадает с изучавшимися ранее распределениями по состояниям для равновесных систем. Как правило, распределение зависит от координат, а для нестационарных случаев — еще и от времени. (Равновесные же распределения постоянны во времени, зависимость от координат в них имеет место только при наличии внешних полей.)  [c.216]

Исторически теория информации заимствовала многие понятия из статистической механики. Среди прочих, к ним относится понятие информационной энтропии, введенное Шенноном [151]. Однако теперь, когда теория информации представляет собой хорошо разработанную теорию, можно, следуя Джейнсу [98, 99], принять ее положения за исходные и применить их к статистической механике. В частности, мы увидим, что все равновесные распределения Гиббса могут быть выведены из условия максимума информационной энтропии при соответствующих ограничениях, наложенных на статистический ансамбль. Отметим, однако, что подход, основанный на теории информации, не следует рассматривать как строгое обоснование статистической механики ). Но во всяком случае, он предоставляет собой очень удобный эвристический метод построения функций распределения и статистических операторов. Этот метод оказывается особенно полезным в неравновесной статистической механике.  [c.49]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]


Сделаем в заключение этого параграфа следуюшее замечание. Вывод распределений Бозе - Эйнштейна и Ферми - Дирака методом яши-ков и ячеек предполагает, что в ходе процесса установления термодинамического равновесия частицы могут менять энергию, переходя из яшика в яшик. В противном случае любое начальное неравновесное распределение частиц в //-пространстве оставалось бы неизменным и не релаксировало бы к равновесному состоянию, а процедура максимизации In W не имела бы смысла. Очевидно, возможность переходов частиц из яшика в яшик возникает благодаря взаимодействию частиц с окружаюшей средой (друг с другом частицы не взаимодействуют). Эта окружаюшая среда обязана быть термостатом (Т = onst) с непроницаемыми (N = onst) стенками. Это следует из того, что при выводе статистических распределений мы считаем фиксированными полное число частиц N я полную энергию U, которая при фиксированном N зависит для идеального газа только от температуры. Таким образом, распределения Бозе - Эйнштейна и Ферми - Дирака, а также распределение Максвелла - Больцмана, которое мы получим в следуюшем параграфе, представляют собой наиболее вероятные распределения частиц идеального газа в //-пространстве при условии, что этот газ помешен в термостат.  [c.184]

Во второй главе мы вернемся к определению неравновесной энтропии. Хотя мы не будем непосредственно использовать ни крупносруктурные распределения, ни сглаживание во времени, сама по себе идея усреднения статистических распределений окажется весьма полезной.  [c.49]

Статистическое распределение (2.1.20) описывает обобщенный ансамбль Гиббса, или тазиравновесный ансамбль в котором средние значения базисных динамических переменных совпадают с истинными значениями макроскопических наблюдаемых ). Согласно условиям (1.3.127), параметры Fm t) выражаются через неравновесные значения наблюдаемых РпУ Поэтому квазиравновесное распределение является функционалом  [c.86]

Видно, что Vq t) — линейный оператор. Заметим также, что выражение Vq t)A имеет смысл, только если величины Tv APn) и Тг Л являются конечными. Эти условия выполняются, если А представляет собой некоторое статистическое распределение q или A = iLg. Следует также подчеркнуть, что проекционный оператор Кавасаки-Гантона зависит от набора наблюдаемых, с помощью которых описывается неравновесное состояние. Приведем другие важные свойства оператора Vq t) (см. доказательства в приложении 2В)  [c.109]

Граничные условия к уравнению Лиувилля и метод квазисредних. В предыдущих разделах неравновесное статистическое распределение находилось как частное решение уравнения Лиувилля, совпадающее с квазиравновес-ным распределением в отдаленном прошлом. Иначе говоря, мы вводили граничное условие для отбора этого решения ). Вопрос о выборе граничного условия для уравнения Лиувилля имеет много общего с вопросом о выборе граничного условия для тех уравнений математической физики, решения которых неустойчивы относительно малых возмущений [И]. Мы приведем два примера, иллюстрирующие эту аналогию.  [c.119]

Если сравнить волновую функцию (2.3.87) с формулой (2.3.10) для неравновесного статистического распределения, аналогия между этими выражениями станет очевидной. Это наблюдение подсказывает, что волновую функцию Гелл-Манна-Гольдбергера можно получить, отбирая запаздывающие решения уравнения Шредингера точно так же, как отбирались запаздывающие решения уравнения Лиувилля при построении неравновесного распределения.  [c.121]

Метод проектирования Робертсона. По существу, основная идея метода Робертсона [139, 140] близка к идее метода неравновесного статистического оператора. Неравновесное состояние системы описывается средними значениями некоторых базисных динамических переменных и вводится соответствующее квазиравновесное распределение (2.3.3), в котором параметры F t) определяются из условий самосогласования (2.3.4). Вместо граничного условия в отдаленном прошлом, Робертсон, как и Цванциг, использует начальное условие для неравновесного распределения. Предполагается, что в некоторый момент времени истинное неравновесное распределение g t) совпадает с квазиравновесным, т. е.  [c.127]

Ясно, что уравнения баланса (ЗА.14) - (ЗА.16) еще не образуют замкнутую систему гидродинамических уравнений, поскольку тензор давления и ноток тенла зависят от неравновесной функции распределения, которая пока не известна. Поэтому следующим шагом будет построение функции распределения /(r,v, ) в форме функционала от гидродинамических переменных. Заметим, что эта проблема аналогична проблеме, рассмотренной в главе 2, где строились решения уравнения Лиувилля в форме функционалов от некоторого набора наблюдаемых РтУ Здесь в роли таких наблюдаемых выступают плотности массы, импульса и кинетической энергии (ЗА.И) - (ЗА.13), а в роли неравновесного статистического распределения — функция /(r,v, ). Можно продолжить эту аналогию еще дальше и ввести тазиравновесную одночастичную функцию распределения /д(г, v, ), которая соответствует максимуму информационной энтропии  [c.236]

Внешние ноля t) считаются настолько слабыми, что для описания отклика системы достаточно найти нонравку к среднему значению любой динамической неременной S Ay = ЛУ — А)щ в линейном нриближении но Таким образом, требуется найти статистическое распределение g t) в слабых полях. В соответствии с нашим обычным подходом, выделим сначала некоторый набор базисных динамических переменных Рп , от которых будет зависеть квазиравновесное распределение Qq t). Это позволит нам записать граничные условия для истинного неравновесного распределения ). Способ построения квазиравновесных распределений обсуждался в параграфе 2.1, поэтому мы не станем на нем подробно останавливаться. В данном случае удобно записать Qq t) в виде  [c.340]

Уравнения баланса для наблюдаемых РтУ не являются единственным способом описания релаксационных процессов. Например, в разделе 2.4.1 первого тома излагался проекционный метод Цванцига, который позволяет получить формально замкнутое уравнение для квазиравновесной части статистического оператора, соответствующей сокращенному описанию неравновесного состояния системы. Таким образом, метод Цванцига оперирует не со средними значениями динамических переменных, а с приведенными статистическими распределениями. Уравнения, описывающие эволюцию таких распределений, называются основными кинетическими уравнениями ).  [c.104]

Поскольку на кинетической и гидродинамической стадиях эволюции свойства неравновесной системы определяются одночастич-яой функцией распределения 1(я, р, t), то центральной задачей неравновесной статистической физики (физической кинетики) является вывод кинетических уравнений для различных систем, их решение и различные приложения. В нашем курсе эта задача решается методом функций распределения Боголюбова.  [c.101]

Приведенное затруднение устраняется, если учесть, что обращение направления скоростей всех атомов макроскопически удаляет систему от равновесного состояния, как наиболее вероятного. Временная эволюция газа в этом случае определяется не уравнением Больцмана, а другим кинетическим уравнением, которое, как и уравнение Больцмана, может быть получено методом неравновесных функций распределения Боголюбова. Этот вопрос, а также рещение парадокса возврата Цермело мы обсудим в следующем параграфе. А сейчас обратимся к статистическому выражению для энтропии неравновесной системы.  [c.123]


Первое рассмотрение задач статистической физики методом частичных функций распределения было осуществлено Ивоном [10]. Наиболее полное и плодотворное исследование с помощью функций распределения как для равновесных, так и для неравновесных систем (о чем подробно будет сказано ниже) осуществлено Н. Н. Боголюбовым [11]. В развитие этого направления большой вклад внесли также Борн, Грин [12] и Кирквуд [13]. Поэтому цепочка уравнений для частичных функций распределения получила название иерархии Боголюбова-Борна-Грина-Кирквуда-Ивона (ББГКИ иерархии).  [c.212]

Для детальной характеристики Ф. вводится функция распределения их вероятностей (см. также Статистической физика). Если флуктуирующая величина х описывает состояние системы в целом или к.-л. её макроскопич. части, то неравновесное состояние системы, связанное с появлением Ф., можно рассматривать как неполное статистич. равновесие с заданным значением рассматриваемой величины. Для изолированной системы вероятность w(x)dx величине х иметь значение в интервале между х и x+iJx пропорциональна соответствующему статистич. весу, а ф-ция распределения равна = Сехр 5(д )/ , где. S (.v) —энтропия неполного равновесия, характеризуемого точным значением флуктуирующей величины. Постоянная С находится из условия нормировки ф-ции распределения. Для неск. флуктуирующих макроскопич. величин Xj равновесная ф-ция распределения Ф. имеет вид  [c.326]

Энтропия в неравновесной статистической физике зависит от способа описания неравновесного состояния системы. Напр., неравновесное гидродинамич. состояние однокомпонентных газов и жидкостей определяется неоднородными распределениями ср. значений плотностей энергии <Я(д )> , числа частиц , т. е. плотностей интегралов движения. Динамические переменные Н х), п х), р(х) в классич. случае являются ф-циями координат и импульсов частиг1, а в кван. случае—соответствующими операторами. Операция усреднения <...) выполняется с неравновесной функцией распределения /(/ , q, t), удовлетворяющей Лиувы-пл.ч уравнению dfjdt— H, /] Я—гамильтониан системы, Н,  [c.617]

Даже само кинетическое уравнение представляет собой все еще весьма сложный объект. Следующий важный шаг в направлении упрощения описания систем заключается в исследовании медленна меняющихся прощссов. Речь идет о процессах, для которых играет роль лишь низко расположенная часть спектра кинетического уравнения вклады всех иныг частей спектра почти полностью успевают затухнуть. В гл. 13 мы видели, что такая часть спектра совпадает со спектром макроскопических гидродинамических уравнений. Следовательно, функция распределения В данном режиме всецело определяется пятью макроскопиче скими функциями (или полями), описываюш ими плотность, скорость и внутреннюю энергию. Для практических целей наиболее важен именно такой класс проблем неравновесной статистической механики. В этом случае уравнения становятся достаточно простыми и могут быть решены, если сильные нелинейные аффекты оказываются несущественными. Здесь были разработаны различные мощные приближения, позволяющее доводить расчеты до конкретных чисел и проводить сравнение с экспериментом, или, наоборот, определять молекулярные свойства из макроскопических измерений.  [c.351]

Несмотря на то что конечные цели равновесной и неравновесной теории различаются весьма сильно, математические методы, используемые в обеих областях, удивительно похожи. Мы старались подчеркнуть это сходство при нашем изложении, поскольку оно представляет собой общее специфическое свойство, придающее статистической механике в целом ее своеобразное неповторимое очарование. Для примера такого сходства назовем методы разложения в ряды, диаграммную технику, а также метод ренормировки и частичного суммирования. Несмотря на то что эти методы применялись к различным объектам, они обладают существенным структурным сходством. Именно по этим соображениям мы сначала решали большинство задач (точно или приближенно) для равновесного случая, а затем как бы повторяли эти решения (в соответствующих приближениях) для неравновесных случаев. Это было сделано, разумеется, далеко не случайно. В сущности, если говорить об основах, и равновесные, и неравновесные задачи сводятся к исследованию гамильтониана системы. Просто эта функция играет различную роль в двух теориях она определяет функцию распределения при равновесии, но она же порождает движение из состояния равновесия.  [c.352]


Смотреть страницы где упоминается термин Статистическое распределение неравновесное : [c.80]    [c.84]    [c.106]    [c.319]    [c.261]    [c.6]    [c.175]    [c.165]    [c.332]   
Статистическая механика неравновесных процессов Т.2 (2002) -- [ c.105 , c.107 ]



ПОИСК



Статистическое распределение

Теория возмущений для неравновесного статистического распределения



© 2025 Mash-xxl.info Реклама на сайте