Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поле магнитное направление

Парамагнетиками называются вещества, которые создают слабое магнитное поле, по направлению совпадающее с внешним полем.  [c.184]

Направление кругового движения электрона в магнитном поле противоположно направлению движения протона, потому что их заряды имеют противоположные знаки.  [c.128]

Из электромагнитной теории света вытекает непосредственно, что световые волны поперечны. Действительно, вся совокупность законов электромагнетизма и электромагнитной индукции, краткое математическое выражение которой заключено в уравнениях теории Максвелла, приводит к выводу, что изменение во времени электрической напряженности Е сопровождается появлением переменного магнитного поля Н, направленного перпендикулярно к вектору Е, и обратно. Такое переменное электромагнитное поле не остается неподвижным в пространстве, а распространяется со скоростью света вдоль линии, перпендикулярной к векторам и //, образуя электромагнитные, в частности световые, волны. Таким образом, три вектора Е, Н ц скорость распространения волнового фронта о взаимно перпендикулярны и составляют правовинтовую систему т. е. электромагнитная волна поперечна ).  [c.370]


Предположим, что образец прямоугольной формы, по которому течет ток с плотностью j, помещен в магнитное поле В, направленное перпендикулярно вектору j (рис. 7.30). Пусть носителями заряда являются электроны. Электрическое поле Q ускоряет электрон, и он приобретает дрейфовую скорость  [c.260]

Физическая природа диамагнетизма может быть понята на основе классической модели атома, в которой считается, что электроны движутся вокруг ядра по замкнутым орбитам. Каждая электронная орбита аналогична витку с током. Поведение витка с током в магнитном поле хорошо известно из теории электромагнетизма. Согласно закону Ленца, при изменении магнитного потока, пронизывающего контур с током, в контуре возникает э. д. с. индукции, в результате чего изменяется ток. Это приводит к появлению дополнительного магнитного момента, направленного так, чтобы противодействовать внешнему магнитному полю. Другими словами, индуцированный магнитный момент направлен против поля. В контуре, образуемом. движущимся по орбите электроном, в отличие от обычного витка с током сопротивление равно нулю. Вследствие этого, индуцированный магнитным полем ток сохраняется до тех пор, пока существует поле. Магнитный момент, связанный с этим током, и есть диамагнитный момент.  [c.322]

Сообщить электрически заряженным частицам большие скорости можно только с помощью электрического поля. Магнитное поле, как уже отмечалось, не изменяет величины скорости, так как сила, действующая со стороны этого поля, всегда нормальна к скорости частицы и поэтому изменяет лишь направление скорости. Если в ускорителях частиц применяется только электрическое поле, то движение частиц происходит по прямолинейным траекториям, вдоль которых на частицы действует ускоряющее электрическое поле. Применяя также и магнитное поле, можно заставить ускоряемые частицы двигаться по круговым (или близким к круговым) траекториям. Но по-прежнему для ускорения частиц необходимо применять электрическое поле, которое в этом случае должно действовать вдоль круговой траектории или отдельных ее участков. В соответствии с этим ускорители, в которых применяется только электрическое поле, называют линейными, а в которых применяется также и магнитное поле — циклическими.  [c.209]

Рис. 30.30. Анизотропия Ар/р Для монокристаллов 1п (а, [20]) (RRR=12 400 Т = 4,2 К В = 2,46 Тл ф — угол между магнитным полем и направлением в плоскости, перпендикулярной электрическому току через образец) и зависимости Др/р для In от магнитной индукции (б) в направлениях минимума и максимума угловой диаграммы а (см. п. 1, с. 738) Рис. 30.30. Анизотропия Ар/р Для монокристаллов 1п (а, [20]) (RRR=12 400 Т = 4,2 К В = 2,46 Тл ф — угол между <a href="/info/20176">магнитным полем</a> и направлением в плоскости, перпендикулярной электрическому току через образец) и зависимости Др/р для In от <a href="/info/11296">магнитной индукции</a> (б) в направлениях минимума и максимума угловой диаграммы а (см. п. 1, с. 738)

Пусть теперь в области однородного магнитного поля магнита С создано дополнительное магнитное поле, магнитный вектор Bj которого вращается в плоскости, перпендикулярной направлению Вд магнитного поля (рис. 76). Благодаря взаимодействию магнитного момента и дополнительного магнитного поля Bj возникает момент сил  [c.226]

Все вещества в природе являются магнетиками, т. е. обладают определенными магнитными свойствами и взаимодействуют с внешним магнитным полем. Магнитные свойства различных материалов объясняются движением электронов в атомах, а также тем, что электроны и атомы имеют постоянные магнитные моменты. Вращательное движение электронов вокруг ядер атомов аналогично действию некоторого контура электрического тока и создает магнитное поле. Магнитный момент, создаваемый магнитным полем, является векторной величиной, направлен от южного полюса к северному и  [c.22]

Сущность термомагнитной записи сводится к тому, что после локального нагрева участка среды сфокусированным лучом света до температуры, превышающей критическую (например, температуру Кюри), намагниченность этого участка под воздействием слабого магнитного поля изменяет направление на противоположное, что эквивалентно записи бита информации. Для считывания такой записи можно также использовать различные устройства, выполненные на основе магнитооптических эффектов.  [c.36]

На рис. 3-2 показано расположение векторов электрического и магнитного полей и направление движения энергии.  [c.37]

Кристаллографические направления [100 у железа и [///] у никеля называются направлениями легкого намагничивания, поскольку состояние магнитного насыщения вдоль этих направлений достигается в минимальных магнитных полях другие направления являются направлениями трудного намагничивания. Площадь, заключенная между направлениями трудного и легкого намагничивания (рис. 14 и 15) или разность между энергией трудного и легкого намагничивания называется энергией ма-  [c.27]

Источником магнетизма является спин электрона, который ведет себя подобно маленькому магниту, способному ориентироваться в локальном поле в направлении действия поля или противоположном направлении. Магнитный момент спина измеряется магнетонами Бора  [c.60]

Высокую магнитную твердость можно получить, создав столь тонкую структуру материала, что каждая частичка будет представлять собой отдельный домен такие частицы способны изменять намагниченность путем поворота вектора спонтанной намагниченности от направления легкого намагничивания, ближайшего к внешнему полю, к направлению этого намагничивающего поля.  [c.65]

Рассмотрим только эффект Холла. Если полупроводник, вдоль которого течет электрический ток, поместить в магнитное поле, перпендикулярное направлению тока, то в полупроводнике возникнет поперечное электрическое поле, перпендикулярное току и магнитному полю. Это явление получило название эффекта Холла, а возникающая поперечная ЭДС — ЭДС Холла.  [c.278]

Намагничивание при переменном поле. Если поместить в магнитное поле образец, то в нем появляется отличный от нуля результирующий магнитный момент. Исследования показывают, что это происходит вначале за счет роста объемов тех доменов, у которых магнитные моменты совпадают с направлением внешнего поля или близки к нему, при этом уменьшается объем доменов, намагниченных энергетически менее выгодно. Этот процесс идет путем смещения стенок доменов его сокращенно именуют процессом смещения. В более сильных полях намагничивание происходит за счет того, что магнитные моменты доменов поворачиваются в ту сторону, в которую направлено внешнее поле. Эти процессы именуются процессами вращения. В области очень сильных полей увеличение магнитной индукции практически не происходит, так как почти все моменты уже ориентированы по полю. Магнитная индукция, отвечающая этому состоянию материала, называется индукцией насыщения Bs- При дальнейшем возрастании внешнего поля намагничивание увеличивается слабо лишь за счет парамагнетизма. Если теперь уменьшать напряженность поля, то магнитные моменты доменов начнут поворачиваться в обратных направлениях, однако суммарный магнитный момент при Я О не обращается в нуль. В образце сохраняется преимущественная ориентация части магнитных моментов. Явление отстаивания изменений индукции от изменений напряженности поля называется гистерезисом. Петля гистерезиса устанавливается только после много-  [c.228]


Пусть нагреваемый предмет представляет собой двухслойный проводник, бесконечный в направлении ОУ и 02. Толщина первого слоя равна х . Второй простирается до бесконечности в направлении ОХ. На рис. 4-2 показано расположение векторов электрического и магнитного полей и направление движения энергии.  [c.62]

Так как магнитный момент орбиты направлен вдоль той же прямой, что и ее механический момент, то правила пространственного квантования распространяются и на него во внешнем магнитном поле магнитный момент может располагаться лишь под прерывным рядом углов к направлению внешнего поля, определяемых условием (5).  [c.37]

Если магнитное поле неоднородно, спираль будет уменьшиться или увеличиваться в зависимости от того, сильнее или слабее становится поле по направлению спирали. При более сильном поле поток заряженных частиц, движущихся по спирали, становится все плотнее и плотнее до тех пор, пока движение вдоль линий поля сначала не прекратится, а затем не поменяется направление его. Таким образом частица будет отражена .  [c.205]

Допустим теперь, что мы нашли способ нагрева плазмы до таких фантастических температур, но как удержать и стабилизировать термоядерную плазму хотя бы на время, необходимое для извлечения полезной энергии Звезды удерживают свою плазму силой своего собственного веса, и, в частности, такая сравнительно легкая звезда, как Солнце, имеет массу, в 332 000 раз превышающую массу Земли, а значит, и ее гравитационные силы намного больше земных. Очевидно, что в земных лабораториях невозможно получить подобные гравитационные силы для удержания термоядерной плазмы. К счастью, природа любезно предоставила другой, не менее эффективный способ хранения — диамагнетизм. Как известно, диамагнитное вещество выталкивается из более сильных областей магнитного поля по направлению к более слабым. Многие вещества, в том числе и такие, как стекло и вода, обладают некоторой степенью диамагнетизма даже в обычных условиях (правда, довольно незначительной). Наиболее ярко диамагнетизм проявляется, как ни странно, либо при самых низких, либо при самых высоких температурах. На самом деле этот факт вовсе не парадоксален, если обратиться к первопричине сильного диамагнетизма. Дело в том, что он является результатом крайне высокой электропроводности, приводящей к наличию сильных электрических токов, которые и создают магнитные поля, по своему действию противоположные внешнему магнитному полю. Правда, электропроводность металлов при температурах, близких к  [c.107]

При воздействии внешнего поля магнитные моменты доменов приобретают преимущественное ориентирование в направлении этого поля, и ферромагнитное вещество намагничивается.  [c.7]

Двойное лучепреломление в магнитном поле (явление Коттон— Мутона). Как показали опытные данные, под действием магнитного поля, перпергдикулярного направлению распространения света, на веш,естве наблюдается явление, аналогич юе эффекту Керра. Установлено, что в этом случае оптическая анизотропия среды выразится формулой  [c.294]

Получим этот результат из представлений электронной теории, а затем используем его для изучения изменения показателя преломления вблизи спектральной линии, расщепившейся на две компоненты в продольном магнитном поле. Это позволит истолковать эффект вращения плоскости поляризации вблизи линии поглощения. Хотя нас интересует расщепление линии поглощения, рассмотрим более простой случай — расщепление линии испускания. Рассчитаем, как изменится частота колебаний ш упруго связанного электрона при действии на него магнитного поля Явнеш. направленного вдоль оси Z. Положим Е = О, так как будет рассчитываться лишь изменение движения электрона при наложении внешнего магнитного поля  [c.166]

Отвлекаясь от трудностей при самых низких температурах, следует отметить, что церий-магниевый нитрат обладает рядом интересных свойств. С теоретической точки зрения он представляет единственное пзвестное в настоящее время вещество, магнитные свойства которого полностью, или почти полностью, определяются магнитным дииольным взаимодействием, поэтому подробные исследования его свойств при более низких температурах должны представлять значительный интерес. (В предварительных экспериментах, проведенных в Лейдене, было обнаружено отсутствие остаточного магнитного момента.) С экспериментальной точки зрения существенно, что очень низкие температуры могут быть получены при не очень больших значениях поля, а также что вплоть до весьма низ) их температур Т равно Т. Кроме того, благодаря значительной анизотропии после размагничивания можно включить поле в направлении тригональной оси без большого влияния на температуру. Однако церий-магниевый нитрат практически пеири-годен для исследований, в которых необходимо применять порошкообразные образцы или спрессованные блоки (например, если должен быть осуществлен хороший тепловой контакт с другими исследуемыми материалами). В этом случае между отдельными кристаллами возникают значительные разности температур, которые при самых низких температурах не успевают выравниваться в течение практически приемлемого иромен утка времени (см. п. 19).  [c.508]

Кроме того, ионные пучки в анализаторе фокусируются так, чтобы ионы одной и той же массы, обладающие несколько различающимися энергиями или направлениями движения, попадали в одно и то же место приемного устройства, которым в масс-спектрограс является фотопластинка. Один из многочисленных типов масс-спектрографов схематически изображен на рис. 2.4. Струя пара исследуемого элемента, входящая в отверстие 1 источника, ионизируется простреливающим ее электронным пучком 2. Образующиеся ионы ускоряются и кол лимируются диафрагмами 3. Анализатором служит секторное магнитное поле 4 направленное перпендикулярно плоскосги рисунка. В магнитном поле ионы имеющие приблизительно одинаковую энергию и различные массы, движутся по разным траекториям. Поэтому магнитное поле сортирует ионы по массам Магнитное поле специальной конфигурации — секторное магнитное поле — на ряду с сортировкой частиц по массам фокусирует ионы с одинаковой массой которые вылетают из источника под немного различающимися углами. В результате ионы одного и того же изотопа попадают в одно и то же место фотопластинки  [c.39]


Парамагнитные материалы отличаются тем, что, хотя их ато.мы и имеют магнитные. моменты, они неупорядочены, пока материал не находится в магнитном поле. Так, внешне парамагнетики проявляют себя как немагнитные материалы. Под действием магнитного поля магнитные моменты атомов этих материалов ориентируются в направлении внешнего магнитного поля и усиливают его. Магнитная восприимчивость парамагнетиков положительна, имеет значение от 10 до10 и не зависит от напряженности внешнего магнитного поля, но на нее значительно влияет температура. Относительная магнитная проницаемость парамагнетиков всегда больше единицы. К парамагнетикам относят кислород, некоторые металлы (например, А1, Сг, N3, Mg, Та, Р1, W), их оксиды (например, СаО, СгаОз, СиО).  [c.24]

Ферромагнитные материалы с широкой петлей гистерезиса ( 17.1), именуемые магнитнотвердыми, обладают весьма большой коэрцитивной силой, что связано с их структурными особенностями. При рассмотрении условий намагничивания отмечалось, что ряд факторов — наличие внутренних напряжений, искажений решетки и включений препятствует смещению границ между доменами, что сказывается в появлении высокой коэрцитивной силы. Однако исключительно высокие значения Яс, получаемые для некоторых сплавов, уже нельзя объяснить влиянием указанных факторов. Для сплавов с коэрцитивной силой свыше 40 ООО ajM допускают возможность образования в процессе охлаждения изолированных намагниченных частиц — доменов, расположенных среди слабомагнитной фазы процессы смещения в таких материалах затруднены и их перемагничи-вание возможно только с помощью процесса вращения. Исследования показывают, что достаточно небольшого количества изолированных намагниченных частиц, чтобы материал имел весьма высокую коэрцитивную силу. В некоторых сплавах этого типа охлаждение ведется в магнитном поле, магнитные моменты в изолированных доменах оказываются ориентированными по направлениям, близким к направлению магнитного поля. Получены сплавы не только с магнитной, но и с кристаллической текстурой.  [c.261]

При полюсном намагничивании деталей и контроле способом остаточной намагниченности величина последней может быть значительно меньше требуемого из-за саморазмагничива-юш,его поля полюсов детали. Поэтому при контроле способом приложенного поля внешнее намагничиваюш,ее поле должно быть таким, чтобы оно могло компенсировать магнитное поле полюсов. При намагничивании постоянным магнитным полем при медленном его уменьшении и контроле способом остаточной намагниченности можно проверять детали с удлинением не менее 25 (под удлинением здесь понимается отношение наибольших размеров детали в направлении намагничивания и в перпендикулярном ему направлении). При намагничивании деталей переменным и импульсным токами (или при быстром выключении постоянного тока) удлинение может составлять не менее 3—5 за счет того, что намагничивается только поверхностный слой 1 и при выключении намагничивающего поля магнитные линии поверхностной части детали могут замыкаться через внутреннюю часть 2 детали, создавая как бы замкнутую магнитную цепь (рис. 12). Амплитуда намагничивающего поля должна быть такой, чтобы поверхностный слой был намагничен до насыщения, а время уменьшения намагничивающего поля от максимального значения до нуля не должно превышать 5-10-= с.  [c.36]

Статистика показывает, что 80 % всех дефектов (типа плен, царапин, строчечных неметаллических включений, вкатаной окалины и т. п.) вытянуты вдоль направления прокатки и движения полосы. Наилучшие условия для их выявления (образование максимальных магнитных полей дефектов и их градиентов) достигаются при контроле в приложенном поле, имеющем направление, поперечное вытянутости  [c.51]

В зависимости от знака и величины магнитной восприимчивости марнетики подразделяются на три группы. В том случае, если b ktqp намагниченности направлен противоположно полю Н и магнитная восприимчивость — величина отрицательная, то вещество диамагнитно. Физическая природа диамагнетизма вытекает из представления об электроне, движущемся вокруг ядра. Угловая скорость движения электрона и магнитный момент изменяются под действием магнитного поля, ориентированного перпендикулярно плоскости вращения электрона. В этом случае электрон представляет собой как бы небольшую индуктивность, в которой в соответствии с правилом Ленца возникает э. д. с., противодействующая приложенному полю. Магнитная восприимчивость серебра 3,7 -10-5, меди 0,95-10- титана 3,2[Л. 43]. К числу наиболее интересных диамагнетиков относятся сверхпроводники,  [c.9]

Сверхпроводимость может быть разрушена также магнитным полем, что непосредственно вытекает из существования / р. В самом деле, при помещении сверхпроводника в магнитное поле В в поверхностном слое наводится незатухающий ток, создающий в объе-еме проводника поле Вв , направленное противоположно В и компенсирующее его. При увеличении В растет плотность тока в сверхпроводнике и компенсирующее поле В а- Однако при некотором значении В р, называемом критическим полем, наведенный в сверхпроводнике ток достигает критической величины и сверхпроводимость разрушается. При повышении температуры сверхпроводника В р понижается. Согласгю теории БКШ это понижение описывается следующим соотношением  [c.201]

Физический принцип, лежащий в основе магнитной памяти , состоит в следующем. Предположим, что феррит с прямоугольной петлей намагничен ДО шах полем Я, направленным слева направо (рис. 11.17). Приуменьшении этого поля до нуля намагниченность падает до Bf, которая для прямоугольной петли гистерезиса мало отличается от 5п,ах- При изменении направления поля //.на противоположное намагниченность сохраняется почти неизменной вплоть до Я = — Н,.. При Я = — Яд намагниченность скачкообразно меняет знак на обратный, достигая при этом почти предельного значения —Bmaxi мало меняющегося при дальнейшем росте Я. Если теперь это поле уменьшать, то при Я = О намагниченность феррита окажется равной — В . Таким образом, напряженности внешнего поля Я = О феррит может находиться в двух устойчивых состояниях с В = -Вг к В = — В,- в зависимости от предыстории своего намагничивания. На этом свойстве ферритов помнить предшествующее состояние намагничивания и основывается действие магнитных запоминающих устройств.  [c.303]

В ферромагнетиках, в отличие от парамагнитных тел, между неспаренными электронами внутренних недостроенных оболочек имеет место сильное обменное взаимодействие, вызывающее упорядоченное расположение их СПИновых магнитных моментов и спонтанное намагничивание доменов до насыщения Это приводит к существенным особенностям в протекании резонансного поглощения высокочастотной энергии ферромагнетиками, которое называют ферромагнитным резонансом. Физическая суть его состоит е том, что под действием внешнего магнитного поля Нд, намагничивающего ферромагнетик до насыщения, полный магнитный момент образца М начинает прецессировать вокруг этого поля с ларморовой частотой ojl, зависящей от Яо (11.25). Если на такой образец наложить высокочастотное электромагнитное поле, перпендикулярное Яо, и изменять его частоту ш, то при ю = i. наступает резкое (резонансное) усиление поглощения энергии поля. Резонанс наблюдается на частотах порядка 20-Г-30 ГГц в полях 4- 10 -А/м (л 5000 Э). Поглощение при этом на несколько порядкоз выше, чем при парамагнитном резонансе, так как магнитная восприимчивость ферромагнетиков (а следовательно, и магнитный момент насыщения М) у них много выше, чем у парамагнетиков. Кроме того, так как в формировании эффективного магнитного поля в ферромагнетиках участвуют размагничивающий фактор и поле магнитной анизотропии, то частота ферромагнитного резонанса оказывается зависящей от формы образца.и,направления поля относительно осей легкого намагничивания.  [c.306]


Намагничивающее поле Н, направленное параллельно граничной плоскости образца, создает на зубчатых стенках диполя магнитные заряды . Поверхностную плотность этих зарядов по глубине /г предполагаем одинаковой (0 = onst). В этом случае расчет магнитного поля зубчатого диполя (дефекта) сводится к вычислению магнитного поля по всем верхним и нижним граням зубцов и впадин.  [c.64]

Рассмотрим схему измерения магнитных характеристик образца методом угловых колебаний (рис. 1). Стержневой цилиндрический образец 1 с постоянным сечением по длине ориентирован длинной осью вдоль однородного намагничивающего поля Не, направленного по оси ох. Измерительные катушки 2 AB D и A B D ) расположены симметрично относительно образца так, что плоскости их витков параллельны плоскости координат XOZ. Витки измерительных катушек намотаны соответственно по контурам AB D и A B D и включены соглас-  [c.157]

Коэффициент отфильтровывания загрязняющих частиц в магнитных сепараторах зависит от напряженности магнитного поля, скорости течения рабочей жидкости, ее вязкости, расположения силовых полей относительно направления потока жидкости и др.  [c.232]


Смотреть страницы где упоминается термин Поле магнитное направление : [c.308]    [c.262]    [c.109]    [c.272]    [c.411]    [c.737]    [c.866]    [c.1055]    [c.10]    [c.335]    [c.271]    [c.295]    [c.204]    [c.97]   
Справочник по элементарной физике (1960) -- [ c.13 , c.206 ]



ПОИСК



Графический способ построения конфигурации границ магнитного поля, обладающего идеальной фокусировкой ионных пучков по направлению

Магнитное поле — Действие на проводник с током 449 — Направление Определение

Направление поля сил

Ориентационная дисперсия Поворот направления линейной поляризации в магнитном поле (эффект Фарадея)

Поле магнитное

Поле направлении

Поля магнитные



© 2025 Mash-xxl.info Реклама на сайте