Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерительные Погрешности

Точность позиционирования бц определяется погрешностью датчика обратной связи, погрешностью задания программы, зазорами в кинематических передачах, силовой погрешностью (из-за влияния сил трения без смазки), нестабильностью параметров системы, нелинейностью статических характеристик элементов системы управления и т. д. Погрешность задания программы 63 и измерительная погрешность датчика положения 8 выбираются примерно на порядок меньше заданной величины погрешности позиционирования.  [c.108]


Определение условной высоты небольших дефектов связано с большими измерительными погрешностями и практически не дает новой информации об их величине по сравнению с измерением амплитуды, поэтому ее целесообразно измерять только из опасения не пропустить какой-либо крупный плоскостной дефект со слабой отражательной способностью (вертикальную трещину).  [c.178]

Нужно отметить, что определение условной высоты небольших дефектов, значительно меньших, чем размеры пьезоэлемента, связано с большими измерительными погрешностями и практически не дает новой информации о величине дефекта по сравнению с измерением амплитуды. Однако условную высоту всегда целесообразно измерять дополнительно к амплитуде, чтобы не пропустить какой-либо крупный плоскостной дефект (трещину) со слабой отражательной способностью.  [c.139]

Величины этих погрешностей определяют путем проверки станка в ненагруженном состоянии, при неподвижном положении его частей и при медленном их перемещении от руки. Проверку производят при помощи приспособлений с индикаторами, измерительных приборов, точных линеек, уровней и других средств измерения.  [c.48]

Погрешность базирования возникает вследствие несовмещения установочной базы с измерительной. Эта погрешность определяется величиной колебания (т. е. разностью) предельных (наибольшего и наименьшего) расстояний измерительной базы от режущей кромки, установленного на размер инструмента.  [c.51]

Погрешность закрепления равна разности между предельными (наибольшей и наименьшей) величинами смещения измерительной базы по направлению выполняемого размера.  [c.52]

При обработке методом автоматического получения заданных размеров (т. е. при обработке на станках, настроенных на размер) погрешность базирования, как уже сказано, возникает в тех случаях, когда установочная база не совмещена с измерительной.  [c.52]

При совмещении установочной и измерительной баз погрешность базирования равна нулю (ё6=0), поэтому следует, если возможно, принимать в качестве установочной базы поверхность, которая является в то же время измерительной базой, т. е. ту поверхность, от которой должен быть выдержан заданный размер и от которой производится измерение.  [c.52]

Погрешность базирования отсутствует также при обработке на станках, не настроенных на размер (т. е. при обработке методом пробных проходов), так как положение режущей кромки относительно установочной базы регулирует рабочий путем взятия пробных стружек и промеров от измерительной базы для каждой отдельной обрабатываемой детали.  [c.52]


По схеме установки на плоскую поверхность, изображенной на рис. 11, погрешность базирования по отношению к размеру L равна нулю (е<5л = 0), так как базы измерительная и установочная совмещены (Л—Л). Погрешность базирования по отношению к размеру К имеет место, так как установочная (Л—Л) и измерительная (В—3)  [c.52]

При установке детали базовым отверстием на цилиндрическую поверхность (палец) (рис. 12) следует учитывать смещение измерительной базы в направлении выдерживаемого размера. При посадке на разжимной палец, т. е. без зазора, погрешность базирования по отношению к размеру L выражается величиной половины допуска б на диаметр О заготовки е = 8/2. При посадке на жесткий палец с зазором погрешность базирования будет больше на величину предельного колебания диаметрального зазора Д3 и в этом случае выразится величиной е д = (6/2) - - Д3.  [c.53]

Величину погрешности базирования при несовмещении установочной базы с измерительной можно определить путем, расчета, исходя из геометрических зависимостей элементов схемы установки, принятой для базирования детали.  [c.53]

При обработке того же валика (рис. 14) в центрах, но с плавающим передним центром установочная и измерительная базы совмещаются, так как положение левого торца валиков всей партии определяется упором и остается постоянным относительно резцов, установленных на размеры АГ и Следовательно, в этом случае погрешность базирования ее = 0.  [c.55]

Общую суммарную погрешность можно определить экспериментально, пользуясь точными измерительными приборами можно также установить влияние некоторых факторов, порождающих погрешности, и определить их числовые значения. Но теоретически (путем расчета) определить влияние каждого фактора (при их совместном действии) затруднительно. Поэтому расчеты по предлагаемым многими авторами формулам для определения суммарной погрешности не совпадают с экспериментальными данными. Анализ показывает, что в формулах не учитывается ряд факторов, вызывающих погрешности в процессе обработки, что, разумеется, и отражается на общей величине суммарной погрешности. В этом одна из причин расхождения данных,  [c.62]

Целью контроля зубчатых колес помимо проверки их как готовой продукции является также определение погрешностей зуборезных и других станков, на которых производится обработка зубчатых колес, и выявление состояния применяемого для обработки режущего и измерительного инструмента.  [c.333]

Измерительными приборами при проведении испытаний но ГОСТ 17.2.2.03—77 являются газоанализатор, основанный на любом принципе определения концентраций окиси углерода, и тахометр. Измерительный прибор должен и.меть шкалу, отградуированную в процентах объемных долей СО от 0 до 5 или от 0 до 12, погрешность измерений переносного газоанализатора не должна превышать 1,5% от верхнего предела по шкале, стационарного — не более 2.5%. Постоянная времени прибора не должна быть более 20 с. Погрешность определения частоты вращения вала двигателя — не более 2,5%.  [c.31]

Погрешности установки и базирования заготовок. Кроме указанных ранее погрешностей базирования, порождаемых несовпадением установочной и конструкторской (или измерительной) баз, могут возникнуть смещения или деформации заготовки под действием сил зажима. В этом случае большое значение имеет правильный выбор опорных поверхностей, точек приложения сил зажима и жесткости приспособления.  [c.59]

Геометрическую погрешность станка Aj = 30 мкм погрешность базирования Лг = О (вследствие совпадения измерительной и установочной баз) погрешность закрепления Да = 20 мкм погрешность изготовления приспособления Л4 = 20 мкм погрешность изготовления инструмента = О (предполагаем что настройку на размер ведут по наиболее выступающему зубу фрезы, а следовательно, биение зубьев не влияет на контролируемый параметр) погрешность настройки фрезы на размер Д, = 40 мкм погрешность, связанная с размерным износом инструмента. Л, = О (считаем, что ее можно компенсировать поднастройкой фрезы) погрешность измерений Дв = 90 мкм погрешность, вызванная отжатием фрезы от заготовки под действием сил резания, Ад = 30 мкм.  [c.72]


Под погрешностью позиционирования понимается отклонение положения рабочего органа ПР от заданного управляющей программой. Поскольку ПР, как правило, не имеют явно выраженной измерительной системы и программируются методом обучения, в большинстве случаев погрешность измеряется повторяемостью прихода звена робота в заданную точку в течение ряда циклов.  [c.213]

Действительный размер (О , й() — размер, установленный измерением с допустимой погрешностью. Погрешность измерения, а следовательно, и выбор измерительных средств необходимо согласовывать с той точностью, которая требуется от данного размера. Это объясняется тем, что измерения высокой точности, с малыми погрешностями, выполняются сложными приборами, обходятся дорого и не всегда технически целесообразны. Например, поверхность буртика 025 у вала 14 может быть обработана и измерена со значительно меньшей точностью, чем сопрягаемые поверхности 0 22 того же вала.  [c.37]

Точные измерения необходимо выполнять в помещениях при температуре 20° G. В момент измерения объекты измерения и измерительные средства должны иметь одинаковую температуру и предохраняться от местного нагрева. Погрешность измерения А/ (мм), вызванная отклонениями от нормальной температуры и разностью коэффициентов линейного расширения материалов детали и измерительного средства, вычисляют по формуле  [c.79]

Погрешность измерения углов и конусов зависит от точности применяемых измерительных средств, выбранного метода измерения, точности формы поверхностей измеряемых деталей, длины сторон, проверяемых углов, опыта контролера и пр.  [c.175]

Погрешности определяют отдельно для каждого зуба. В начале измерения зубчатое колесо поворачивают так, чтобы измерительный наконечник рычага соприкасался с основанием боковой поверхности измеряемого зуба, а стрелку индикатора устанавливают на нуль. Затем ходовым винтом сообщают каретке поступательное, а диску и зубчатому колесу вращательное движение. При этом измерительный наконечник начинает скользить по боковой поверхности зуба до выходя из зацепления с ним, но занимает все время вертикальное положение. Лишь погрешности боковой эвольвентной поверхности зуба вызывают небольшие угловые повороты рычага и соответствующие отклонения стрелки индикатора. Погрешности можно считывать со шкалы индикатора или фиксировать самописцем на диаграмме.  [c.213]

Выбор измерительного средства в зависимости от допуска размера объекта измерения определяется тем, какой процент негодных деталей можно пропустить как годные и какой процент деталей допустимо неправильно забраковать. Чем больше отношение погрешности измерений к допуску и чем больше отношение допуска к значению технологического разброса, тем большее число деталей будет неправильно забраковано или неправильно признано годными.  [c.64]

Выбираем измерительные средства уточненным методом. По табл. П28 в интервале размеров 80. .. 120 мм для седьмого квалитета находим погрешность измерения Д , = 10 мкм. Затем по табл. 5.2 по найденному значению Дм и заданному диаметру определяем, что для контроля вала может быть применен микрометр.  [c.68]

Рассмотрите следующие показатели нормы кинематической точности а) накопленная погрешность к шагов и накопленная погрешность шага по зубчатому колесу б) радиальное биение зубчатого венца и погрешность обката в) колебание длины общей нормали г) колебание измерительного межосевого расстояния.  [c.177]

Рассмотрите следующие показатели плавности работы зубчатых колес а) циклическая погрешность и местная кинематическая погрешность зубчатого колеса б) отклонения окружного и основного шага в) колебание измерительного межосевого расстояния на одном зубе и погрешность профиля зуба.  [c.177]

У зубчатых колес и червяков контролируют показатели кинематической точности - измеряют кинематическую погрешность, разность шагов и накопленную погрешность шага по колесу определяют колебания измерительного межосевого расстояния, радиальное биение зубчатого венца  [c.186]

Источником погрешностей, вносимых упругими измерительными элементами, является несовершенство упругих свойств материалов, характеризующееся упругим последействием и упругим гистерезисом.  [c.462]

Нормы кинематической точности и плавности даются по нескольким показателям например, нормы кинематической точности — по кинематической погрешности, накопленной погрешности окружного шага и др. нормы плавности — по циклической погрепшости и др. Те или иные показатели используют в зависимости от наличия измерительных средств и удобства измерений.  [c.164]

С учетом методологических и измерительных погрешностей можно полагать, что общая ошибка определения указанных характеристик Ps и Ря не превышала 20 %. Помимо этого следует заметить, что используемый нами экспериментальный материал, представленный реализациями векторов Ряа(Я ), /=1,. . ., п) и s , а= Р5с, a( i) , содержит значительные случайные компоненты (нерегулярные составляющие). Последние обусловлены флуктуа-  [c.190]

Номинальные размеры у изготовляемой детали абсолютно точно получить невозможно. Это объясняется различными причинами изнашиванием частей (деталей) механизмов станков и режуи1их кромок инструментов, деформацией самой детали при ее обработке, погрешностью измерительных инструментов, изменением температуры воздуха и др.  [c.176]

Измерение (контроль) всех основных элементов колеса—процесс чрезвычайно трудоемкий. Кроме того, даже измерив погрешности элементов, невозможно в нужной мере достоверно судить о совокупном влиянии этих погрешностей на качество зацепления. Представление об этом дают лишь комплексные методы контроля, основанные на оценке результатов зацепления проверяемого колеса с эталонным колесом измерительного прибора. Поэтому стандартами (ГОСТ 1.643—56идр.) нормируются не допуски на элементы колеса, а допуски на разные показатели комплексной проверки (кинематическая погрешность циклическая погрешность б/г, пятно контакта при контроле по краске и боковой зазор) по 12 степеням точности (1-я степень — высшая).  [c.335]


При выОоре измерительных средсть необходимо установить значения допустимой погрешности измерения, а также определить положение приемочных гра шц, т. е. определить значения размеров изделий, по которым должна производиться их приемка,  [c.115]

Установленные стандартом погрегчностн измерения являются наибольшими, которгле можно допускать прн измерении они включают как случайные, лак и неучтенные систематические погрешности измерения погреннюстн измерительных средств, установочных мер, базирования, температурных деформаций и т. д.).  [c.115]

Для точного измерения отверстий небольших размеров (от 1,5 до 200 мм) выпускают индикаторные нутромеры новышешюй точности с шариковыми наконечниками и сменными измерительпымн головками на разные пределы измерения. Установка измерительной головки нутромера на нуль и сам процесс измерения осуществляются так же, как в индикаторных нутромерах. Цена деления для разных моделей нутромеров повышенной точности — 0,001 0,002 мм пределы измерений от 1,5—2 до 160—260 мм, глубина измерений от 8 до 300 м.м, допускаемая погрешность от 0,003 до 0,006 мм.  [c.123]

При совместном вращении зубчатых колес погрешности проверяемого зубчатого клеса вызывают изменения измерительного межосевого расстояния а, которые можно определить по шкале индикатора I или фиксировать на диаграмме, для чего устанавливают индуктивный датчик и самописец. Номинальное межоссвое расстояние а устанавливают по набору концевых мер или с помощью специальных дисков, насаживаемых на оправки. На подвижной каретке можно монтировать сменные узлы и приспосабливать прибор для контроля конических (рис. 17.1, 6 ), винтовых или червячных колес, червяков, а также зубчатых колес с внутренним зацеплением.  [c.210]

Шагомеры для проверки шага зацепления (основного шага) Погрешности шага зацепления оказывают значительное влияние на плавность работы передач и на полноту контакта зубьев. Для проверки шага зацепления применяют специальные приборы — шагомеры, которые по виду контакта с измеряемыми поверхностями подразделяют на шагомеры с плоскими (тангенциальными) и кромочными измерительными наконечниками. Основное применение имеют шагомеры о тангенциальными (плоскими) наконечниками (рис. 17.2). Шаг зацепления измеряют неподвижным наконечником 1 и подвижным 2. Номинальное значение шага зацепления между измерительными плоскостями наконечников 7 и 2 устанавливают по блоку илоскопараллель-ных концевых мер или по эталону, передвигая с помощью винта 3 подвижную планку 4. К планке 4 наконечник 2 прикреплен шарнирно. Винты 5 фиксируют планку 4. Упор 6 совместно с неподвижным наконечником 1 служит для установки и фиксации прибора На зубчатом колесе. Погрешности шага зацепления вызывают повороты подвижного наконечника 2, которые передаются стрелке индикатора.  [c.211]

Измерение длины общей нормали. Измерением длины общей нормали по колесу Х 1 (см. рис. 16.2, г) можно выявить погрешность обката, зависящую от неточности делительной червячной пары зубо-обрабатывающих станков. Среднее значение длины общей нормали характеризует смещение исходного контура Анг- Длину общей нормали можно проверять (для повышения точности измерений) штангенциркулем, микрометром с тарельчатыми наконечниками (рис. 17.5, а) или нормалемерами (рис. 17.5, б). Нормалемер состоит из полой штанги /, на которую насажена разрезная втулка 2, имеющая ) естко закрепленную измерительную губку 3. В корпусе б установлена подвижная губка 4, которая может совершать небольшие по-  [c.213]

Толщину зуба по постоянной хорде можно измерять штангензубо-мером, имеющим две шкалы (рис. 17.7, а). По шкале / определяют высоту Нс, а по шкале 7 — длину постоянной хорды 5о. Перед измерением хорды (рис. 17.7) упор 4 устанавливают по шкале / и по нониусу 2 на размер Нс и закрепляют в этом положении. Принцип измерения длины хорды 5с показан на рис. 17.7, б. Размер хорды отсчитывают по шкале 7 и нониусу 6. Штангензубомеры выпускают двух типоразмеров для измерения зубчатых колес с модулем от 1 до 18 и 01 5 до 36 мм. Штангензубомеры обеспечивают точность отсчета до 0,02 мм. К их недостаткам относятся низкая точность измерения, быстрый износ кромок измерительных губок <3 и 5, влияние на результаты измерения погрешностей установки упора 4 и диаметра окружности выступов,  [c.215]

И D i ЯВЛЯЮТСЯ номинальными размерами калибров-пробок предельные размеры валов и номинальными размерами калибров-скоб TD и Trf-поля допусков проверяемых изделий Н и допуски на изготовление калибров-пробок соответственно с цилиндрическими и сферическими измерительными поверхностями Hj-допуск на изготовление кали-бров-скоб //р-допуск на изготовление контрольных калибров для контроля калибров-скоб 7-отклонение середины поля допуска на изготовление проходного калибра-пробки относительно контролируемого отверстия z/-отклонение середины поля допуска на изготовление проходного калибра-скоб1ы относительно контролируемого вала у и /-допустимый выход размера соответственно изношенного калибра-пробки или изношенного калибра-скобы за границу поля допуска контролируемого изделия а и а/-величины для компенсации погрешности контроля калибрами соответственно отверстий и валов при номинальных размерах свыше 180 мм.  [c.57]

Для предварительного (ориентировочного) выбора погрешности измерения в зависимости от допуска изделия можно пользоваться табл. П28. Ориентировочные погрешности измерения применимы к условиям измерения с участием оператора и при использовании универсальных измерительных средств. Для специальных, узкого назначения, измерительных средств и автоматических измерительных устройств табличную погрешность измерения, начиная с шестого кналитега, следует уменьшать в 1,5. .. 2 раза (СТ СЭВ 303-76).  [c.65]

Измерение зубчатых колес при помощи двух роликов В две диаметрально расположенные впадины проверяемого колеса помещают ролики расстояние Л/т между крайними точками их цилиндрических поверхностей измеряют микрометрами. По размеру Мт вычисляют толш ину зуба. Этот метод не требует специальных измерительных средств на точность измерения не влияют погрешности окружности вершин зубьев.  [c.187]

Специфический для германиевых термометров сопротивления эффект возникает вследствие довольно высокого значения коэффициента Пельтье для легированного германия. Он проявляется в том, что сопротивление элемента по постоянному и по переменному току различно [53, 54]. Прохождение постоянного тока через германиевый термометр сопротивления приводит к возникновению градиента температуры вдоль элемента вследствие выделения и поглощения тепла Пельтье на спаях элемента с выводами. Наличие градиента температуры вызывает появление небольшой термо-э. д. с. на потенциальных выводах, что приводит к некоторой погрешности в измерении сопротивления. Если же используется не постоянный, а переменный ток частоты f, то от каждого конца элемента распространяются затухающие тепловые волны. Затухание носит экспоненциальный характер, причем показатель экспоненты пропорционален Уf, так что по мере возрастания частоты тепловые волны все больше сосредоточиваются у концов элемента. Для четырехпроводных элементов в форме моста этот эффект исчезает, когда частота измерительного тока поднимается до такого значения, что тепловые волны перестают достигать потенциальных выводов. В этом случае на потенциальных выводах измеряется истинное сопротивление. Частота, на которой это происходит, зависит от температуропроводности и  [c.237]



Смотреть страницы где упоминается термин Измерительные Погрешности : [c.55]    [c.108]    [c.114]    [c.116]    [c.127]    [c.190]    [c.118]   
Машиностроение Энциклопедический справочник Раздел 3 Том 5 (1947) -- [ c.172 ]



ПОИСК



314, 315, 316 — Измерительный межосевой угол — Нормы колебаний и отклонений 314 — Предельные погрешности межосевого угл

591—593 — Значение полей рассеяния погрешностей изготовления 605 — Измерительный стенд для контроля 632 — Карта контроля 633 — Конструкции прихватов 593 — Размерный ряд 597 — Расчет

591—593 — Значение полей рассеяния погрешностей изготовления 605 — Измерительный стенд для контроля 632 — Карта контроля 633 — Конструкции прихватов 593 — Размерный ряд 597 — Расчет погрешностей базирования заготовок

Динамические измерения и погрешности детерминированных линейных измерительных цепей

Измерительные инструменты и приборы Цейсса - Погрешности предельные

Измерительные машины — Измерение длин — Погрешности предельные

Измерительные системы без устройств компенсации погрешностей

Измерительные схемы и их погрешности

Измерительный инструмент для больших размеров — Погрешности предельны

Классификация измерительных средств и методов измерений — Погрешности измерений

Линейки — Поверхности измерительные — Чистота заданный угол — Погрешности 477 — Элементы — Отклонения допускаемые

Моржаков. Методы устранения погрешностей измерительных устройств балансировочных машин

Основы. Измерительные электроды и антенны. Емкостные измерительные приборы. Основные методы. Источники погрешностей

Оценка погрешностей измерительных систем при технических измерениях

Погрешности длиномеров оптических допустимые измерительных машин допустимы

Погрешности длиномеров оптических допустимые предельные измерительных инструментов для больших размеров

Погрешности прибора по характеристикам измерительных звеньев

Погрешности — Схемы, измерения, измерительные приборы

Погрешности — Схемы, измерения, измерительные приборы приспособления

Погрешности, вызываемые измерительными поверхностями

Погрешность вследствии нагрева измерительным

Погрешность измерительного прибора, абсолютная 120, динамическая

Погрешность измерительной системы

Погрешность элементов измерительной системы

Расчет погрешностей прибора по характеристикам измерительных звеньев

Расчет погрешности и конструирование пружинных измерительных приборов

Расчет погрешности измерительной системы



© 2025 Mash-xxl.info Реклама на сайте