Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Среда промежуточная

В машинах весьма часто необходимо передавать механическую энергию между валами, вращающимися с различными и переменными в процессе работы угловыми скоростями. Такая задача может быть решена с помощью гидродинамической передачи, где нет непосредственного контакта между ведущим и ведомым звеном,- а движение передается через промежуточную среду. Промежуточной средой служит капельная жидкость.  [c.290]


Удобно ввести следующую классификацию свойств излучающей среды, различая оптически толстую среду, промежуточный случай и оптически тонкую среду [18].  [c.205]

Испаритель высокого давления имеет простую конструкцию и работает надежно ввиду ограниченной температуры греющей среды (промежуточного теплоносителя).  [c.537]

Сварку под водой считают сухой, если свариваемые узлы и сварщик находятся в газовой среде, промежуточной, когда осушается только зона, в которой горит дуга и небольшое пространство вокруг нее, а водолаз находится в воде, и мокрой, когда свариваемое изделие, дуга и сварщик находятся в воде. Наиболее распространен способ мокрой сварки штучными электродами и самозащитными порошковыми проволоками.  [c.389]

В больщинстве случаев облицовочный слой из нержавеющих аустенитных сталей целесообразно сваривать присадочными материалами аналогичного состава. Это относится к верхнему слою сварного шва, обращенному к коррозионной среде. Промежуточные слои, наплавляемые  [c.198]

В теплообменниках с промежуточным теплоносителем теплота от греющей среды к нагреваемой переносится потоком мелкодисперсного материала или жидкости. В ряде случаев промежуточный теплоноситель при работе меняет агрегатное состояние.  [c.105]

Среди точек линии пересечения различают опорные (см. 5.4) и промежуточные. Опорные точки определяют пределы расположения и границы видимости линии пересечения относительно плоскостей проекций. Любые точки линии пересечения располагаются в пределах общей площади одноименных проекций пересекающихся поверхностей, называемой площадью наложения (на рис. 93 заштрихована). Каждую точку линии пересечения строят на всех необходимых проекциях и только после этого приступают к определению следующей точки.  [c.46]

Согласно уравнениям теплового баланса расход промежуточного теплоносителя можно определить по выражению (потери тепла в окружающую среду учитываются  [c.362]

К положительным особенностям аппаратов с дисперсным теплоносителем следует отнести дешевизну, а также простоту производства как твердого компонента, так и всего теплообменника в целом высокую (по сравнению с газовыми теплообменниками) интенсивность теплообмена и компактность возможность ликвидации затрат металла на изготовление поверхности нагрева достижимость высоких температур непрерывность действия даже при смене поверхности нагрева (насадки) и пр. Наряду с этим следует отметить, что теплообменники с промежуточным дисперсным теплоносителем нуждаются в системе транспорта насадки, отсутствующей в обычных теплообменниках. Это, а также снижение среднего температурного напора, дополнительные требования к материалу насадки (термостойкость, износостойкость и др.), борьба с перетечками одной среды в другую и прочие факторы следует учесть при итоговой оценке эффективности теплообменника.  [c.367]


Теплообмен всего дисперсного потока с поверхностью нагрева реализуется в тех случаях, когда одна из сред находится под повышенным давлением, когда необходим теплообмен без прямого контакта охлаждающей (греющей) среды и дисперсного материала либо при теплоотводе от тел с внутренним источником тепла. Часто дисперсный поток является промежуточным теплоносителем. Исключение — одноконтурные схемы атомных установок с пропуском запыленных потоков через турбину [Л. 380] либо технологические установки, в которых дисперсный поток является непосредственно греющим (охлаждаемым) веществом, В ряде случаев при разработке пароперегревателей, регенераторов газотурбинных и т. п. установок целесообразно выполнять камеру нагрева насадки по регенеративному принципу (рис.  [c.385]

Если продувать горячий воздух сквозь слой, состоящий из мелких частиц (обычно корундовые диаметром 200—500 мкм), то такой слой кипит , превращаясь как бы в жидкость. В него можно погружать изделия, и он будет средой нагрева, если имеет высокую температуру. Последнее достигается продуванием сквозь него горячего воздуха. Вместо воздуха можно использовать и другие среды, в том числе нейтральные. Кипящий слой — универсальная среда, которая может служить, например, закалочной средой (естественно, продуваемый воздух в этом случае холодный). Интенсивность охлаждения кипящего слоя занимает промежуточное положение между водой и маслом. Используя вместо воздуха разные активные среды, в нем можно производить разные операции химикотермической обработки — цементацию, азотирование и т. д.  [c.290]

Анодно-механическая обработка основана на сочетании электротермических и электромеханических процессов и занимает промежуточное место между электроэрозионными и электрохимическими методами. Обрабатываемую заготовку подключают к аноду, а инструмент — к катоду. В зависимости от характера обработки и вида обрабатываемой поверхности в качестве инструмента используют металлические диски, цилиндры, ленты, проволоку. Обработку ведут Б среде электролита, которым чаще всего служит водный  [c.408]

Представленные в настоящей и следующей главах исследования также основываются на взаимосвязи между физическими процессами деформирования и разрушения и макроскопическим поведением материала. Отличие от других работ указанного направления состоит в выборе структурного уровня рассмотрения физических механизмов и процессов — это в основном структурный уровень, промежуточный между микроскопическим и макроскопическим, т. е. мезоскопический уровень. Для анализа повреждения и разрушения поликристаллических металлов такой структурный уровень, как правило, соответствует зерну. Такой выбор позволяет, с одной стороны, уйти от излишней детализации атомных, дислокационных и других структурных процессов, с другой — сформулировать критерии разрушения в терминах механики сплошной среды.  [c.51]

С другой стороны, адсорбционная теория опирается на тот факт, что большинство металлов, подчиняющихся определению 1, являются переходными металлами в периодической системе (т. е. они имеют электронные вакансии или неспаренные электроны в d-оболочках атома). Наличие неспаренных электронов объясняет образование сильных связей с компонентами среды, особенно с Оа, который также содержит неспаренные электроны (что приводит к появлению парамагнетизма) и образует ковалентные связи в дополнение к ионным. Кроме того, переходные металлы имеют высокую температуру возгонки по сравнению с непереходными, что благоприятствует адсорбции компонентов окружающей среды, так как атомы металла стремятся остаться в кристаллической решетке, а образование оксида требует выхода из нее. Образование химических связей при адсорбции кислорода переходными металлами требует большой энергии, поэтому такие пленки называются хемосорбционными, в отличие от низкоэнергетических пленок, называемых физически адсорбированными. На поверхности непереходных металлов (например, меди и цинка) оксиды образуются очень быстро и любые промежуточные хемосорбционные пленки являются короткоживущими. На переходных металлах хемосорбированный кислород термодинамически более стабилен, чем оксид металла [22]. Многослойная адсорбция кислорода, характеризующаяся ослаблением связей с металлом, приводит с течением времени к образованию оксидов. Но подобные оксиды менее существенны при объяснении пассивности, чем хемосорбционные пленки, которые продолжают образовываться в порах оксида.  [c.81]


Если упругая конструкция имеет многократное повторение геометрических и силовых особенностей, то в ряде случаев представляется возможным рассматривать конструкцию как некоторую непрерывную среду, наделив ее свойствами анизотропии. Например, резино-кордную конструкцию, показанную на рис. 296 и состоящую из нескольких слоев нитей и промежуточных слоев резины, можно представить себе как анизотропную пластину. Сотовая конструкция (рис. 297) тоже может быть представлена как анизотропная пластина.  [c.255]

Сложением двух движений называется процедура определения скорости и ускорения точек греческой среды (оси ц, Q относительно некоторой латинской среды (оси л , у, г), если задано движение греческой среды относительно промежуточной среды (оси Xi, (/ь Zi), которая сама движется заданным образом относительно латинской среды. Аналогично определяется сложение п движений—в этом случае рассматривается п сред, движущихся одна относительно другой. Во всех случаях такого рода движете называется сложным.  [c.30]

Энергия активации является важнейшим кинетическим параметром, характеризуемый изменением потенциальной энергии реагентов, при образовании из них одного моля активированных комплексов. Вопросу об активированном состоянии большое внимание уделяется в теории абсолютных скоростей реакции. В соответствии с этой теорией любой процесс, протекающий во времени независимо от среды (газ, жидкость, твердое тело), в которой он протекает, характеризуется тем, что начальная конфигурация расположения атомов переходит в конечную, через промежуточную (переходную) конфигурацию расположения атомов, которая является критической для данного процесса и по достижении которого имеется большая вероятность завершения процесса реакции. Активированным комплексом называют промежуточные критические конфигурации расположения атомов. Прочность межатомной связи в активированном комплексе ниже чем в исходном веществе. Кроме того природа межатомной связи в комплексе также может быть иной, чем в исходном состоянии.  [c.191]

Определение химической стойкости по изменению массы. Данный метод основан на определении изменения массы образца под воздействием заданного реагента при температурах 20, 40, 60, 80, 100, 125 С и далее с интервалом 25 С. Продолжительность испытаний определяется временем, необходимым для установления сорбционного равновесия или нестойкости образцов пластмасс в данной среде. Промежуточные измерения массы производятся через 12, 24, 36, 48, 72, 96 и 120 ч, затем масса измеряется каждые 7 сут. После окончания испытаний масса образца может возрасти или уменьшиться. Но конечному и шеиению массы (среднему для нескольких образцов) оценивают химическую стойкость материала.  [c.180]

Электроприводы широко используются для запорной и позиционно-регулирующей арматуры. Запорная арматура должна управляться таким образом, чтобы в требуемый момент времени запорный орган был закрыт или открыт в течение заданного интервала времени. При закрытом положении запорного органа затвор должен быть прижат к седлу с заранее установленным усилием. Установка затвора в заданное положение при открывании требуется для всей арматуры и при закрывании параллельных задвижек больших диаметров прохода, в которых создаются условия самоуплотнения запорного органа давлением среды. Промежуточное положен.1е затвора фиксируется путевыми выключателями, останавливающими привод ири достижении затвором требуемого положения. Закрывание арматуры и открывание ее с посадкой затвора на верхнее уплотнение путем ограничения усилия вдоль шпинделя или штока достигается применением муфт ограничения крутящего момента. Таким обра-  [c.76]

Стенка муфты с силовым каркасом из металлокорда [1, 2] состоит из внутреннего и наружного резиновых слоев, стойких к воздействию контактирующих с ними сред промежуточных резино-корд-ных брекерных слоев, расположенных под углом, большим, чем элементы силового каркаса парных слоев силового каркаса с н = 15— 45°. Постоянство наружного диаметра муфты в местах ее присоединения к торцовой заделке достигается бандажом (металлическим кольцом — накладкой) или слоями спиральных элементов. Целесообразно самоуплотнение резиновой камеры и клеевое крепление металлокорда к деталям арматуры.  [c.202]

Среди промежуточных фаз большую долю составляют фазы Л а вес а, имеющие формулу ЛВг, но также часто способные давать растворы замещения с обоими компонентами и поэтому существующие в интервале концентраций. Фазами Лавеса являются соединен[1я РеВег, МоРе2, Т1Сг2, гп Уг.  [c.80]

Полученные решения сравнивались с достигнутыми минимумами целевых функций для структур, относящихся к классам 1 н П. Сравнение показало, что минимальные значения целевых функций для структур классов I и П и проме,-жуточных структур приблизительно равны. Таким образом, среди промежуточных структур не содержатся решения, более оптимальные в смысле погрешно-  [c.22]

В целом нужно стремиться, используя принципы регенерации и противотока, приблизить параметры всех выходящих потоков к параметрам входящих, уменьшая, таким образом, внешний подвод энергии. Как уже было показано, это не противоречит требованиям технологического процесса нагревать, охлаждать или сжимать среды или материалы на промежуточных стадиях. Создавая энергосберегающие технологии (или энерготехнологии), как, впрочем, и любое безотходное производство, целесообразно подходить к нему комплексно, объединяя промежуточные этапы.  [c.205]

Сквозные дисперсные потоки имеют многочисленные технические приложения пневмотранспорт ряда материалов, движение сыпучих сред в силосах и каналах, сушка в слое и взвеси (шахтные, барабанные, пневматические и другие сушилки), камерное сжигание топлива, регенеративные и рекуперативные теплообменники с промежуточным твердым теплоносителем, гомогенные и гетерогенные атомные реакторы с жидкостными и газовыми суспензиями, химические реакторы с движущимся слоем катализатора или твердого сырья, шахтные и подобные им печи — все это далеко не полный перечень. Возникающие при этом технические проблемы изучаются давно, но разрозненно и зачастую недостаточно. Исследование различных форм существования сквозных дисперсных систем в качестве особого класса потоков, выявление режимов их движения, раскрытие механизма теплообмена и влияния на него различных факторов (в первую очередь концентрации), использование полученных данных для увеличения эффективности существующих и разрабатываемых аппаратов и процессов — все это представляется как чрезвычайно актуальная и важная для современной науки и различных отраслей техники проблема. Так, например, применение проточных дисперсных систем в теплоэнергетике позволяет разрабатывать новые экономичные неметаллические воздухоподогреватели, высокотемпературные теплообменники МГД-установок, системы интенсивного теплоотвода в атомных реакторах, высокоэффективные сушилки, методм энерго технологического использования топлива и др.  [c.4]


Э.лектропроводность, вычисленная по формуле (10.103), пред-став.лена кривой В на фиг. 10.12. Это оптимальная электропроводность в среде благодаря термической электризации при промежуточной температуре, более низкой, чем точка кипения твердых частиц.  [c.468]

Среди наук, изучаювщх вопросы деформируемых тел, за последние десятилетия возникли и развились новые разделы механики, занимающие промежуточное положение между сопротивлением материалов и теорией упругости, как, например, прикладная теория упругости возникли родственные им дисциплины, такие, как теория пластичности, теория ползучести и др. На основе общих положений сопротивления материалов созданы новые разделы науки о прочности, имеющие конкретную практическую наиравленность. Сюда относятся строительная механика сооружений, строительная механика самолета, теория прочности сварных конструкций и многие другие. Методы сопротивления материалов не остаются постоянными. Они изменяются вместе с возникновением новых задач и новых требований практики. При ведении инженерных расчетов методы сопротивления материалов следует применять творчески и помнить, что успех практического расчета лежит не столько в применении сложного математического аппарата, сколько в умении вникать в существо исследуемого объекта, найти наиболее удачные упрощающие предположения и довести расчет до окончательного числового результата.  [c.10]

Механизм сцепления эмали с металлической подложкой состоит в том, что при обжиге в окислительной среде образуется окисная пленка на Поверхности покрываемой детали. Образовавшиеся окислы вступают во взаимодействие с расплавом эмали или частично растворяются в нем, благодаря чему образуется промежуточный слой, который обеспечивает сцепление эмали с подложкой. Существует ряд других теорий, объясняющих сцепление металла с эмалью. Среди них особый интерес представляет электрохимическая, предложенная А. Дитцелем 1[62]. Сущность сцепления по этой теории заключается в том, что между участками поверхности и окислами расплава образуются короткозамкнутые электрические элементы. В результате возникающего тока поверхность корродирует, а в образовавшиеся углубления затекает расплав, который прочно в нем удерживается.  [c.101]

Веществом, имеющим промежуточную степень кристалличности, являются полимеры. Молекулы полимеров образуются за счет связывания в цепочки отдельных мономеров и достигают молекулярной массы, равной 10 - 10 . Полимерные цепи образуют небольшие высокоупорядоченпые участки, обычно называемые кристаллитами или кристаллическими областями, которые расположены среди сегментов цепей с несовераюнной межмолекулярной организацией.  [c.47]

Жидкие кристаллы представляют собой с макроскопической точки зрения анизотропную текучую среду. Механика этих сред яесет в себе черты, свойственные как обычным жидкостям, так и упругим средам, и в этом смысле занимает положение, промежуточное между гидродинамикой и теорией упругости.  [c.190]

Принципиальная схема компрессионной машины многоступенчатого сжатия и многократного расширения показана на фиг. 25 на примере двуступел-чатой машины. Весь газ из второй ступени компрессора под давлением (точка с) поступает в конденсатор, где и сжигкается при температуре конденсации Тз (точка d). После первого дросселирования через вентиль в промежуточном испарителе получается жидкость под давлением р, и с температурой Т . Оставшаяся при этом часть пара подается обратно на вход второй ступени компрессора (точка 6 ), а жидкость подвергается дальнейшему дросселированию через второй вентиль У . Полученная жидкая фракция, имеющая температуру и давление собирается в основном испарителе, где она может поглощать тепло из охлаждаемой среды. Пар, получающийся от испарения жидкости в основном конденсаторе под давлением подается на вход первой ступени компрессора (точка а), сжимается до давления и затем охлаждается до температуры насыщения в промежуточном испарителе (точка Ь ).  [c.35]


Смотреть страницы где упоминается термин Среда промежуточная : [c.91]    [c.212]    [c.429]    [c.112]    [c.215]    [c.11]    [c.15]    [c.360]    [c.362]    [c.40]    [c.307]    [c.215]    [c.97]    [c.306]    [c.5]    [c.212]    [c.499]    [c.18]    [c.29]    [c.253]    [c.597]   
Температура и её измерение (1960) -- [ c.110 ]



ПОИСК



Интегральные уравнения лучистого теплообмена в системах тел с поглощающей промежуточной средой

Применение сжимаемой промежуточной среды и абразивных порошков



© 2025 Mash-xxl.info Реклама на сайте